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ABSTRACT12

The daily average natural rainfall amounts in the five regions of Thailand can be estimated using the

confidence intervals for the common mean of several delta-lognormal distributions based on the fiducial

generalized confidence interval (FGCI), large sample (LS), method of variance estimates recovery

(MOVER), parametric bootstrap (PB), and highest posterior density intervals based on Jeffreys’ rule

(HPD-JR) and normal-gamma-beta (HPD-NGB) priors. Monte Carlo simulation was conducted to assess

the performance in terms of the coverage probability and average length of the proposed methods. The

numerical results indicate that MOVER and PB provided better performances than the other methods in

a variety of situations, even when the sample case was large. The efficacies of the proposed methods

were illustrated by applying them to real rainfall datasets from the five regions of Thailand.
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INTRODUCTION22

Approximately 82.2% of Thailand’s cultivated land area depends on natural rainfall (Supasod, 2006),23

thereby indicating its importance for Thai agriculture. However, it is a natural phenomenon with a24

significant level of uncertainty that can cause natural disasters such as droughts, floods, and landslides.25

In many countries around the world, extreme rainfall events have been increasing in frequency and26

duration. On December 5, 2017, Storm Desmond led to heavy rainfall causing flooding in northern27

England, Southern Scotland, and Ireland (Otto and Oldenborgh, 2017). On July 6–7, 2018, extreme28

rainfall events such as floods and landslides affected over 5,000 houses, and approximately 1.9 million29

people in Japan were evacuated from the at-risk area (Oldenborgh, 2018). In mid-September 2019, the30

amount of rainfall was extreme during Tropical Storm Imelda in Southeast Texas, USA, where over31

1,000 people were affected by large-scale flooding and there were 5 deaths (Oldenborgh et al., 2019).32

Thus, it is necessary to assess how rainfall varies in each region of a country on a daily basis. Due to33

the climate pattern and meteorological conditions, Thailand is commonly separated into five regions:34

northern, northeastern, central, eastern, and southern. The rainfall in each region varies widely due to both35

location and seasonality. Importantly, Thailand’s rainfall data include many zeros with probability δ > 036

and positive right-skewed data following a lognormal distribution for the remainder of the probability.37

Thus, applying a delta-lognormal distribution (Aitchison, 1955) is appropriate.38

The mean is a measure of the center of a set of observations (Casella and Berger, 2002) that can be39

used in statistical inference, while functions of the mean such as the ratio or difference between two40

means can also be used. These parameters have been applied in many research areas, such as medicine,41

fish stocks, pharmaceutics, and climatology. For example, they have been used for hypothesis testing of42

the effect of race on the average medical costs between African American and Caucasian patients with43

type I diabetes (Zhou et al., 1997), to estimate the mean charges for diagnostic tests on patients with44
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unstable chronic medical conditions (Zhou and Tu, 2000; Tian, 2005; Tian and Wu, 2007; Li et al., 2013),45

to estimate the maximum alcohol concentration in men in an alcohol interaction study (Tian and Wu,46

2007; Krishnamoorthy and Oral, 2015), to estimate the mean red cod density around New Zealand as47

an indication of fish abundance (Fletcher, 2008; Wu and Hsieh, 2014), and to estimate the mean of the48

monthly rainfall totals to compare rainfall in Bloemfontein and Kimberley in South African (Harvey and49

van der Merwe, 2012).50

In practice, the mean has been widely used in many fields, as mentioned before. When independent51

samples are recorded from several situations, then the common mean is of interest when studying more52

than one population. Many researchers have investigated methods for constructing confidence interval53

(CIs) for the common mean of several distributions. For example, Fairweather (1972) proposed a linear54

combination of Student’s t to construct CIs for the common mean of several normal distributions. Jordan55

and Krishnamoorthy (1996) solved the problem of CIs for the common mean under unknown and56

unequal variances based on Student’s t and independent F variables from several normal populations.57

