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ABSTRACT
Minimizers are widely used to select subsets of fixed-length substrings (k-mers) from
biological sequences in applications ranging from read mapping to taxonomy
prediction and indexing of large datasets. The minimizer of a string of w consecutive
k-mers is the k-mer with smallest value according to an ordering of all k-mers.
Syncmers are defined here as a family of alternative methods which select k-mers by
inspecting the position of the smallest-valued substring of length s < k within the
k-mer. For example, a closed syncmer is selected if its smallest s-mer is at the start or
end of the k-mer. At least one closed syncmer must be found in every window of
length (k − s) k-mers. Unlike a minimizer, a syncmer is identified by its sequence
alone, and is therefore synchronized in the following sense: if a given k-mer is
selected from one sequence, it will also be selected from any other sequence. Also,
minimizers can be deleted by mutations in flanking sequence, which cannot happen
with syncmers. Experiments on minimizers with parameters used in the minimap2
read mapper and Kraken taxonomy prediction algorithm respectively show that
syncmers can simultaneously achieve both lower density and higher conservation
compared to minimizers.

Subjects Bioinformatics, Computational Biology, Genomics
Keywords Minimizers, Sequence analysis, k-mers, Alignment-free methods, String index

INTRODUCTION
K-mers, submers and minimizers
Next-generation sequencing (NGS) has enabled dramatic advances in fields ranging from
human functional genomics (Morozova & Marra, 2008) to microbial metagenomics
(Gilbert & Dupont, 2011), generating vast amounts of data currently at petabase scale and
increasing exponentially (Schmidt & Hildebrandt, 2017). Computational methods for
analysis of NGS data are often based on k-mers, short subsequences of fixed length k.
The number of k-mers in an index is often very large, motivating methods for selecting
subsets as a time and space optimization. I use the term submers for a method designed to
select a common subset of k-mers from similar sequences. The canonical example of
submers isminimizers (Roberts et al., 2004). Minimizers are used in applications including
read mapping (Li, 2018), taxonomy prediction (Wood, Lu & Langmead, 2019) and
assembly (Sommer et al., 2007; Ye et al., 2012). Minimizers are defined by a choice of k,
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a window length w, and a coding function which assigns an integer value (code) to a
sequence of length k. A coding function implies a total or partial order on the k-mers.
The minimizer in a given window is a k-mer with smallest code value (ties may be handled
in different ways), and the set of minimizers for a sequence is constructed by taking
the union of minimizers over all windows. A simple and popular coding function is to
consider letters in the nucleotide or amino acid alphabet to be base-4 or base-20 digits
respectively (lexicographic coding). Often the coding function hashes the lexicographic
code to improve the pseudo-randomness of the codes and/or to reduce the range of
codes, for example, for hash table indexes, especially with larger values of k where a table of
size 4k or 20k would exceed available memory. The read mapper Winnowmap (Jain et al.,
2020) introduced the concept of weighted minimizers which assigns a weight to each
k-mer biasing its probability of being selected in the event of ties. The density of a submer
rule is defined as the fraction of k-mers selected in a long random string. For given k and
w, the coding function can be optimized with the goal of reducing density (Zheng,
Kingsford & Marçais, 2020; Marçais, Deblasio & Kingsford, 2018). Submers can also
be defined by a universal hitting set (UHS) (Ekim, Berger & Orenstein, 2020; Orenstein
et al., 2016, 2017), an explicitly enumerated set of k-mers such that any sequence of length
w must contain at least one member. Minimizers and UHS submers provide a window
guarantee, that is, there is necessarily at least one submer in every string of fixed length w.
Here, I introduce syncmers, a family of alternative methods which select k-mers by
inspecting the position of the smallest-valued substring of length s < k within the k-mer.
For example, a closed syncmer selected if its smallest s-mer is at the start of end of the
k-mer. At least one closed syncmer must be found in every window of length (k − s) k-mers
(see Fig. 1 and proof in “Methods”). Technical terms are summarized in Table 1 for the
reader’s convenience.

Submer conservation
Methods based on k-mers are generally used for comparison of similar sequences where
differences may have been introduced by biological mutations and/or sequencing error.
Detection of similarity by a k-mer requires that at least k letters and perhaps more are
exactly conserved. Any submer is deleted if one of its letters is mutated. A minimizer is
also deleted by a mutation in a position outside its k-mer but within its window if that
mutation causes some other k-mer to have a smaller code. It is therefore useful to
classify submers as context-free, that is, selected by a rule which considers only the k-mer
sequence, and context-dependent, where the rule also considers flanking sequence.
Minimizers are context-dependent, while UHS submers and syncmers are context-free.
Context-free submers are generally better conserved under mutation providing there are
not too many overlaps between neighboring submers.

Submer distance distribution
The length distribution of distances between consecutive submers gives insights into the
advantages and disadvantages of a submer rule. An upper bound on the distance provides a
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window guarantee. Also desirable is that short distances have low frequencies because
these correspond to submers with long overlaps which increase the rate of submer
deletions under mutation. Ideally, the modal distance would have frequency 1.0 and all
other distances would have zero frequency. This would uniformly tile the sequence and
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Figure 1 Closed syncmers. Construction of k = 5, s = 2 closed syncmers with lexicographic coding. A k-
mer is a closed syncmer if its smallest s-mer is at the beginning or end of the k-mer sequence. Consider a
window of three k-mers (length L = 2k − s − 1 = 7 letters) with the sequence shown in (A). The smallest s-
mer is AA (orange background). (B) Shows the six s-mers in the sequence in (A). Each s-mer is shown
with a gray background in the k-mer where it appears in the first or last position. (B) Illustrates that every
s-mer in the sequence shown in (A) appears at the start or end of a k-mer. Therefore, regardless of which
s-mer has the smallest value, there is a k-mer in the window for which this s-mer appears at the first or last
position. In this example, AA appears at the end of GGCAA, marked with an asterisk (�) and GGCAA is
therefore a syncmer. This shows that every window of length L must contain at least one syncmer. Note
that while flanking sequence is shown in the figure, GGCAA is recognized as a syncmer from its sequence
alone because its smallest 2-mer appears at the end. Closed syncmers tend to form pairs spaced at the
maximum possible distance (k − s) as illustrated in (C). (D) Illustrates how k = 5, s = 2 closed syncmers
are identified in a longer string. The smallest s-mer in each k-mer is shaded with a color. Blue background
indicates that the smallest s-mer is not at the start or end; if it does appears at the start or end then it has
an orange background and the k-mer is a closed syncmer (indicated by an asterisk).

