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Mango is an important commercial fruit crop belonging to the genus Mangifera. In this
study, we reported and compared four newly sequenced plastid genomes of the genus
Mangifera, which showed high similarities in overall size (157,780–157,853 bp), genome
structure, gene order, and gene content. Three mutation hotspots (trnG-psbZ, psbD-trnT,
and ycf4-cemA) were identified as candidate DNA barcodes for Mangifera. These three
DNA barcode candidate sequences have high species identification ability. We also
identified 12 large fragments that were transferred from the plastid genome to the
mitochondrial genome, and found that the similarity was more than 99%. The total size of
the transferred fragment was 35,652 bp, accounting for 22.6% of the plastid genome.
Fifteen intact chloroplast genes, four tRNAs and numerous partial genes and intergenic
spacer regions were identified. There are many of these genes transferred from
mitochondria to the chloroplast in other species genomes. Phylogenetic analysis based on
whole plastid genome data provided a high support value, and the interspecies
relationships within Mangifera were resolved well.
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15 Abstract

16 Mango is an important commercial fruit crop belonging to the genus Mangifera. In this study, we 

17 reported and compared four newly sequenced plastid genomes of the genus Mangifera, which 

18 showed high similarities in overall size (157,780–157,853 bp), genome structure, gene order, and 

19 gene content. Three mutation hotspots (trnG-psbZ, psbD-trnT, and ycf4-cemA) were identified as 

20 candidate DNA barcodes for Mangifera. These three DNA barcode candidate sequences have high 

21 species identification ability. We also identified 12 large fragments that were transferred from the 

22 plastid genome to the mitochondrial genome, and found that the similarity was more than 99%. 

23 The total size of the transferred fragment was 35,652 bp, accounting for 22.6% of the plastid 

24 genome. Fifteen intact chloroplast genes, four tRNAs and numerous partial genes and intergenic 

25 spacer regions were identified. There are many of these genes transferred from mitochondria to 

26 the chloroplast in other species genomes. Phylogenetic analysis based on whole plastid genome 

27 data provided a high support value, and the interspecies relationships within Mangifera were 

28 resolved well.

29
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31 Introduction

32 Mango is a tall, evergreen tree belonging to the genus Mangifera of the Anacardiaceae family. 

33 It is an important tropical fruit (Iquebal et al. 2017; Lora & Hormaza 2018) that originates in 

34 tropical and subtropical regions in Southeast Asia (Dutta et al. 2013; Sherman et al. 2015). Owing 

35 to its wide range of cultivation (Bajpai et al. 2016), high nutrient value, pleasing appearance, and 

36 unique flavor (Surapaneni et al. 2013), it is widely loved by consumers and has the reputation of 

37 being known as the “King of Tropical Fruits” (Khan et al. 2015). Southeast Asian countries have 

38 a history of mango cultivation that spans thousands of years (Ravishankar et al. 2013). Mangoes 

39 were introduced to Africa, South America, and other continents hundreds of years ago, and several 

40 varieties suitable for local cultivation have been developed (Mansour et al. 2014; Sennhenn et al. 

41 2014). There are 69 species of mango in the world that are mainly distributed in tropical and 

42 subtropical countries including India, Indonesia, the Malay Peninsula, Thailand, and South China, 

43 of which, five species are grown in China, namely M. indica, M. persiciformis, M. longipes, M. 

44 hiemalis, and M. sylvatica; however, the varieties cultivated in production belong to M. indica. 

45 Phylogenetic analysis of Mangifera species has been a hot topic of research (Nishiyama et al. 2006; 

46 Sankaran et al. 2018), while the whole chloroplast genome sequences can provide more genetic 

47 information and higher species resolution ability than other molecular data. However, the 

48 chloroplast genomes of most Mangifera plants remain unknown.

49 Chloroplasts are special organelles that are involved in photosynthesis and consist of layers 

50 of thylakoids. They have their own DNA and can split. The chloroplast genome is conserved and 

51 consists of four parts. Two inverted repeat (IR) regions separate the small copy region (SSC) and 

52 large copy region (LSC). Currently, with the rapid development of next-generation sequencing 

53 (NGS) technology, the entire chloroplast genome has been widely used for phylogenetic analysis. 