Krishnamoorthy and Mathew (2003) presented the generalized CI (GCI) and compared it with the CIs58

constructed by Fairweather (1972), and Jordan and Krishnamoorthy (1996). Later, Lin and Lee (2005)59

developed a GCI for the common mean of several normal populations. Tian and Wu (2007) provided CIs60

for the common mean of several lognormal populations using the generalized variable approach, which61

was shown to be consistently better than the large sample (LS) approach. Lin and Wang (2013) studied62

the modification of the quadratic method to make inference via hypothesis testing and interval estimation63

for several lognormal means. Krishnamoorthy and Oral (2015) proposed the method of variance estimates64

recovery (MOVER) approach for the common mean of lognormal distributions.65

As mentioned earlier, many researchers have developed CIs for the common mean of several normal66

and lognormal distributions. However, there has not yet been an investigation of statistical inference67

using the common mean of several delta-lognormal distributions. Since the common mean is used to68

study more than one population, the average precipitation in the five regions in Thailand can be estimated69

using it as there is an important need to estimate the daily rainfall trends in these regions. Furthermore,70

the daily rainfall records from the five regions in Thailand satisfy the assumptions for a delta-lognormal71

distribution. Herein, CIs for the common mean of several delta-lognormal models based on the fiducial72

GCI (FGCI), LS, MOVER, parametric bootstrap (PB), and highest posterior density (HPD) intervals73

based on Jeffreys’ rule (HPD-JR) and normal-gamma-beta (HPD-NGB) priors are proposed. The outline74

of this article is as follows. The ideas behind the proposed methods are detailed in Section 2. Numerical75

computations are reported in Section 3. In Section 4, the daily natural rainfall records of the five regions76

in Thailand are used to illustrate the efficacy of the methods. Finally, the paper is ended with a discussion77

and conclusions.78

METHODS79

Let Wi j = (Wi1,Wi2, ...,Wini
) be random samples drawn from a delta-lognormal distribution, for i= 1,2, ...,k80

and j = 1,2, ..,ni. There are three parameters in this distribution: the mean µi, variance σ2
i and the81

probability of obtaining a zero observation δi. The distribution of Wi j is given by82

H(wi j;µi,σ
2
i ,δi) = ⎧⎪⎪⎨⎪⎪⎩

δi ;wi j = 0

δi+(1−δi)G(wi j;µi,σ
2
i ) ;wi j > 0

(1)

where G(wi j;µi,σ
2
i ) is a lognormal distribution function, denoted as LN(µi,σ

2
i ) such that lnWi j ∼

N(µi,σ
2
i ). The number of zeros has a binomial distribution ni(0) = #{ j ∶wi j = 0} ∼ B(ni,δi). The popula-

tion mean of Wi j is given by

ϑi = (1−δi)exp(µi+ σ2
i

2
) (2)

The unbiased estimates of µi,σ
2
i , and δi are µ̂i =n−1

i(1)∑ j∶wi j>0 lnWi j, σ̂2
i =(ni(1)−1)−1∑ j∶wi j>0 [lnWi j − µ̂i]2,83

and δ̂i = ni(0)/ni, respectively, where ni = ni(0) + ni(1); ni(1) = #{ j ∶wi j > 0}. Suppose that the delta-84

lognormal mean in (2) for all k populations are the same, then according to Tian and Wu (2007) and85

Krishnamoorthy and Oral (2015), the common delta-lognormal mean is defined as86
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ϑ = (1−δi)exp(µi+ σ2
i

2
) (3)

For the ith sample, the estimates of ϑi are ϑ̂∗i = (1− δ̂i)exp(µ̂i+ σ̂2
i

2
) which contains the unbiased estimates87

µ̂i, σ̂2
i and δ̂i. According to Longford (2009), the expected value of ϑ̂∗i is derived as88

E[ϑ̂∗i ] = [1−E(δ̂i)]E [exp{µ̂i+ σ̂2
i

2
}] (4)

= (1−δi)exp(µi+ σ2
i

ni(1)

)( li

li−σ2
i

)li/2

(5)

where δ̂i ∼ N(δi,
δi(1−δi)

ni
) as ni →∞, E[exp(µ̂i)] = exp(µi+ σ2

i

2ni(1)
) and E[exp(ciYi)] = (1− 2ci)−l/2;89

Yi = li
σ̂2

i

σ2
i

∼ χ2
li

and ci = σ2
i

2li
, σ̂2

i = (ni(1)−1)−1∑ni(1)

j=1
[ln(Wi j)− µ̂i]2. If

li−σ2
i

li
= exp[−2σ2

i

li
( 1

2
− 1

2ni(1)
)], then90

we can obtain that91

E[ϑ̂∗i ] = (1−δi)exp(µi+ σ2
i

2ni(1)

