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ABSTRACT
Objective. To investigate serum intestinal fatty acid-binding protein (I-FABP) in two
groups of patients with different duration of hyperglycemia in a cross-sectional study.
Materials andMethods. In the present study, a total of 280 individuals (158 outpatients
and 122 inpatients) suffering from hyperglycemia were recruited between May and
September 2019. The clinical information of all participants was collected from the
hospital information system, including the duration of hyperglycemia, age, gender,
hemoglobin A1c (HbA1c), 75-g oral glucose tolerance test including fasting plasma
glucose (FPG), 2-hour plasma glucose (2hPG), fasting C-peptide (FC-pep), 2-hour
C-peptide (2hC-pep), fasting insulin (FIns), and 2-hour insulin (2hIns). In addition,
the morbidity of diabetic complications (retinopathy, neuropathy, and nephropathy)
in the inpatient group was determined. Furthermore, the difference between 2hPG
and FPG (1PG), the difference between 2hC-pep and FC-pep (1C-pep), and the
difference between 2hIns and FIns (1Ins) were calculated. The level of serum I-FABP,
a biomarker of intestinal barrier (IB) dysfunction, was estimated by an enzyme-linked
immunosorbent assay.
Results. For the outpatient group, the median duration of hyperglycemia was less
than a year; the serum I-FABP level was positively correlated with age (R= 0.299,
P < 0.001). For the inpatient group, the median duration of hyperglycemia was
ten years; correlation analysis showed that the serum I-FABP level was positively
associated with age and1PG (R= 0.286,P = 0.001;R= 0.250,P = 0.006, respectively)
while negatively associated with FC-pep and 2hC-pep (R=−0.304,P = 0.001;R=
−0.241,P = 0.008, respectively); multiple linear regression analysis showed that the
serum I-FABP level was positively associated with the duration of hyperglycemia
(β= 0.362, P < 0.001); moreover, patients with retinopathy had a significantly higher
I-FABP level than those without retinopathy (P = 0.001).
Conclusions. In the outpatients whose duration of hyperglycemia was less than a
year, the serum I-FABP level was positively associated with age. In the inpatients with
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different courses of diabetes, the serum I-FABP level was positively associated with
the duration of hyperglycemia and glycemic variability but negatively associated with
islet beta-cell function; moreover, the serum I-FABP level was higher in patients with
retinopathy than in those without retinopathy, suggesting that the IB dysfunction got
worse with the progression of diabetes.

Subjects Diabetes and Endocrinology, Gastroenterology and Hepatology
Keywords Intestinal fatty acid-binding protein (I-FABP), Intestinal barrier (IB) dysfunction,
Hyperglycemia, Progression of diabetes

INTRODUCTION
Diabetes has become a global public health issue with a growing morbidity and financial
burden in the past few decades. Recently, diabetes has been considered as a risk factor
of a worse prognosis in patients with COVID-19 (Zhu et al., 2020). Interestingly, as the
most typical clinical feature of diabetes, hyperglycemia has been confirmed to be an
essential predictor of adverse outcomes in diabetic as well as in nondiabetic patients in a
previous study (Cichosz & Schaarup, 2017). The association between hyperglycemia and
adverse outcomes in nondiabetic patients is apparent because reversible hyperglycemia,
also known as stress-induced hyperglycemia (SIH), is a secondary symptom of primary
disease and a well-known marker of disease severity (Mifsud, Schembri & Gruppetta, 2018).
However, since hyperglycemia exists long before other diseases appear in diabetic patients,
the relationship between preexisting hyperglycemia and adverse outcomes needs to be
investigated.

Adverse outcomes associated with diabetes can partly be explained by the vulnerablity
of diabetic patients to systemic infection and inflammatory response (Knapp, 2013).
Nowadays, intestinal barrier (IB) dysfunction induced by hyperglycemia (Thaiss et al.,
2018) is considered to be the underlyingmechanism of systemic infection and inflammatory
response in diabetic patients. The IB is the interface between the gut microbiome and the
human body, it prevents the gut microbiome and other deleterious intestinal contents
from crossing the barrier during enteral nutrition absorption. In addition, IB dysfunction
results in the translocation of intestinal contents, which could be the direct cause of
systemic infection and inflammatory response (Camilleri, 2019). In a study by Thaiss et al.
(2018), hyperglycemia was confirmed to be an independent risk factor for IB dysfunction
in animals; furthermore, the association between hyperglycemia and IB dysfunction was
observed to be time-dependent and dose-dependent in vitro. Although the relationship
between hyperglycemia and IB dysfunction has been clarified in animals and cell-based
models (Thaiss et al., 2018), the clinical evidence in humans is lacking.