Full-size DOI: 10.7717/peerj.10805/fig-1
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thereby provide a window guarantee, maximally suppress short distances, and maximize
conservation. Of course, this is not achievable in practice, but provides a conceptual
standard for comparison.

METHODS
Coding function
Nucleotide k-mers are converted to integers by lexicographic coding. Extension to amino
acid sequences is straightforward but not considered further in this report. Unless
otherwise stated, lexicographic codes were hashed by murmur64 (https://en.wikipedia.org/
wiki/MurmurHash).

Minimizers
Definition
As noted in the introduction, variations of minimizers are possible by using different
coding functions and different methods for resolving ties. In my implementation for this
work, a k-mer is identified as a minimizer is if it has the smallest code value in any of the
windows of length k + w − 1 letters which cover it.

Compression factor
Let the compression factor (c) be the number of k-mers divided by the number of submers
selected in a long random string, so that c ≥ 1 and larger c indicates a smaller subset.

Table 1 Terminology. Summary of key technical terms used in this article.

Term Description

k-mer String of length k.

Submer Substring of length k (that is, a k-mer) selected from a longer string by a submer rule.

Submer rule Algorithm for selecting a subset of k-mers in a string. If a k-mer at a given position in the string is selected, it is a submer,
otherwise it is not a submer.

Context-free submer rule Submer rule which considers only the k-mer sequence. All submer rules considered here are context-free except
minimizers.

Context-dependent
submer rule

Submer rule which considers one or more flanking letters in addition to the k-mer sequence. Minimizers are the only
submers of this type considered here.

Coding function Function which takes a k-mer sequence as input and reports an integer as output.

k-mer code Integer value for the k-mer reported by a coding function.

k-mer order Function which takes two k-mers as input and returns a boolean true/false value. This can be interpreted as a greater-than-
or-equal operator. A coding function can be used to define a k-mer order, for example, by applying >= to codes.

Minimizer Submer rule which selects a k-mer if it has the smallest code in any of the windows of w consecutive k-mers in which it
appears.

Modulo submer Submer rule which selects a k-mer if its integer code is zero modulo c, where c is an integer parameter of the rule.

Mincode submer Submer rule which selects a k-mer if its code is less than H/c, where H is the maximum possible code and c is a real-valued
parameter of the rule.

Universal Hitting Set
(UHS)

A set of k-mer sequences such that at least one member of the set must be found in any sequence of length w.

Syncmer A family of submer rules which select a k-mer based on the position of its smallest s-mer.
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This is the inverse of density as defined elsewhere in the literature (number of submers
divided by number of k-mers). For minimizers, c can be estimated as follows, assuming
code values are independent and identically distributed (IID) and there are no ties in a
window. Consider a pair of adjacent windows in a random sequence. Sliding one position
to the right, one k-mer (κ1) is discarded from the first window and one (κ2) is added
to the second. The minimizer in the second window is different if κ1 or κ2 has the
smallest code over both windows; otherwise the minimizer of both windows is found in
their intersection and does not change. There are w + 1 k-mers in the two windows
combined, and the probability that a given one of these has the smallest code is therefore
Pm = 1/(w + 1). Thus, the probability that a new minimizer is introduced by sliding the
window one position is P1 = 2 Pm = 2/(w + 1) and hence

cminimizer≈ðwþ 1Þ=2 (1)

The maximum distance between consecutive minimizers, measured as the difference
in their start coordinates, is w, as shown by the following argument. Consider a window of
w consecutive k-mers where the minimizer is the first k-mer. Slide the window one
position to the right. This must introduce a new minimizer. The maximum distance
from the previous minimizer is obtained when the newly-created k-mer at the right-hand
end of the window is the new minimizer, and this is at distance w from the previous
minimizer which was lost at the left-hand end. The fact that P1 is constant implies that
every possible distance 1, 2 … w between consecutive minimizers has equal probability,
and the spacing distribution is therefore uniform.

Mincode submers
Definition
Mincode submers are defined by a compression factor c > 1 which sets a minimum value
for the code, as follows: a k-mer κ is a mincode submer if code(κ) ≤ H/c where H is the
maximum possible code. Mincode submers are context-free because no flanking sequence
is considered.

Distance distribution

Assuming that k-mer codes are IID, the distance distribution for mincode submers can
be calculated as follows. The probability that a given k-mer is selected is 1/c. Thus, the
probability that the distance is one (immediately adjacent) is P(1) = 1/c, the probability of
distance two is P(r = 2) = (1 − P(1))P(1) and the probability of distance r is

PmincodeðrÞ ¼ ð1=cÞð1−1=cÞr−1 (2)

For example, with c = 2 this gives P(1) = 0.5, P(2) = 0.25, P(3) = 0.125 and with c = 3,
P(1) = 0.33, P(2) = 0.22, P(3) = 0.15. For any c > 1, the maximum is P(1) and the
probability of longer distances falls exponentially with r. With larger c, (1 − 1/c) is closer
to one and the exponential falls more slowly. The maximum at r = 1 implies that overlaps
between adjacent submers are common, causing multiple submers to be disrupted by a
single mutation. The slow fall of the exponential tail will cause longer gaps between
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covered positions. Thus, mincode submers provide no window guarantee and the distance
distribution is undesirable.