54 They can provide a large number of variable sites for phylogenetic analysis (Gitzendanner et al. 

55 2018). Thus, the entire chloroplast genome shows the potential to resolve evolutionary 

56 relationships and produce highly resolved phylogenetic and genetic diversity, particularly in some 

57 complex taxa or at low taxonomic levels, which have unresolved relationships (Hu et al. 2016; 
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58 Huang et al. 2020; Xu et al. 2019). 

59 In this study, the chloroplast genomes of four Mangifera species were sequenced and 

60 compared with M. Indica and 21 Sapindales plastids. The objectives of this study were as follows: 

61 (1) to comparatively analyze the chloroplast genome structure of five species of Mangifera; (2) to 

62 identify highly divergent regions of the chloroplast genomes of Mangifera; (3) to determine the 

63 insertion of chloroplast genes into mitochondria; (4) to explore the evolutionary relationship 

64 between the genus, Mangifera, and Sapindales. Overall, this study would be helpful to further 

65 understand plastid evolution and phylogeny of the genus, Mangifera.

66
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68 Materials and methods

69 Plant material, DNA extraction, and sequencing

70 Fresh leaves of four Mangifera species (M. hiemalis, M. persiciformis, M. longipes, and M. 

71 sylvatica) were collected from Xishuangbanna Tropical Flowers and Plants Garden, South 

72 Yunnan, China, and frozen in liquid nitrogen. Total genomic DNA was extracted from all samples 

73 according to CTAB method (Li et al. 2013). DNA quality was detected using 1% agarose gel 

74 electrophoresis and samples were stored at -80℃ until further use.

75 About 5–10 μg of total DNA were extracted from each of the Mangifera samples to construct 

76 a shotgun library with an average insertion size of 300 bp. Paired-end libraries were constructed 

77 with NEBNext® DNA Library Prep Master Mix Set for Illumina according to the manufacturer’s 

78 recommendation. Illumina HiSeq 2500 system (Illumina, San Diego, CA, USA) was used to 

79 sequence DNA samples in the paired-end sequencing mode by Novogene Bioinformatics 

80 Technology Co. Ltd (Beijing, China), generating approximately 8.0 Gb of raw data per sample. 

81 The plastome depth of coverage was more than 2000×.

82 Chloroplast genome assembly and annotation

83 The Trimmomatic v0.38 was used to filter raw sequencing data (Bolger et al. 2014), and the 

84 obtained clean data were de novo assembled using SPAdes v3.61 under different K-mer 

85 parameters (Bankevich et al. 2012). The scaffolds that were positively associated with chloroplasts 

86 were arranged on the reference chloroplast genome of M. indica (NC_035239). Paired-end reads 

87 were remapped to consensus assembly and multiple iterations were performed to fill in the gaps in 

88 the final consensus sequence using Geneious software v2020.0.4 (Kearse et al. 2012).

89 Chloroplast genome annotation was performed using GeSeq (https://chlorobox.mpimp-

90 golm.mpg.de/geseq.html) to predict genes encoding proteins, transfer RNA (tRNA), and 

91 ribosomal RNA (rRNA), and was adjusted manually as needed (Tillich et al. 2017). We also 

92 manually examined the IR junctions of all Mangifera species. A circular diagram of the chloroplast 

93 genomes of Mangifera was subsequently drawn using OGDRAW v1.3.1 (Greiner et al. 2019). 

94 Genome comparative analysis and divergent hotspot identification
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95 MAFFT v7.221 was used to align the chloroplast genome sequences of five Mangifera plants 

96 (Katoh & Standley 2013). Next, DnaSP v6.12 was used to perform a sliding window analysis with 

97 the step size of 200 bp and window length of 600 bp, to detect the rapidly evolving molecular 

98 markers for performing phylogenetic analysis (Librado & Rozas 2009).