In this study, the serum concentration of intestinal fatty acid-binding protein (I-FABP)
was used to indicate the severity of IB dysfunction. I-FABP is an intracellular protein
specifically and abundantly expressed in intestinal epithelial cells, and its increased serum
concentration represents intestinal epithelial cell damage and IB dysfunction (Gajda &
Storch, 2015; Wells et al., 2017). As a biomarker of IB dysfunction, I-FABP determination
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has been used in patients with necrotizing enterocolitis (Coufal et al., 2020), acute
mesenteric ischemia (Salim et al., 2017), strangulated small bowel obstruction (Kittaka
et al., 2014), Crohn’s disease (Sarikaya et al., 2015), blunt trauma (Matsumoto et al.,
2017), celiac disease (Oldenburger et al., 2018), acute pancreatitis(Kupcinskas et al., 2018;
Goswami et al., 2017), acute decompensated heart failure (Kitai et al., 2017), chronic renal
failure (Okada et al., 2018), septic shock (Sekino et al., 2017), psoriasis (Sikora et al., 2019),
and even physiological stressor-induced intestinal damage (March et al., 2017). In addition
to serum I-FABP, many other biomarkers are used to measure IB function (Wells et
al., 2017; Piton & Capellier, 2016). However, in this study, the serum I-FABP level was
determined to evaluate IB dysfunction as it is convenient to measure in a noninvasive
manner.

Diabetic and prediabetic patients with different severities and durations of hyperglycemia
were recruited, and their serum I-FABP levels were measured in this study.

MATERIALS AND METHODS
Study participants
In this cross-sectional study, participants were recruited from the outpatient clinic and
the inpatient ward of the Department of Endocrinology and Metabolism, Wuxi People’s
Hospital affiliated to Nanjing Medical University. The outpatients were included in this
study if they had been tested to be hyperglycemic or had diabetes-related symptoms within
a year without taking antidiabetic drugs. The inpatients were included in this study if they
had been diagnosed with diabetes and were newly admitted to the inpatient ward. However,
participants were excluded from this study if they were younger than 18 years old; had
SIH, type 1 diabetes, or a change in lifestyle (e.g., diet or exercise) in the past year; were
pregnant in the past year; or had acute complications of diabetes, severe hepatic, renal, or
heart insufficiency, acute digestive system disease, or abdominal surgery in the past half
year or acute infection in the past month. All patients who agreed to this study and met
the inclusion criteria were included in the analysis. Most conditions causing an increase in
the serum I-FABP level were excluded according to the criteria, which might have caused
a selection bias. Patients who suffered from complications of severe nephropathy were not
included in this study. They were admitted to the Nephrology Department rather than the
Department of Endocrinology and Metabolism, which resulted in a selection bias.

The present study was approved by the Research Ethics Committee of Wuxi People’s
Hospital affiliated to Nanjing Medical University (HS2019003). Each participant signed
an informed consent form. This study was registered at the Chinese Clinical Trial Register
Center (ChiCTR1900022026) and was carried out from May to September 2019. All data
can be obtained from the corresponding authors on demand.

Clinical information
The clinical information of all participants was collected from the hospital information
system, including the duration of hyperglycemia, age, gender, hemoglobin A1c (HbA1c),
75-g oral glucose tolerance test including fasting plasma glucose (FPG), 2-hour plasma
glucose (2hPG), fasting C-peptide (FC-pep), 2-hour C-peptide (2hC-pep), fasting insulin
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(FIns), and 2-hour insulin (2hIns). In addition, the morbidity of diabetic complications
(retinopathy, neuropathy, and nephropathy) in the inpatient group was determined.
Furthermore, the difference between 2hPG and FPG (1PG), the difference between
2hC-pep and FC-pep (1C-pep), and the difference between 2hIns and FIns (1Ins) were
calculated.