Modulo submers
Definition

Module submers are defined by an integer compression factor c > 1, as follows: a k-mer
κ is a mincode submer if modulo(code(κ), c) = 0. Mincode submers are a particularly
simple and convenient submer implementation. The properties of modulo syncmers
are essentially the same as mincode syncmers with an integer value of c; both methods can
be interpreted as selecting a randomly-chosen subset of all possible k-mers containing
~4k/c sequences.

Closed syncmers
Definition
Closed syncmers are parameterized by k, a substring length s < k, and a coding function.
Given a string S, let µ(S, s) be the s-mer substring with smallest code value, taking the
first in left-to-right order if there is a tie. A k-mer κ is a closed syncmer if and only if µ(κ, s)
is the first or last s-mer in κ (Fig. 1).

Window length
Consider a window W containing w = (k − s) k-mers. Let σ+ = µ(W, s), that is, the first
s-mer with smallest code value in W. For any s-mer σ in W, there is a k-mer κ such that σ
is at the beginning or end of κ. Therefore σ+ is at the start or end of a k-mer in W;
call this kmer κ+. The s-mers in κ+ are a subset of s-mers in W, and therefore σ+ has the
smallest code in κ+, that is, µ(κ+, s) = σ+ = µ(W, s). Therefore, κ+ is a syncmer, and
all windows of length w = (k − s) k-mers contain at least one (k, s) closed syncmer.
Thus, closed syncmers provide a window guarantee.

Compression factor

A k-mer has n = (k − s + 1) s-mer substrings. Under the approximation that that s-mer
code values are IID, the probability a given s-mer is the smallest is 1/n and the probability
that the first or last is the smallest is 2/n. Then the probability that a given k-mer is a
closed syncmer is 2/(k − s + 1) = 2/(w + 1), and the compression factor for a closed
syncmer is

cclosedsyncmer≈ðwþ 1Þ=2 ¼ ðk−sþ 1Þ=2 (3)

This approximation is reasonable when 4s ≫ k, but breaks down when 4s ≲ k.
For example, if s = 1, then a k-mer is a closed syncmer if the first or last letter has
lowest code value (call it A), which occurs with probability 1/4 (first letter is A) + 1/4
(last letter is A) − 1/16 (subtract double-counting when both first and last letters are
A) = 0.56 for any k > 1, and this is an under-estimate because there are additional closed
syncmers containing no As. Thus, with s = 1 the compression factor is <1/0.56 = 1.79
for any k.
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Maximum distance
By the same argument as minimizers, the maximum distance between two closed syncmers
is w = (k − s), and the minimum overlap between adjacent closed syncmers is therefore s.

Efficient spacing
There is a marked tendency for successive closed syncmers to be separated by their
maximal possible distance w = (k − s) due to the formation of closed syncmer pairs as
illustrated in Fig. 1C. Consider a closed syncmer κ1 for which the minimal s-mer σ1 is at the
right-hand end, as in the upper k-mer shown in Fig. 1C, and extend the sequence with k − s
additional letters to form a second k-mer κ2 starting with σ1. If σ1 is the smallest s-mer
in the combined sequence W = κ1 ∪ κ2, then κ2 is the next closed syncmer after κ1 and
the distance is (k − s). Given that σ1 has the smallest value in κ1, it is quite likely to have
the smallest value in W, as in the example shown in Fig. 1C. If not, an s-mer σ2 with
code less than σ1 induces a new closed syncmer before κ2 and the distance is < (k − s).
Now consider a syncmer κ3 for which the minimal s-mer σ3 is at the start, as in the lower
k-mer shown in Fig. 1C. The subsequent k-mer κ4 (not shown in Fig. 1) formed by adding
one more letter does not contain σ1 and must therefore have a new minimal s-mer σ4
which may be anywhere in κ4. If the code values of s-mers are assumed to be IID, then the
distance distribution for this situation can be approximated by similar reasoning to the
derivation of Eq. (2) assuming that the probability that a given s-mer is the smallest in a
k-mer is 1/(number of s-mers in a k-mer) = 1/(k − s + 1). Thus, there are two types of
distance: (i) between members of the same pair, and (ii) between neighboring closed
syncmers which are not paired with each other. At most half of all distances are of type
(i), where the distance always (k − s). Other distances will exhibit an approximately
exponential decrease given by Eq. (2) with c = (k − s + 1) with a maximum of (k − s).

Open syncmers
Definition
A k-mer κ is an open syncmer if and only if µ(κ, s) is the first s-mer in κ.

Compression factor
By similar reasoning to Eq. (3), the compression factor is ~(k − s + 1) for open syncmers.

Spacing
Open syncmers provide a window guarantee, but the maximum possible distance is not
easily reduced to a closed form. If a string has no open syncmer, the first occurrence of
its smallest s-mer must be in its last (k−1) letters; call this the little-endian property.
If a suffix of (k−1) additional letters are appended, at least one of the new s-mers must
have a lower value than all existing s-mers, otherwise the string is no longer little-endian
and an open syncmer must be found. If this construction is continued, the suffixes form a
strictly decreasing series which must terminate after a finite number of steps when the
smallest possible s-mer appears. This proof shows that an upper bound on distance exists,
and suggests that the upper bound scales exponentially with s. Smaller values of s may
therefore be preferred if a strict window guarantee is required. However, longer gaps
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are suppressed because the probability that a string is little-endian falls rapidly with L,
which implies that the worst-case scenario suggested by the proof is highly improbable
for many practically relevant values of k and s. As an example, consider the simple case
k = 3, s = 1 with lexicographic coding. With these parameters, the longest string without an
open syncmer is TTGGCCAA; it is the only 8-mer with that property and therefore occurs
only once every 48 = 65,536 8-mers in a random string. Thus, with open syncmers the
upper bound on distance has less practical relevance than for minimizers, because with
minimizers the maximum distance has the same frequency as all other distances, while
with open syncmers the maximum distance is very rare.