99 Identification of chloroplast gene insertion in mitochondria

100 First, we removed the BLAST hits of genes transferred between chloroplast and 

101 mitochondrial genomes by mapping the mitochondrial genome of M. indica (GenBank: 

102 CM021857) to the plastid genomes. Circos v0.69-9 (Krzywinski et al. 2009) software was used to 

103 map the mitochondrial and chloroplast genomes of the Mangifera species as well as gene-transfer 

104 fragments.

105 Phylogenetic analysis

106 Phylogenetic analyses were performed for five Mangifera (4 species sequenced here) and 21 

107 Sapindales species, using Arabidopsis thaliana as outgroups. MAFFT 7.221  (Katoh & Standley 

108 2013) was used to align the chloroplast genome sequences of Sapindales species. We used the 

109 following three methods to perform phylogenetic analyses of Mangifera species: Bayesian 

110 Inference (BI) with a GTR + I + G model using MrBayes v3.2 (Ronquist et al. 2012), the Markov 

111 chain Monte Carlo (MCMC) algorithm was run for 1 million generations and sampled every 100 

112 generations. Maximum Likelihood (ML) using MEGA v7.0 with 1000 bootstrap replicates (Kumar 

113 et al. 2016), and Maximum Parsimony (MP) with a heuristic search in PAUP v4.0 with 1,000 

114 random taxon stepwise addition sequences (Rédei 2008). A 50% majority-rule consensus 

115 phylogeny was constructed using 1,000 bootstrap replications.
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117 Results and discussion

118 Basic characteristics of the Mangifera chloroplast genomes

119 Raw data (approximately from 7.1 × 109 to 8.3 × 109 bp) were obtained from M. hiemalis 

120 (MN917208), M. persiciformis (MN917209), M. longipes (MN917210), and M. sylvatica 

121 (MN917211). The four newly sequenced Mangifera chloroplast genomes have been presented to 

122 the GenBank database.

123 Characteristics of four newly sequenced and one reported Mangifera chloroplast genomes 

124 were investigated. Mangifera chloroplast genome sequence sizes were 157,780~157,853 bp 

125 (Figure 1), with the largest and smallest being those of M. longipes and M. indica, respectively. 

126 Mangifera chloroplast genomes are characterized by a typical four-part structure, two IR copies 

127 (26354–26379 bp) separating the LSC (86673–86726 bp) and SSC (18347–18369 bp) regions. In 

128 addition, the GC content of Mangifera genomes was similar, ranging from 37.88–37.89%. Five 

129 Mangifera chloroplast genomes contained 113 predicted functional genes, including 79 protein-

130 coding genes, four ribosomal RNA (rRNA) genes, and 30 transfer RNA (tRNA) genes (Tables 1 

131 and 2). Furthermore, 15 functional genes, including 4 protein-coding genes, four ribosomal RNA 

132 genes, and seven transfer RNA gene replicate in the IR regions of the chloroplast genome. The 

133 number, type, and order of genes were found to be very similar among the five Mangifera 

134 chloroplast genomes (Jo et al. 2017; Rabah et al. 2017; Zhang et al. 2020). The whole chloroplast 

135 genome sequences of four Mangifera species were submitted to GenBank with the accession 

136 numbers of MN917208 to MN917211.

137 The IR/SC connected regions were found nearly identical relative positions in the five 

138 Mangifera chloroplast genomes (Figure 2). All LSC‐IRb connections were found to be located 

139 within the rps19 gene, resulting in a partial expansion of the IRb region to the rps19 gene (80–104 

140 bp). The IRb-SSC boundary was located in the ndhF gene, while the SSC‐IRa boundary in the five 

141 chloroplast genomes was located in the ycf1 gene.

142 Comparative Mangifera chloroplast genomes and Divergence Hotspot Regions 

143 Using the comparative sequence analysis of the five species of Mangifera, we found that the 
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144 plastid genome was quite conservative in the five taxa, although there were a few regions with 

145 variations. In general, sequences are conserved in the coding region, and most of the detected 

146 variations are in the non-coding region. The results agree with previous reports that non-coding 

147 regions showed greater divergence than coding regions, this is possibly caused by coding regions 

148 affected by stronger selective pressure (Li et al. 2018). Consistent with similar studies involving 

149 other plants, the IR regions appear to be more conservative than the LSC and SSC regions (Fig. 1) 

150 (Liang et al. 2019; Song et al. 2019). A search for nucleotide substitutions identified 638 variable 

151 sites (0.40%) in the five chloroplast genomes, including 489 parsimony-informative sites (0.31%), 

152 this number is smaller than other genus species (Gao et al. 2020; Nguyen et al. 2020). 