Serum I-FABP estimation
All of the fasting blood samples collected from the patients to perform the necessary tests
were stored at 2−8 ◦C in the clinical laboratory of Wuxi People’s Hospital. Then certain
serum samples of the enrolled patients were aliquoted and stored at −80 ◦C within 8 h
for future research. The serum concentration of I-FABP was estimated in duplicate by
enzyme-linked immunosorbent assay (R&D, USA and Canada, Catalog Number DFBP20)
according to the standardized protocol, and the estimated mean values were used for
further analysis.

Statistical analysis
Statistical analysis was assessed using SPSS 25 (IBM Corporation, Chicago, IL, USA).
Continuous variables were assessed for normality using the Kolmogorov–Smirnov
test. Variables with a non-normal distribution were summarized by the median and
interquartile range. Differences between two groups of continuous variables with non-
normal distributions were assessed by the Mann–Whitney test. Differences between
categorical variables were assessed by the chi-squared test. The relationships between two
continuous variables were assessed by the Spearman correlation coefficient. Logarithmic
transformation was performed when necessarily. The associations showing a P-value <0.05
in the correlation analysis were included in the multiple linear regression analysis. Only
those metrics with a P-value <0.05 were kept in the final multiple linear regression models
with stepwise variable selection. Finally, all of the differences were considered significant
at a 5% level.

RESULTS
Serum I-FABP in the outpatient group
The outpatients were divided into prediabetes group and diabetes group according to
the latest diagnosis standards for diabetes (American Diabetes Association, 2020). The
clinical information and serum I-FABP levels of these two groups are tabulated in Table
1. Compared with the prediabetes group, the diabetes group had a higher HbA1c, FPG,
FC-pep, 2hPG, and 1PG but a lower 2hC-pep, 2hIns, 1C-pep, and 1Ins. However, there
were no statistically significant differences in age, FIns, or serum I-FABP between these
two groups.

Furthermore, the correlation analysis of the serum I-FABP level was compared with age,
HbA1c, FPG, FC-pep, FIns, 2hPG, 2hC-pep, 2hIns, 1PG, 1C-pep, and 1Ins. However,
age was the only metric that was statistically correlated with the serum I-FABP level in the
outpatient group (Table 2).
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Table 1 Clinical information and the serum I-FABP level between the different stages of diabetes for
the outpatient group.

Prediabetes Diabetes P-value

Male/Female, n** 42/53 48/15 <0.001
Age, y 45 (32, 57) 49 (34, 55) 0.790
HbA1c, %** 5.5 (5.3, 5.8) 6.9 (6.4, 9.1) <0.001
FPG, mmol/L** 5.94 (5.41, 6.47) 8.54 (7.64, 10.89) <0.001
FC-pep, ng/mL** 2.39 (1.86, 3.16) 2.97 (2.29, 3.62) 0.004
FIns, mu/L 10.21 (5.91, 14.36) 11.98 (7.37, 15.13) 0.136
2hPG, mmol/L** 8.46 (6.93, 10.28) 15.73 (13.55, 19.25) <0.001
2hC-pep, ng/mL** 9.96 (7.61, 12.83) 7.35 (5.89, 11.15) 0.001
2hIns, mu/L** 64.26 (42.18, 122.03) 46.56 (28.78, 69.34) 0.003
1PG, mmol/L** 2.52 (1.00, 4.00) 7.28 (4.81, 9.21) <0.001
1C-pep, ng/mL** 7.56 (5.57, 10.36) 4.63 (3.03, 7.96) <0.001
1Ins, mu/L** 57.25 (33.78, 105.98) 34.82 (18.20, 58.76) <0.001
I-FABP, pg/mL 1354 (948, 1634) 1231 (883, 1604) 0.442

Notes.
I-FABP, intestinal fatty acid-binding protein; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose; FC-pep, fasting C-
peptide; FIns, fasting insulin; 2hPG, 2-hour plasma glucose; 2hC-pep, 2-hour C-peptide; 2hIns, 2-hour insulin;1PG,
2hPG –FPG;1C-pep, 2hC-pep –FC-pep;1Ins, 2hIns –FIns.