Circular syncmers
Circular syncmers consider a k-mer sequence to wrap around and thereby to contain k
distinct s-mers rather than k − s + 1. Non-circular syncmers are described as linear if needed
to distinguish these two types. For example, the 5-mer ACGTA contains 2-mers AC,
CG, GT and TA if considered to be linear, plus AA if circular. With lexicographic coding,
ACGTA is a (k = 5, s = 2) linear open syncmer because the first 2-mer AC is its
smallest, but not a circular open syncmer because the smallest 2-mer (AA) is not the
first. By increasing the number of s-mers, circularity enables higher compression for given k
and s. For example, the compression factor is ~(k − s + 1) for linear open syncmers
which increases to ~k for circular open syncmers (by similar reasoning to Eq. (3)).
Circular open syncmers do not have a window guarantee, as shown by the following
counter-example with k = 4 and s = 2. The repeating string ACCACCACCA… contains
three distinct 4-mers ACCA, CCAC and CACC where the position of the smallest 2-mer
is 4, 3 and 2 respectively. For circular closed syncmers, I do not have a proof of a
window guarantee or a counter-example.

Offset parameter
Syncmer variants can be defined by introducing an offset parameter t specifying the
one-based position of the s-mer to be considered. For example, an open syncmer with
offset t = 2 has the smallest s-mer in its second position rather than the first. This has the
effect of eliminating immediately consecutive (distance = 1) linear syncmers, as shown
by the following argument. Suppose κ1 is an open syncmer with t = 2, and append one
more letter to give a new k-mer κ2. The smallest s-mer in κ1 (σ

+) must be in its second
position, and this is now the first s-mer in κ2. Either σ

+ is the smallest s-mer in κ2, or the
new s-mer at the end of κ2 is the smallest; in both cases the smallest s-mer is not in
its second position and κ2 is therefore not a syncmer. If the syncmers are circular,
consecutive syncmers are strongly suppressed but not completely eliminated. Similarly,
for any value of t, distances < t are suppressed. If t > 1, the window guarantee is lost, as
shown by the counter-example of a long string of the same letter (e.g., AAAAA….) which
cannot contain a syncmer. However, this could be considered a desirable property in
practice by avoiding seeds in low-complexity sequence.
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Down-sampled syncmers
Definition
Down-sampled syncmers are defined by introducing an additional parameter d > 1 which
enables arbitrarily large compression factors. A k-mer κ is a down-sampled syncmer if κ is
a syncmer and κ is a mincode submer with factor d.

Compression factor
With a well-chosen coding function, the probability that a k-mer is a syncmer is effectively
independent of the probability that it is a mincode submer. The probabilities are therefore
multiplicative and the compression factor of a down-sampled syncmer is

cdownsampled ¼ dcsyncmer (4)

Spacing

Down-sampled syncmers are a subset of mincode submers with compression factor d, and
therefore by Eq. (3)

PdownsampledðrÞ > ð1=dÞð1−1=dÞr−1 (5)

The value of d required to get a given compression factor c is smaller for down-sampled
syncmers than for mincode syncmers, giving a distance distribution with faster
exponential decline.

Prefix submers
Definition
Let X(k) be a submer rule for k-mers. Define a new rule Y(X, k, k′) as follows: a k-mer is a Y
submer if its first k′ letters (its prefix) is an X(k′) submer.

Spacing
The distance distribution of Y(X, k, k′) is identical to the distance distribution of X(k′) by
construction. Informally, this is because the prefix is unchanged when letters are added,
and only the prefix is considered by the rule.

Speed optimization of submer identification

Prefix submers enable speed optimizations. For example, suppose an application requires
k = 64 syncmers with compression c ≈ 3. By Eq. (3), s ≈ k − 2c + 1 and c ≈ 3 can thus
be achieved by (k = 8, s = 3) closed linear syncmers. The application can therefore use
prefix closed linear syncmers with k = 64, k′ = 8 and s = 3 to achieve the desired
compression factor. There are 65,536 possible 8-mers, which can be pre-classified and
stored in a boolean vector. If nucleotide sequences are encoded with two bits per letter,
the binary encoding of the 8-mer prefix can be used directly as the vector subscript because
the processor can interpret the encoded 8-mer as a 16-bit integer immediately, without
data type conversions. This technique reduces syncmer identification to three operations
per position: a memory access, a boolean test, and a pointer increment which advances to
the next position.
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Submer properties on random sequences
Submer properties including the compression factor (c) were measured on a random
sequence R of length 106 letters {ACGT}. The compression factor was measured as the
number of k-mers divided by the number of submers.

Submer conservation with random mutations
Conservation was measured by introducing random substitutions into R at a given
frequency, giving a mutated sequence R′. The mutation rate is expressed as percentage
identity of R–R’, for example, frequency 0.2 is identity 80%. A submer is conserved if
the k-mer at a given position is unchanged (no substitutions) and this k-mer is selected as a
submer in both R and R’. The fraction of letters which are both indexed and conserved
(denoted ConsPctid, for example, Cons80) is defined as the number of positions appearing
in conserved submers divided by the length of R. If a given position appears in
multiple conserved submers, it is counted only once. This definition of conservation is
designed to quantify the fraction of the mutated sequence covered by alignment seeds.

Evaluation on whole-genome alignment
I implemented a pair-wise whole-genome aligner as follows. Submers and their positions
in two genomes are identified and indexed in a hash table. For each pair of submers with
the same sequence, one in each genome, an ungapped seed-and-extend alignment
(Altschul et al., 1990) is constructed. The seed alignment implied by the matching
submers is extended until (maximum score) − (current score) > X, where X is a fixed
parameter, and the alignment with the maximum score is reported. After selecting
submers, this algorithm has only three free parameters relative to the match score
(1): mismatch score (−3), X (16) and minimum score to report an alignment (100).
The minimum alignment score is set to a high value to suppress short and/or low-identity
alignments where homology is ambiguous. Submer sensitivity was compared by measuring
the aligned fraction (AF) of the input sequences obtained by different submer types.
AF is calculated as (n1/L1 + n2/L2)/2 where n1 is the number of bases in the first genome
which appear in an alignment, L1 is the length of the first genome, and similarly for the
second genome. The value of AF ranges from 0 (no alignments) to 1 (all bases in both
genomes appear in at least one alignment). Gapped alignments were not considered
because alignment length is sensitive to gap penalty values, and the difference in AF
between two submer types may therefore vary with gap penalty choice. With gapless
alignments, if one submer type has substantially higher AF, it is reasonable to conclude
that this submer is more sensitive to homologous seeds. If two submer types have similar
AF, then the result is inconclusive because it cannot be ruled out that one submer type
would find more low-scoring alignments that are in fact homologous.