153 To identify hotspots of sequence divergence, the nucleotide diversity (Pi) values within the 

154 600 bp window of the Mangifera chloroplast genomes were calculated (Fig. 3). We found that Pi 

155 values varied from 0–0.033, and the three hypervariable regions (Pi > 0.02) of the five Mangifera 

156 chloroplast genomes were trnG-psbZ, psbD-trnT, and ycf4-cemA. The trnG-psbZ region exhibited 

157 the highest variability (7.44%). 

158 Here, we found an increase in the number of variable sites in the following three specific 

159 regions based on the results of pairwise plastid genomic alignment and SNP analysis: trnG-psbZ, 

160 psbD-trnT, and ycf4-cemA. Thus, Mangifera species may be detected using these regions as novel 

161 candidate fragments. Fig. S1 presents the graphical representation of these results using the ML 

162 method. These three DNA barcode candidate sequences have high species identification ability. 

163 However, further experiments are required to support this Mangifera plastid sequence data.

164 Characterization of gene transfer of Mangifera chloroplast genome to mitochondrial genome

165 The mitochondrial genome of M. indica was obtained from GenBank and was 87,1458 bp in 

166 size, approximately 5.5 times that of the chloroplast genome consisting of 94 functional genes. We 

167 identified 12 large chloroplast genome fragments in the mitochondrial genome, including genes 

168 and intergenomic regions. These fragments ranged from 1522–5400 bp and the sequences were 

169 over 99% consistent. The total length of these fragments was 35,652 bp, accounting for 22.6% of 

170 the chloroplast genome (Fig. 4 and Table S1). Fifteen intact chloroplast genes (rps19, rpl2, rpl23, 
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171 petN, rbcL, accD, psbJ, psbL, psbF, psbE, petL, petG, psaA, atpA, cemA ), four tRNAs (trnI-CAU, 

172 trnC-GCA, trnW-CCA, trnP-UGG) and numerous partial genes and intergenic spacer regions were 

173 identified. There are many of these genes transferred from mitochondria to the chloroplast in other 

174 species genomes, such as rps12, rpl23, rbcL, petL, petG, trnW-CCA and trnP-UGG (Gao et al. 

175 2020; Gui et al. 2016).

176 Intracellular gene transfer exists between different genomes, including those of the 

177 chloroplasts, mitochondria, and nuclei (Nguyen et al. 2020; Timmis et al. 2004). Research shows 

178 that the frequency of nuclear DNA transfer from organelles in angiosperms is very high (Hazkani-

179 Covo et al. 2010; Park et al. 2014; Smith 2011). Gene transfer from chloroplast to mitochondrial 

180 genomes is a common phenomenon during long-term evolution (Gui et al. 2016; Nguyen et al. 

181 2020). Due to high sequence identity between the transferred chloroplast genome fragments in the 

182 mitochondrial and original chloroplast genomes, gene transfer can lead to assembly errors in these 

183 genomes.

184 Phylogenetic relationship of chloroplast genomes

185 In this study, the chloroplast genome was used for infer the phylogenetic location of 

186 Mangifera in Sapindales (Fig. 5) and performed a phylogenetic analysis of the chloroplast genome 

187 using three different methods, namely, ML, MP, and BI. BI and ML analyses revealed almost the 

188 same topology, and most branches had very high support (Fig. S2). However, MP trees differed 

189 slightly from BI and ML trees in some taxa (Fig. S3). Despite differences between these three 

190 approaches, the relationships between most groups were well resolved and highly supported, 

191 suggesting that the use of chloroplast genome data does significantly improve the resolution of 