**P < 0.01.

Table 2 Correlation analysis of the serum I-FABP level for the outpatient group.

R P-value

I-FABP Age** 0.299 <0.001
HbA1c −0.027 0.734
FPG −0.052 0.515
FC-pep 0.031 0.696
FIns 0.010 0.899
2hPG −0.025 0.757
2hC-pep 0.104 0.197
2hIns 0.063 0.435
1PG 0.003 0.973
1C-pep 0.103 0.199
1Ins 0.080 0.322

Notes.
I-FABP, intestinal fatty acid-binding protein; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose; FC-pep, fasting C-
peptide; FIns, fasting insulin; 2hPG, 2-hour plasma glucose; 2hC-pep, 2-hour C-peptide; 2hIns, 2-hour insulin;1PG,
2hPG –FPG;1C-pep, 2hC-pep –FC-pep;1Ins, 2hIns –FIns.

**P < 0.01.

Serum I-FABP in the inpatient group
The correlation analysis for the inpatient group showed that the serum I-FABP level
was significantly correlated with age, duration of hyperglycemia, FC-pep, 2hC-pep, and
1PG but not significantly correlated with the other metrics. However, the duration of
hyperglycemia was the only metric that was statistically associated with the serum I-FABP
level in the multiple linear regression analysis (Table 3).
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Table 3 Correlation analysis andmultiple linear regression analysis of the serum I-FABP level for the
inpatient group.

Correlation analysis Multiple linear regression

R P-value β P-value

Age 0.286 0.001 0.098 0.317
Duration 0.350 <0.001 0.362 <0.001
HbA1c 0.045 0.625 – –
FPG −0.126 0.168 – –
FC-pep −0.304 0.001 −0.090 0.352
FIns −0.145 0.244 – –
2hPG 0.149 0.105 – –
2hC-pep −0.241 0.008 −0.064 0.494
2hIns −0.219 0.081 – –
1PG 0.250 0.006 0.149 0.110
1C-pep −0.163 0.076 – –
1Ins −0.209 0.097 – –

Notes.
The corresponding model was Y = 7.292+0.027 * X, Y: ln(I-FABP), X: Duration, and R2

= 0.131 in the multiple linear regres-
sion.
I-FABP, intestinal fatty acid-binding protein; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose; FC-pep, fasting C-
peptide; FIns, fasting insulin; 2hPG, 2-hour plasma glucose; 2hC-pep, 2-hour C-peptide; 2hIns, 2-hour insulin;1PG,
2hPG –FPG;1C-pep, 2hC-pep –FC-pep;1Ins, 2hIns –FIns; β, standardized β-coefficient.

Table 4 Relationship between the serum I-FABP level and diabetic complications for the inpatient
group.

Complications Positive cases (%) I-FABP

Positive Negative P-value

Retinopathy** 48 (39.3) 2164 (1749, 3262) 1585 (1168, 2467) 0.001
Neuropathy 51 (41.8) 1949 (1373, 2953) 1697 (1169, 2617) 0.126
Nephropathy 34 (27.9) 1836 (1206, 2719) 1829 (1256, 2638) 0.833

Notes.
I-FABP, intestinal fatty acid-binding protein.

**P < 0.01.

Finally, we investigated the relationship between the serum I-FABP level and diabetic
complications (retinopathy, neuropathy, and nephropathy). The inpatients were divided
into complication-positive group and complication-negative group, and the differences of
the serum I-FABP level between the complication-positive group and the complication-
negative group were estimated. The results showed that the retinopathy-positive group had
a higher serum I-FABP level than the retinopathy-negative group, while the differences of
the serum I-FABP level for the two other complications were not statistically significant
(Table 4).

Serum I-FABP in all participants
The clinical information and serum I-FABP levels of all participants recruited from the
outpatient clinic and the inpatient ward are tabulated in Table 5. The median duration
of hyperglycemia was less than a year for the outpatients, while it was ten years for the
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Table 5 Clinical information and serum I-FABP levels of participants recruited from the outpatient
clinic and the inpatient ward.