Genome pairs
Whole-genome alignments were assessed using the bacterial assemblies shown in Table 2.
Pair-wise average nucleotide identity (ANI) and AF were measured from MEGABLAST
(Morgulis et al., 2008) alignments having E-values ≤ 10−9 and length ≥100. Gap-open
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and -extension penalties were set to high values to ensure that alignments were gapless.
I manually selected pairs of genomes with a representative range of ANIs, preferring pairs
with higher AF. These pairs were used to measure submer sensitivity in whole-genome
alignment.

Representative parameters
To select parameters representative of those used in practice, I chose minimizers (k = 15,
w = 10) and (k = 31, w = 15) used by minimap2 (Li, 2018) and Kraken v1 (Wood &
Salzberg, 2014), respectively. Comparable syncmer parameters were identified as those
giving compression factors equal or better than the minimizers with equal or better seed
conservation at 90% identity (Cons90).

Table 2 Bacterial genome assemblies used in this study.

Id Assembly Description

L11 GCA_002222595.2 Blautia hansenii DSM 20583

L13 GCA_004295125.1 [Clostridium] scindens ATCC 35704

L14 GCA_009684695.1 [Clostridium] scindens

L15 GCA_000178835.2 Cellulosilyticum lentocellum DSM 5427

L16 GCA_004210255.1 Blautia producta

L17 GCA_010669205.1 Blautia producta ATCC 27340 = DSM 2950

L18 GCA_008121495.1 [Ruminococcus] gnavus ATCC 29149

L26 GCA_008281175.1 [Clostridium] hylemonae DSM 15053

L27 GCA_900537995.1 Roseburia intestinalis L1-82

L30 GCA_002234575.2 [Clostridium] bolteae

L31 GCA_000225345.1 Roseburia hominis A2-183

L41 GCA_001689125.2 Blautia sp. YL58

L42 GCA_001688665.2 Lachnoclostridium sp. YL32

L43 GCA_900120345.1 Lachnoclostridium phocaeense

L46 GCA_003287895.1 Blautia sp. N6H1-15

L51 GCA_003990395.1 Cellulosilyticum sp. WCF-2

L52 GCA_007361935.1 Lachnospiraceae bacterium KGMB03038

F11 GCA_003019695.1 Fusobacterium gonidiaformans ATCC 25563

F13 GCA_000007325.1 Fusobacterium nucleatum subsp. nucleatum ATCC 25586

F14 GCA_000158275.2 Fusobacterium nucleatum subsp. animalis 7_1

F15 GCA_000162235.2 Fusobacterium nucleatum subsp. vincentii 3_1_36A2

F16 GCA_000163915.2 Fusobacterium nucleatum subsp. vincentii 3_1_27

F17 GCA_000400875.1 Fusobacterium nucleatum subsp. animalis 4_8

F18 GCA_001296085.1 Fusobacterium nucleatum subsp. animalis

F23 GCA_001433955.1 Fusobacterium nucleatum subsp. polymorphum

F24 GCA_001457555.1 Fusobacterium nucleatum subsp. polymorphum

F27 GCA_002211645.1 Fusobacterium nucleatum subsp. animalis

F35 GCA_003019715.1 Fusobacterium necrophorum subsp. funduliforme

F36 GCA_003732505.1 Fusobacterium necrophorum subsp. funduliforme

F40 GCA_003019755.1 Fusobacterium periodonticum

Note:
Columns are: Id short identifier used in Table 3; Assembly NCBI assembly accession; Description species or strain name.
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RESULTS
Comparison of syncmers with minimap2-like minimizers
Table 3 shows properties for minimap2-like minimizers with selected k = 15 syncmers that
achieve better compression and/or better conservation. Notice for example that open
syncmers with s = 9, t = 3 achieve compression of 7.0 vs. 5.5 for minimizers (27% lower
density) with conservation of 0.312 vs. 0.301 (4% better).

Comparison of syncmers with Kraken v1-like minimizers
Table 4 shows properties for Kraken v1-like minimizers with selected k = 31 syncmers
that achieve better compression and/or better conservation. For example, open syncmers
with s = 31, t = 5 achieve compression of 11.0 vs. 8.5 for minimizers (29% lower density)
with conservation of 0.081 vs. 0.077 (5% better).

Comparison of distance distributions
Figure 2 shows distance distributions for selected k = 8 submers to illustrate how the
distribution changes with submer type and parameters. As noted in the “Introduction”, an
ideal distribution would have modal frequency 1.0, but this is not possible in practice.
A desirable feature is an upper bound w so that all distances >w have frequency zero; this is
equivalent to the window guarantee. Also desirable is that short distances have low
frequencies because these correspond to submers with long overlaps which are more likely
to be deleted under mutations. With minimizers, all distances have approximately equal

Table 3 Syncmers with higher compression and higher conservation than minimizers with minimap2
parameters.Minimap2 uses minimizers with k = 15, w = 10. This table shows syncmers having both higher
compression (lower density) and higher conservation than minimizers with these parameters, which are
shown in the first row for comparison. Rows are sorted by increasing conservation. OR indicates whether
the syncmers are open (Yx) or closed (Nx), and whether they are rotated (xY) or not (xN). Notice for
example that open syncmers with s = 9, t = 3 achieve compression of 7.0 vs. 5.5 for minimizers (27% lower
density) with conservation of 0.312 vs. 0.301 (4% better).