192 phylogenetic analysis. Previous studies have revealed the genetic relationship of Mangifera 

193 through morphological, nuclear, amplified fragment length polymorphism, ribosomal internal 

194 transcribed spacer (ITS), and partial chloroplast gene analysis (Eiadthong et al. 2000; Nishiyama 

195 et al. 2006; Sankaran et al. 2018; Yonemori et al. 2002). The whole chloroplast genome sequence-

196 based phylogenetic tree was built to explore the evolutionary similarities/differences between 

197 Mangifera species and between genera in the Sapindales. Phylogenetic analysis based on complete 
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198 genome sequences, rather than a few genes, has been carried out in a large number of higher plant 

199 species, significantly improving the resolution of phylogenetic analysis (Zhai et al. 2019). 
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201 Conclusions

202 In this study, the chloroplast genomes of four Mangifera species were sequenced and 

203 compared. It was found that the size, structure, and gene content of the Mangifera chloroplast 

204 genomes were conserved. Comparative analysis showed a low degree of sequence variation. We 

205 identified 13 large fragments that were transferred from the chloroplast genome to the 

206 mitochondrial genome. In addition, we identified three mutation hotspots as DNA barcodes for the 

207 identification of Mangifera species. These complete chloroplast genome sequences and highly 

208 variable markers provide sufficient genetic information for the phylogenetic reconstruction and 

209 species identification of the genus Mangifera.
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352 Figure legends

353 Figure 1. Sequence diagram of Mangifera chloroplast genomes. Gene map of Mangifera 

354 chloroplast genomes, sequence alignment of Mangifera species chloroplast genome (a: M. 

355 Sylvatica, b: M. hiemalis, c: M. longipes, d: M. persiciformis with reference to M. indica), GC 

356 content, and GC skew from the outside to inside.

357 Figure 2. Comparison of inverted repeat (IR) boundary among Mangifera species, where genes 

358 and gene fragments across IRa/b junctions are represented in color boxes above the horizontal line. 

359 Genes and IR segments are not mapped to scale.

360 Figure 3. Mangifera Chloroplast genomes sliding window analysis (window length: 600 bp; step 

361 size: 200 bp). X-axis: Position of a window; Y-axis: Genetic diversity per window.

362 Figure 4. Schematic diagram of gene transfer between chloroplast and mitochondria in Mangifera 

363 species. Colored lines within the circle show where the chloroplast genome is inserted into the 

364 mitochondrial genome. Genes within a circle are transcribed clockwise, while those outside the 

365 circle are transcribed counterclockwise.

366 Figure 5. ML phylogenetic tree of five Mangifera species with 21 related species in the Sapindales 

367 based on whole chloroplast genome sequence. Numbers related to the branches are ML bootstrap 

368 value, MP bootstrap value, and Bayesian posterior probability, respectively. Asterisk denotes 

369 100% bootstrap support or 1.0 posterior probability.

370
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372 Supporting information

373 Additional supporting information may be found in the online version of this article.

374 Figure S1. Phylogenetic tree of Mangifera species using maximum likelihood (ML) methods 

375 based on three mutation hotspots.

376 Figure S2. Phylogenetic trees of Sapindales based on Bayesian analysis

377 Figure S3. Phylogenetic trees of Sapindales based on maximum parsimony (MP) analysis

378 Figure S4. Morphological characteristics of fruits of five Mangifera species

379 Table S1. Blast results between chloroplast and mitochondrial genome in Mangifera. 
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Figure 1
Sequence diagram of Mangifera chloroplast genomes

Gene map of Mangifera chloroplast genomes, sequence alignment of Mangifera species
chloroplast genome (a: M. Sylvatica, b: M. hiemalis, c: M. longipes, d: M. persiciformis with
reference to M. indica), GC content, and GC skew from the outside to inside.
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Figure 2
Comparison of inverted repeat (IR) boundary among Mangifera species

Comparison of inverted repeat (IR) boundary among Mangifera species, where genes and
gene fragments across IRa/b junctions are represented in color boxes above the horizontal
line. Genes and IR segments are not mapped to scale.
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Figure 3
Mangifera Chloroplast genomes sliding window analysis (window length: 600 bp; step
size: 200 bp).