Outpatient Inpatient P-value

Male/Female, n 90/68 72/50 0.730
Age, y** 47.5 (33, 56) 56 (51.75, 67) <0.001
Duration, y** <1 10 (3, 14) <0.001
HbA1c, %** 5.9 (5.5, 6.5) 8.0 (6.8, 9.3) <0.001
FPG, mmol/L* 6.57 (5.77, 8.04) 7.43 (5.86, 9.08) 0.037
FC-pep, ng/mL** 2.69 (1.92, 3.45) 1.92 (1.29, 2.67) <0.001
FIns, mu/L* 10.66 (6.29, 14.74) 7.77 (5.21, 12.74) 0.020
2hPG, mmol/L** 10.55 (7.87, 14.71) 18.97 (14.37, 21.38) <0.001
2hC-pep, ng/mL** 9.22 (7.03, 12.39) 5.19 (3.59, 7.69) <0.001
2hIns, mu/L** 55.34 (35.06, 109.25) 38.11 (21.67, 69.28) 0.001
1PG, mmol/L** 3.80 (1.91, 7.16) 10.32 (6.71, 12.95) <0.001
1C-pep, ng/mL** 6.78 (4.27, 9.36) 3.33 (2.13, 5.17) <0.001
1Ins, mu/L** 47.02 (26.69, 91.97) 30.51 (16.84, 56.10) 0.002
I-FABP, pg/mL** 1289 (909, 1629) 1831 (1243, 2642) <0.001

Notes.
I-FABP, intestinal fatty acid-binding protein; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose; FC-pep, fasting C-
peptide; FIns, fasting insulin; 2hPG, 2-hour plasma glucose; 2hC-pep, 2-hour C-peptide; 2hIns, 2-hour insulin;1PG,
2hPG –FPG;1C-pep, 2hC-pep –FC-pep;1Ins, 2hIns –FIns.
*P < 0.05.
**P < 0.01.

inpatients. Moreover, compared with the outpatients, the inpatients had higher age,
HbA1c, FPG, 2hPG, 1PG, and I-FABP but lower FC-pep, FIns, 2hC-pep, 2hIns, 1C-pep,
and 1Ins.

Next, correlation analysis of the serum I-FABP level showed a statistical significance
with age, duration of hyperglycemia, HbA1c, FC-pep, 2hPG, 2hC-pep,1PG, and1C-pep.
Furthermore, multivariate linear regression analysis showed that the serum I-FABP level
was positively associated with the age and the duration of hyperglycemia in all participants
(Table 6).

DISCUSSION
A previous study has confirmed the relationship between hyperglycemia and IB dysfunction
in animals and cell-based models (Thaiss et al., 2018), and our study added evidence from
humans to support this relationship. In the present study, we investigated the serum
I-FABP levels in diabetic and prediabetic patients who suffered from different severities
and durations of hyperglycemia. Our results showed that in the outpatients whose duration
of hyperglycemia was less than a year, the serum I-FABP level was positively associated
with age. In the inpatients with different courses of diabetes, the serum I-FABP level
was positively associated with the duration of hyperglycemia and glycemic variability but
negatively associated with islet beta-cell function; moreover, the serum I-FABP level was
higher in patients with retinopathy than in those without retinopathy, suggesting that the
IB dysfunction got worse with the progression of diabetes.
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Table 6 Correlation analysis andmultiple linear regression analysis of the serum I-FABP level for all
participants.

Correlation analysis Multiple linear regression

R P-value β P-value

Age 0.398 <0.001 0.248 <0.001
Duration 0.413 <0.001 0.311 <0.001
HbA1c 0.196 0.001 0.012 0.843
FPG −0.019 0.755 – –
FC-pep −0.220 <0.001 0.030 0.609
FIns −0.072 0.282 – –
2hPG 0.250 <0.001 0.045 0.461
2hC-pep −0.214 <0.001 0.018 0.763
2hIns −0.075 0.265 – –
1PG 0.311 <0.001 0.122 0.064
1C-pep −0.171 0.004 0.012 0.843
1Ins −0.058 0.392 – –

Notes.
The corresponding model was Y = 6.749+ 0.026 * X1 + 0.009 * X2, Y: ln(I-FABP), X1: Duration, X2: Age, and R2

= 0.232 in
the multiple linear regression.
I-FABP, intestinal fatty acid-binding protein; HbA1c, hemoglobin A1c; FPG, fasting plasma glucose; FC-pep, fasting C-
peptide; FIns, fasting insulin; 2hPG, 2-hour plasma glucose; 2hC-pep, 2-hour C-peptide; 2hIns, 2-hour insulin;1PG,
2hPG –FPG;1C-pep, 2hC-pep –FC-pep;1Ins, 2hIns –FIns; β, standardized β-coefficient.