w s t OR c Cons90 Cons80

10 – – – 5.5 0.301 0.060

– 1 2 YN 7.0 0.302 0.062

– 1 2 YY 7.0 0.302 0.062

– 10 – YN 6.0 0.306 0.064

– 10 5 YN 6.0 0.306 0.064

– 4 – NN 6.0 0.306 0.063

– 1 2 NY 6.8 0.308 0.064

– 9 4 YN 7.0 0.308 0.063

– 9 2 YN 7.0 0.309 0.064

– 9 3 YN 7.0 0.312 0.064

– 10 4 YN 6.0 0.323 0.069

– 10 1 YN 6.0 0.324 0.068

– 10 2 YN 6.0 0.333 0.071

– 10 3 YN 6.0 0.333 0.071
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frequencies (see “Methods”), and short distances are therefore not suppressed. Open
syncmers with offset t > 1 strongly suppress long distances and eliminate short distances,
as expected (see “Methods”). Compare the second panel in row (A) with the second
panel in row (G), which show that minimizers with w = 8 have compression 4.5 and
conservation 0.47, while open syncmers with s = 3 and offset t = 2 have the same
conservation with substantially better compression (5.9), which can be understood as a
consequence of the more desirable distance distribution of the syncmers in addition to
their context-independence.

Table 4 Syncmers with higher compression and higher conservation than minimizers with Kraken
v1 parameters. Kraken v1 uses minimizers with k = 31, w = 16. For example, open syncmers with s = 31,
t = 5 achieve compression of 11.0 vs. 8.5 for minimizers (29% lower density) with conservation of 0.081
vs. 0.077 (5% better).

w s d t OR c Cons90 Cons80

16 – – – – 8.5 0.077 0.003

– 13 – – NN 9.5 0.078 0.002

– 20 – 6 YN 12.0 0.078 0.002

– 20 – 7 YN 12.0 0.078 0.002

– 26 3 – NN 9.0 0.078 0.003

– 22 – 8 YN 10.0 0.079 0.003

– 23 2 – NN 9.0 0.079 0.002

– 14 – – NN 9.0 0.080 0.003

– 21 – 3 YN 11.0 0.080 0.003

– 21 – 6 YN 11.0 0.080 0.002

– 21 – 7 YN 11.0 0.080 0.002

– 22 – 1 YN 10.0 0.080 0.003

– 23 – – YN 9.0 0.080 0.003

– 21 – 4 YN 11.0 0.081 0.002

– 21 – 5 YN 11.0 0.081 0.002

– 22 – 7 YN 10.0 0.081 0.003

– 23 – 8 YN 9.0 0.082 0.003

– 22 – 2 YN 10.0 0.084 0.003

– 22 – 6 YN 10.0 0.084 0.003

– 22 – 3 YN 10.0 0.085 0.003

– 23 – 1 YN 9.0 0.085 0.002

– 1 – 3 NY 9.5 0.086 0.003

– 1 – 3 YN 9.5 0.086 0.003

– 1 – 3 YY 9.5 0.086 0.003

– 22 – 4 YN 10.0 0.086 0.003

– 22 – 5 YN 10.0 0.086 0.003

– 23 – 7 YN 9.0 0.086 0.002

– 23 – 2 YN 9.0 0.087 0.003
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Figure 2 Frequency distribution of distances between consecutive submers. The histograms show
spacing distributions for some representative submer types with k = 8 including (A–C) minimizers,
(D–F) modulo submers, (G–I) closed syncmers, (J–L) closed rotated syncmers, (M–O) open syncmers,
(P–R) open rotated syncmers, (S–U) open syncmers with offset and (V–X) downsampled closed sync-
mers. Parameters, for example, s (sub-sequence length) and t (offset), are shown at the top of each chart,
together with c (compression) and Cn (fraction of conserved letters at 90% identity) for every chart.

Full-size DOI: 10.7717/peerj.10805/fig-2
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Whole-genome alignment
Table 5 shows results for whole-genome alignment on 19 pairs of bacterial assemblies
using (k = 15, w = 10) minimizers and (k = 15, s = 5) syncmers. On 15/19 of these
pairs (79%), syncmers had higher AF (more aligned bases, indicating higher sensitivity),
there was one tie, and on two pairs minimizers had 0.1% higher AF. As expected from the
earlier results, syncmers show a strong tendency to have better sensitivity at lower
identities. The AFs obtained with submers at low identities are much lower than
MEGABLAST, indicating that many alignable segments of length ≥100 do not contain a
conserved submer of either type.

Maximum distance under mutation
Table 6 shows maximum distances for minimap2-like and Kraken-like minimizers
compared to selected syncmers tested on random sequences of length 1 M (comparable to
a short bacterial genome) and 100 M (short mammalian chromosome) at identities of
95% and 90%. For k = 15, these are linear open syncmers with s = 9 and offset t = 4;
for k = 31 they are linear open syncmers with s = 21, t = 5. These were chosen because they
have both better compression and better conservation than minimizers (Tables 3 and 4).
Neither of these syncmer types has a window guarantee. In identical sequences, the
minimizers have a maximum distance (window size w) of 10 (k = 15) and 16 (k = 31), but

Table 5 Results of whole-genome alignment test. ANI is average nucleotide identity, AF is aligned
fraction, Min. is minimizers, Syn. is syncmers. Diff AF(%) is ((Syn. AF) × 100/(Min. AF) − 100).