X-axis: Position of a window; Y-axis: Genetic diversity per window.
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Figure 4
Schematic diagram of gene transfer between chloroplast and mitochondria in Mangifera
species.

Colored lines within the circle show where the chloroplast genome is inserted into the
mitochondrial genome. Genes within a circle are transcribed clockwise, while those outside
the circle are transcribed counterclockwise.
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Figure 5
ML phylogenetic tree of five Mangifera species with 21 related species in the Sapindales
based on whole chloroplast genome sequence.

Numbers related to the branches are ML bootstrap value, MP bootstrap value, and Bayesian
posterior probability, respectively. Asterisk denotes 100% bootstrap support or 1.0 posterior
probability.
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Table 1(on next page)

Summary of chloroplast genome features of five Mangifera species

Summary of chloroplast genome features of five Mangifera species
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1 Table 1 - Summary of chloroplast genome features of five Mangifera species.

2

Genome feature M. indica M. longipes
M. 

persiciformis

M.  

hiemalis
M. sylvatica  

Total size (bp) 157,780 157,853 157,799 157,796 157,824

LSC Length (bp) 86,673 86,726 86,724 86,718 86,719

SSC Length (bp) 18,349 18,369 18,367 18,368 18,347

IR Length (bp) 26,379 26,379 26,354 26,355 26,379

Total Genes 113 113 113 113 113

Protein coding Genes 79 79 79 79 79

Structure RNAs 34 34 34 34 34

GC Content (%) 37.89% 37.88% 37.88% 37.89% 37.89%

GenBank Accessions NC035239 MN917210 MN917209 MN917208 MN917211
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Table 2(on next page)

Genes contained in Mangifera chloroplast genome

Genes contained in Mangifera chloroplast genome
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1 Table 2 - Genes contained in Mangifera chloroplast genome.

Category Group of genes Name of genes

Self replication Ribosomal RNA genes rrn4.5, rrn5, rrn16, rrn23

Small subunit of ribosome

rps2, rps3, rps4, rps7, rps8, rps11, 

rps12, rps14, rps15, rps16, rps18, 

rps19

Transfer RNA genes

trnR-UCU, trnS-GCU, trnA-UGC, 

trnC-GCA, trnF-GAA, trnG-GCC, 

trnG-UCC, trnD-GUC, trnE-UUC, 

trnH-GUG, trnN-GUU, trnP-UGG, 

trnQ-UUG, trnR-ACG, trnI-GAU, 

trnY-GUA, trnK-UUU, trnL-CAA, 

trnL-UAA, trnI-CAU, trnV-GAC, trnV-

UAC, trnW-CCA, trnL-UAG, trnfM-

CAU, trnM-CAU, trnS-GGA, trnS-

UGA, trnT-GGU, trnT-UGU 

DNA dependent RNA polymerase rpoA, rpoB, rpoC1, rpoC2

Large subunit of ribosome

rpl2, rpl14, rpl16, rpl20, rpl22, rpl23, 

rpl32, rpl33, rpl36

photosynthesis Subunits of photosystemⅠ psaA, psaB, psaC, psaI, psaJ, ycf3, ycf4

Subunits of NADH-dehydrogenase

ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, 

ndhG, ndhH, ndhI, ndhJ, ndhK

Subunits of ATP synthase atpA, atpB, atpE, atpF, atpH, atpI

Subunits of photosystemⅡ

psbA, psbB, psbC, psbD, psbE, psbF, 

psbH, psbI, psbJ, psbK, psbL, psbM, 

psbN, psbT, psbZ

Subunits of cytochrome complex petA, petB, petD, petG, petL, petN

Protease clpP

Other genes Maturase matK

Acetyl-CoA-carboxylase c-type 

cytochrom synthesis gene ccsA

Large subunit of rubisco rbcL

Envelop membrane protein cemA

Subunit of Acetyl-CoA-carboxylase accD

Hypothetical chloroplast ycf1, ycf2, ycf15

2

3
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