IB dysfunction and severity of hyperglycemia: the serum I-FABP level
was not associated with FPG, 2hPG, or HbA1c in outpatients
The study by Thaiss et al., (2018) confirmed the dose-dependent relationship between IB
dysfunction and hyperglycemia in vitro. Since hyperglycemia in the outpatient group was
just identified within a year and untreated, this group was suitable for investigation of
the relationship between hyperglycemia severity and IB dysfunction. FPG and 2hPG show
instantaneous plasma glucose (PG) levels, while HbA1c shows the average PG level in
the past 2–3 months (American Diabetes Association, 2020). These three metrics were used
to determine the severity of hyperglycemia in this study. Unfortunately, none of them
showed a statistical correlation with the serum I-FABP level in the outpatient group, and
correlation analysis of the inpatient group showed similar results.

These negative results might be explained by the lower severity of hyperglycemia in our
clinical study compared with the in vitro study by Thaiss et al., (2018). In their in vitro
study, IB dysfunction was observed at a glucose level of 8 g/L (about 44 mmol/L) (Thaiss et
al., 2018), which is rarely achieved in clinical patients. In other words, the hyperglycemia
in our study was not severe enough to cause a statistical difference in the serum I-FABP
level. Therefore, a well-designed study in humans is needed in the future to answer the
dose-dependent relationship between IB dysfunction and hyperglycemia.

IB dysfunction and duration of hyperglycemia: the serum I-FABP level
was associated with the duration of hyperglycemia in inpatients
After dose-dependent relationship discussed above, time-dependent relationship was
assessed, the relationship between IB dysfunction and the duration of hyperglycemia was
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investigated in the study. Themedian duration of hyperglycemia was less than a year for the
outpatient group, while it was ten years for the inpatient group. For the inpatient group,
the serum I-FABP level was statistically associated with the duration of hyperglycemia both
according to the correlation analysis and the multivariate linear regression analysis.

The relationship between IB dysfunction and the duration of hyperglycemia can be
explained by the accumulation of advanced glycation end products (AGEs) caused by
the long-standing hyperglycemic state in diabetes. AGEs have been demonstrated to
contribute to diabetic complications inmany studies, and the accumulation of AGEs and the
activation of their receptors (RAGE) induce NADPH oxidase stimulation, reactive oxygen
intermediate formation, nuclear factor- κB activation, and gene transcription,which further
lead to a sustained inflammatory reaction, cell damage, and organ dysfunction (Wautier,
Guillausseau & Wautier, 2017). Surprisingly, both the accumulation of AGEs and the
overexpression of RAGE were observed in the gastrointestinal tract of diabetic rats (Chen,
Gregersen & Zhao, 2015), which contributes to IB dysfunction in diabetes.

IB dysfunction and progression of diabetes: the serum I-FABP level
was associated with retinopathy, glycemic variability and islet
beta-cell dysfunction in inpatients
As a result of sustained hyperglycemia, diabetic complications develop with the progression
of diabetes. In this study, the serum I-FABP level was higher in patients with retinopathy
than in those without retinopathy in the inpatient group. As retinopathy is a complication
that develops with the progression of diabetes, this result suggested that the IB dysfunction
got worse with the progression of diabetes. Unfortunately, patients who suffered from
severe nephropathy were not included in this study, this partly explained why the serum
I-FABP level was not higher in the patients with neuropathy or nephropathy.