Genome1 Genome2 Blast
ANI

Min.
ANI

Syn.
ANI

Blast
AF

Min.
AF

Syn.
AF

Diff.
AF(%)

L14 L26 79.6 84.9 84.7 0.227 0.048 0.051 +6.5

L13 L43 80.7 87.6 87.6 0.121 0.030 0.032 +5.6

F11 F14 82.0 86.0 86.0 0.156 0.037 0.037 +0.5

L11 L46 82.7 88.4 88.2 0.346 0.137 0.142 +4.1

L43 L52 84.4 89.1 88.9 0.147 0.056 0.059 +5.2

L27 L31 84.6 90.4 90.3 0.236 0.105 0.106 +1.3

L17 L41 86.5 88.6 88.5 0.603 0.408 0.414 +1.3

L16 L41 86.5 88.6 88.6 0.607 0.407 0.411 +1.1

F23 F40 87.6 89.1 89.1 0.705 0.484 0.487 +0.7

L11 L18 89.4 98.2 97.9 0.122 0.074 0.075 +2.2

F13 F14 91.0 92.9 92.9 0.748 0.703 0.705 +0.2

L30 L42 92.2 92.6 92.6 0.503 0.475 0.476 +0.3

F18 F27 93.3 97.9 97.9 0.811 0.733 0.733 −0.1

F14 F17 93.8 98.0 98.0 0.858 0.772 0.771 −0.01

F23 F24 94.9 97.2 97.2 0.827 0.764 0.764 +0.1

F15 F16 96.1 98.5 98.5 0.898 0.860 0.859 −0.1

L15 L51 96.7 98.3 98.3 0.826 0.800 0.800 +0.1

F35 F36 98.4 99.1 99.1 0.869 0.832 0.832 0.0

L13 L14 99.4 99.7 99.7 0.786 0.775 0.778 +0.4
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under mutation the maximum distance between conserved minimizers is much greater,
ranging from ~20w (k = 15, 1 Mb, 95%id) to ~300w (k = 31, 100 Mb, 90%id). Thus, the
window guarantee is degraded by more than an order of magnitude even at a relatively
modest 5% mutation rate in a relatively short sequence (1 Mb), getting worse as the identity
is reduced and/or the sequence length is increased. As shown in Table 6, syncmers often have
lower maximum distance under mutation despite the lack of a window guarantee, which
can be understood as a consequence of their better conservation. This observation calls into
question the practical relevance of the window guarantee (see Discussion).

Parameter sweep
Table S1 gives quality metrics for a wide range of submers, enabling programmers and
end-users to choose parameters giving a preferred trade-off between compression factor
and conservation.

DISCUSSION
Submer rules
The modulo submer method seems obvious and has probably been reinvented many times.
It is a natural standard of comparison for more elaborate methods such as minimizers,
and it is puzzling that no previous comparison has been published to the best of my
knowledge. Possibly the fact that arbitrarily long gaps can occur, albeit with exponentially
low probability, was considered a self-evident disadvantage, and naively this appears
difficult to overcome without considering flanking sequence in a window. The syncmer
method demonstrates that correlations between neighboring k-mers can be exploited to
achieve a window guarantee with a context-free rule. Many variations on this technique
are possible, allowing fine-tuning of characteristics such as the spacing distribution at a
desired density. Perhaps surprisingly, it is possible to obtain a window guarantee even

Table 6 Maximum distances under mutations.Maximum distance for minimap2-like and Kraken-like
minimizers compared to selected syncmers on random sequences of length 1 M and 100M at identities of
95% and 90%. For k = 15, these are open syncmers with s = 9 and offset t = 4; for k = 31 they are open
syncmers with s = 21, t = 5. Neither of these syncmer types has a window guarantee. In identical
sequences, the minimizers have a window size of 10 (k = 15) and 16 (k = 31), but under mutation the
maximum spacing is much greater, even at 95% identity. Syncmers often have lower maximum spacing
under mutation despite the lack of a window guarantee.

k L (M) %Id Max dist.
minimizer

Max dist.
syncmer

15 1 95 215 197

15 1 90 444 439

15 100 95 293 294

15 100 90 693 688

31 1 95 809 705

31 1 90 3,906 4,207

31 100 95 1,277 1,094

31 100 90 4,898 4,837
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for submers that are sparse in the sense that some letters are not covered; this can be
understood as additionally exploiting the finite (and typically small) number of distinct
s-mers (see the “strictly decreasing series” proof for open syncmers). Introducing an offset
gives up the window guarantee in favor of suppressing short distances (that is, long
overlaps) between neighboring syncmers, which improves conservation. The improved
conservation achieved by this technique tends to compensate for its lack of a strict window
guarantee so that it may exhibit a shorter maximum distance under mutation than similar
rules which do have a guarantee for identical sequences.

Context-free submers do not have edge bias
A k-mer at the start or end (edge) of a sequence appears in only one window, and thus has
a probability 1/w of being a minimizer which is roughly half the probability 2/(w + 1) for a
k-mer far enough from the edge that it appears in w windows (see Eq. (1)). This issue
can be significant in practice for short sequences such as next-generation reads, for
example, for identifying overlaps in assembly. This was noted in (Roberts et al., 2004),
where it was proposed that the problem can be addressed by introducing a special case at
sequence terminals they called end-minimizers. This issue does not arise with context-free
submers such as syncmers.

Choosing submer parameters
An application must choose submer parameters such as k and w or s. Typically, these
choices are driven by maximizing sensitivity and reducing computational resources, which
are conflicting goals. The primary parameter is k, which gives a trade-off between
sensitivity and specificity. Small k is more sensitive because mutations are less likely to
delete a k-mer, but gives more seeds which increases processing time and may result in
more false positive predictions. Larger k improves specificity (seeds are more likely to
be homologous) and saves time (fewer seeds will be found in diverged sequences), but
reduces sensitivity because more k-mers are deleted by mutations. As an example, bacterial
genomes are ~10 Mb when both strands are included. If k ≤ 11, then the probability of
finding any given k-mer in a bacterial genome is ~1 because 411 ≈ 4 Mb. Therefore, an
application such as Kraken which requires submers to be unique within a clade must set
k ≫ 11 to achieve acceptable specificity. By contrast, a bacterial whole-genome aligner
might reasonably set k ~ 11 because the number of false positive seeds between one pair
of genomes should be tolerably low. In the following, I will assume that k has been fixed
based on such considerations and focus on the choice of submer rule and the rule’s
parameters.