Previous studies have found that glycemic variability is closely related to diabetic
complications. Glycemic variability consists of the magnitude of PG excursions and the
frequency of the fluctuations. Compared with sustained hyperglycemia, glycemic variability
has more deleterious effects in the pathogenesis of diabetic complications (Beck et al., 2019;
Nusca et al., 2018). An observational study has found that type 2 diabetic patients incapable
of maintaining stable PG levels were more likely to have IB injury (Shen et al., 2019), in
other words, glycemic variability might be associated with IB dysfunction. In this study,
1PG was used to indicate the glycemic variability, and the results showed that the serum
I-FABP level was positively correlated with 1PG in the inpatient group. Taken together,
IB dysfunction was related to glycemic variability and was aggravated with the progression
of diabetes. Since 1PG is not enough to show the whole day glycemic variability, better
designed studies are needed to further estimate the relationship between glycemic variability
and IB dysfunction.

In addition, islet beta-cell dysfunction advances with the progression of dia-
betes (Bergman, Finegood & Kahn, 2002). In this study, the serum C-pep and insulin levels
were used to indicate islet beta-cell function. The results showed that the serum I-FABP
level was negatively associated with the C-pep (FC-pep and 2hC-pep) levels in the inpatient
group. However, there was no statistical correlation between the serum I-FABP and insulin
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(FIns and 2hIns) levels. C-pep is secreted from beta cells at an equimolar concentration
as insulin, however, the half-life of C-pep is longer than that of insulin, (Polonsky &
Rubenstein, 1984) which makes C-pep a better metric for islet beta-cell function. In this
study, the investigation of C-pep suggested that the aggravation of IB dysfunction was
accompanied by the loss of islet beta-cell function in the progression of diabetes.

Although the serum I-FABP level was correlated with1PG, FC-pep, and 2hC-pep, these
associations disappeared in the multivariate linear regression analysis. Given the roles of
diabetic complications, glycemic variability, and advancing islet beta-cell dysfunction
in the progression of diabetes, 1PG, FC-pep, and 2hC-pep were considered to be
confounding factors in the relationship between the serum I-FABP level and the duration of
hyperglycemia. Since the duration of hyperglycemia closely followed the course of diabetes,
this study suggested that the IB dysfunction got worse with the progression of diabetes.

IB dysfunction and age: the serum I-FABP level was positively
correlated with age in outpatients and inpatients
In the outpatient group, without the influence of the duration of hyperglycemia, the serum
I-FABP level was positively correlated with age, suggesting that the older patients suffered
from more severe IB dysfunction in the newly diagnosed diabetic and prediabetic patients.
A previous study has found that IB dysfunction might be an important event in the aging
process, and that is conserved across a broad range of species (Dambroise et al., 2016).
Age-related loss of the heat-shock transcription factor has been confirmed to be involved
in IB dysfunction by accelerating the decay of the intestinal subapical terminal web and
impairing its interactions with cell junctions in C. elegans (Egge et al., 2019). The current
study added evidence regarding the association between IB dysfunction and age in humans.

Similarly, in the inpatient group, the serum I-FABP level was positively correlated with
age. However, the association between I-FABP and age disappeared in the multivariate
linear regression analysis, leaving the duration of hyperglycemia as the only metric
associated with the serum I-FABP level. Considering that the durations of hyperglycemia
get longer when diabetic patients grow older, age might be a confounding factor in the
relationship between the serum I-FABP level and the duration of hyperglycemia in the
inpatient group.

The different behaviors of two groups
At first glance, the results in all participants seem to be the combination of two groups:
correlation analysis showed the serum I-FABP level was positively associated with the
duration of hyperglycemia, age, and glycemic variability but negatively associated with islet
beta-cell function; multivariate linear regression analysis showed that the serum I-FABP
level was associated with both age and the duration of hyperglycemia.

When all patients were combined, there was some evidence of a relationship, but on
further investigation, it turned out that there appeared to be different behaviors in each
group, and the difference might be mainly caused by the significant difference in the
duration of hyperglycemia. As a result, the relationship between I-FAPB and the other
metrics reported for all participants might be driven by the group sizes. Consequently, the
results for all participants need to be interpreted with caution.
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Moreover, in all participants and in the inpatient group, themultivariate linear regression
models were just ways of determining possible associations between I-FABP and themetrics,
the direct causal relationship in humans needs further investigation.

Perspective of the study
Based on the results of this study, we speculated that IB dysfunction occurred and developed
along with the progression of diabetes. The relationship between hyperglycemia and IB
dysfunction offers a new perspective on the clinical phenomenon of diabetes. On one hand,
an impaired IB enhances the influx and systemic dissemination of intestinal bacteria, which
explains the vulnerability of diabetic patients to infection (Trevelin et al., 2017). On the
other hand, more intestinal contents and bacterial metabolites come across the impaired
IB and are released into the blood circulation, causing systemic chronic oxidative stress
and inflammatory response, which not only promote diabetic complications (Jha et al.,
2018; Volpe et al., 2018) but also contribute directly to diabetes (McCracken, Monaghan &
Sreenivasan, 2018).

The association between the duration of hyperglycemia and IB dysfunction was clarified
in this study, but the underlying mechanisms have not been discussed. Previous studies
showed that nondiabetic patients who suffered from SIH were more likely to get diabetes
in the future (Kar et al., 2019; Plummer et al., 2016), which brought about a confusing
hypothesis that reversible hyperglycemia could cause irreversible hyperglycemia. It is well
recognized that some primary diseases like sepsis, trauma, burns, and surgery, which
induce SIH (Mifsud, Schembri & Gruppetta, 2018), can directly cause IB dysfunction (Greis
et al., 2017). Hyperglycemia-induced IB dysfunction allows for an enhanced influx of
intestinal contents, and the induced infection and inflammatory response further intensify
hyperglycemia (Mifsud, Schembri & Gruppetta, 2018). Surprisingly, IB dysfunction builds
a bridge between SIH and diabetes, that is, IB dysfunction not only results from but also
contributes to hyperglycemia. Since improving IB function by treating the primary disease
has been shown to alleviate SIH (Mifsud, Schembri & Gruppetta, 2018), aiming to improve
IB function might be a promising treatment strategy for diabetes.

Besides the new therapeutic approach for hyperglycemia, some widely used antidiabetic
drugs have already shown protective potential for IB. Glucagon-like peptide 1, which
controls meal-related glycemic excursions, alleviates gut inflammation and promotes the
repairment of intestinal epithelial cells (Smits et al., 2016; Anbazhagan et al., 2017). Similar
protective effects have also been observed with metformin (Rodriguez, Hiel & Delzenne,
2018) and berberine (Gong et al., 2017). Compared with the IB, the gut microbiome has
drawn increasing attention in diabetes research. Although quite a few studies have shown
that the gut microbiome influences the development of diabetes (Hills et al., 2019; Canfora
et al., 2019), the underlying mechanism is still unclear. As the interface between the gut
microbiome and diabetic patients, the IB is a promising candidate for mechanism research.

This study had some limitations. First, the participants recruited from the inpatient
ward were admitted to the hospital for different pathological conditions, including but
not limited to poor glucose control and diabetic complications. The influence of all
these conditions on the serum I-FABP level was not thoroughly investigated. Second, the
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participants recruited from the inpatient ward had been treated with antidiabetic drugs,
whether these drugs affected the serum I-FABP level was not investigated. Third, patients
who suffered from severe nephropathy complications were not included in this study.
Fourth, the results from all participants were driven by the group sizes because of the
significant difference in the duration of hyperglycemia between groups.

CONCLUSIONS
To the best of our knowledge, this study investigated the serum I-FABP level in diabetic
and prediabetic patients for the first time, and the results showed that in the outpatients
whose duration of hyperglycemia was less than a year, the serum I-FABP level was positively
associated with age. In the inpatients with different courses of diabetes, the serum I-FABP
level was positively associated with the duration of hyperglycemia and glycemic variability
but negatively associated with islet beta-cell function; moreover, the serum I-FABP level
was higher in patients with retinopathy than in those without retinopathy, suggesting that
the IB dysfunction got worse with the progression of diabetes.

Considering the participation of the gut microbiome in the etiology of diabetes, it is
difficult to ignore the role of IB, whose dysfunction might cause oxidative stress, systemic
infection, and inflammatory response. By highlighting the IB in diabetes-related research,
we offer a new perspective to interpret this familiar disease.
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2hPG 2-hour plasma glucose
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