The window guarantee is a weak heuristic
The window guarantee is designed to ensure that similar subsequences have seeds,
that is, conserved submers. This is a reasonable heuristic, but when mutations are
introduced, the guarantee is necessarily lost for any type of submer. As illustrated by the
examples in Fig. 3, submers, especially context-dependent submers such as minimizers,
are deleted much more rapidly than letters as sequences mutate, with a large majority
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deleted at identities around 90% or less. Therefore, even if a submer rule has a window
guarantee for identical sequences, its seeds will often have gaps ≫w when sequences have
≲95% identity (Table 6). If the primary goal of the submer method is to identify seeds
in homologous sequences, then the window guarantee does not provide an upper bound
on spacing; it is at best a weak heuristic and should not be regarded as an essential
property. If a rule without a window guarantee conserves more seeds at a given density,
then it is likely to give better sensitivity in many practical applications.

Density is not the appropriate optimization metric
Several recent papers have focused on minimizing the density of minimizers for given k
and w; see (Zheng, Kingsford & Marçais, 2020) and references therein. This would be
an appropriate optimization strategy if submers were used to find identical longer
substrings in different sequences, but this is rarely the primary goal of an application
and other methods are better suited to this task (e.g., Burrows–Wheeler indexes).
In practice, most algorithms use minimizers to find homologous sequences which may
have diverged due to mutations and/or sequencing error; for example, minimap2 and
Kraken are algorithms of this type. Such applications generally aim to maximize sensitivity
to diverged sequences under time and space constraints. If two minimizer rules with
the same k and w have different density, then the rule with higher density will conserve
more submers and is therefore more sensitive. Tuning minimizer density is thus similar to
tuning the window length in that it gives a trade-off between sensitivity and index size.
If lower minimizer density is needed to save memory or increase speed, then the window
length could be increased, or the rule could be changed to one giving lower density.
Either strategy could give better conservation, depending on the rules. For most
applications, the appropriate optimization metric for submers is conservation, which
should be maximized while keeping density fixed and allowing other parameters (e.g., w)
to vary. Density should be held fixed because this parameter determines time and space
resources for a given k. Maximizing conservation at a fixed density will tend to maximize
the sensitivity achieved by an application with resources determined by the density.
Conservation should generally be assessed by the number of conserved letters covered by a
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seed rather than the number of conserved submers to avoid double-counting when
submers overlap.

Well-conserved submers
If it is accepted that the optimization goal is maximizing conservation for fixed k and
density, then context-free submers have a natural advantage over minimizers because a
mutation anywhere in the window can delete its minimizer, while context-free submers
are deleted only when a mutation occurs within the k-mer. The advantage is greater at
lower identities, because mutations in minimizer flanking sequences are more common,
and also at lower densities (for a given minimizer rule) because lower densities require
longer windows, which result in more deleted minimizers due to flanking mutations.
The apparent advantage of the window guarantee is therefore a liability in practice for
minimizers. If the desired density is high enough that it can be achieved by closed
syncmers, then they offer an unambiguously superior alternative to minimizers for a wide
range of densities and k values because they simultaneously achieve lower density and
higher conservation (Tables 3 and 4; Table S1) while giving a similar window guarantee.
Strictly, these results are established only for my own implementation of minimizers, but
they almost certainly apply to minimizer variants with different coding functions or
tie-breaking rules if submers with the same density are compared rather than the same
window length. At lower densities, variants such as open syncmers with an offset can
again simultaneously achieve lower densities and higher conservation compared to
minimizers (Tables 3 and 4; Table S1). Some variants lack a window guarantee, but these
syncmers are nevertheless clearly superior to minimizers unless a practically relevant
advantage of the guarantee can be shown.

Connections between syncmers, UHSs and minimizers
To the best of my knowledge, all published practical algorithms based on minimizers
have used either pseudo-random order (hashing) or lexicographic order; in particular
minimap2 and Kraken use hashing. Several theoretical papers have described minimizer
variants based on non-random orders; see (Zheng, Kingsford & Marçais, 2020) and
references therein. In particular, a UHS can be used to construct minimizers by defining an
order such that all k-mers in the UHS have lower code values than all other k-mers.
By definition of a UHS, every window of length w will contain at least one k-mer from the
UHS, and the minimizer rule will therefore select one member of the UHS from every
window. A syncmer rule with a window guarantee defines a UHS, and an order defined
by this UHS can be used to select minimizers. Using my terminology, the miniception
algorithm (Zheng, Kingsford &Marçais, 2020) can be described as selecting minimizers via
a UHS constructed from closed linear syncmers with offset 1. From the perspective of
(Zheng, Kingsford & Marçais, 2020), lower density is preferred for fixed k and w, and
miniception minimizers are therefore better than using the UHS directly as a submer
rule because the minimizer density is lower while preserving the window guarantee
(there may be more than one member of the UHS in a window, and the minimizer rule
therefore selects fewer submers than using the UHS directly as the rule). From my
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perspective in this paper, the window guarantee is not important, minimizing density is the
wrong objective, and syncmers are preferred because they give better conservation than
minimizers. For future work, I would propose optimizing the k-mer order for mincode
submers rather than minimizers, with the goal of maximizing conservation with fixed k
and density. Free parameters are in the coding function (order) and code value threshold.
This provides a fully general framework because any context-free submer rule can be
re-formulated as mincode submers by assigning lower values to submers than other
k-mers.

CONCLUSIONS
Syncmers are a novel family of methods for selecting k-mers which are shown to have
several properties that will be useful in practical applications. Like minimizers, they
can provide a guarantee that at least one syncmer will be selected in a window of a
predetermined length. Unlike minimizers, syncmers are robust against mutations in
flanking sequence and are better conserved in mutated sequences.
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