){exp[−2σ2
i

li
(1

2
− 1

2ni(1)

)]}−li/2

= (1−δi)exp(µi+ σ2
i

2
) (6)

According to Aitchison and Brown (1963), the Aitchison estimate of ϑi is expressed as92

ϑ̂
(Ait)
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 ;ni(1) = 0

wi1/ni ;ni(1) = 1

(1− δ̂i)exp(µ̂i)ψni(1)
( σ̂2

i

2
) ;ni(1) > 1

(7)

where ψa(b) is a Bessel function defined as93

ψa(b) = 1+ (a−1)b
a

+ (a−1)3
a22!

b2

a+1
+ (a−1)5

a33!

b3

(a+1)(a+3) + ... (8)

To investigate the unbiased estimate ϑ̂
(Ait)
i , the expected value is94

E [ϑ̂ (Ait)
i ] = ni∑

j=1

P(ni(1) = j)E [ϑ̂i∣ni(1) = j]
= 0+P(ni(1) = 1)E [wi1/ni]+ ni∑

j=2

P(ni(1) = j)E [ϑ̂i∣ni(1) = j]
= P(ni(1) = 1)exp(µi+ σ2

i

2
)

ni

+ ni∑
j=2

P(ni(1) = j)E [ni(1)

ni

exp(µi+ σ2
i

2
)∣ni(1) = j]

= ni∑
j=0

P(ni(1) = j)E [ni(1)

ni

exp(µi+ σ2
i

2
)∣ni(1) = j]

= E [ni(1)

ni

exp(µi+ σ2
i

2
)]

= (1−δi)exp(µi+ σ2
i

2
)
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According to Shimizu and Iwase (1981), the uniformly minimum variance unbiased (UMVU) estimate of

ϑi is

ϑ̂
(Shi)
i = ⎧⎪⎪⎨⎪⎪⎩

0 ;ni(1) < 1
ni(1)

ni
exp(µ̂i)0F1( ni(1)−1

2
;

ni(1)−1

4ni(1)
S2

i ) ;ni(1) ≥ 1
(9)

where S2
i =∑ni(1)

j=1
[ln(Wi j)− µ̂i]2 and 0F1(a;z) =∑∞m=0

z
m

(a)mm!
;

(a)m = { 1 ;m = 0

a(a+1)...(a+m−1) ;m ≥ 1
(10)

From Kunio (1983), E [0F1 ( ni(1)−1

2
; a

2
S2

i )] = exp(aσ2) is obtained, then95

E [ϑ̂ (Shi)
i ] = E [ni(1)

n
exp(µ̂i)0F1(ni(1)−1

2
,

ni(1)−1

4ni(1)

S2
i )]

= ni(1−δi)
ni

exp[µi+ σ2
i

2ni(1)

]exp[ni(1)−1

2ni(1)

σ2
i ] (11)

= (1−δi)exp(µi+ σ2
i

2
)

where E(ni(1)) = ni(1−δi). The asymptotic variance of ϑ̂
(Shi)
i is given by96

Var[ϑ̂ (Shi)
i ] = exp(2µi+σ2

i )
⎡⎢⎢⎢⎢⎣

1

n2
i

ni∑
j=1

(ni

j
)(1−δi) jδ ni− j j2 exp(σ2

i

j
)

0F1( j−1

2
;
( j−1)2

4 j2
σ4

i )−(1−δi)2]
= exp(2µi+σ2

i )
ni

[δi(1−δi)+ 1

2
(1−δi)(2σ2

i +σ4
i )]+O(n−2)

(12)

Actually, ψni(1)
( σ̂2

i

2
) = 0F1( ni(1)−1

2
;

ni(1)−1

4ni(1)
S2

i ) such that ϑ̂
(Shi)
i and ϑ̂

(Ait)
i are the unbiased estimates of ϑi97

under different ideas, although their variances are the same i.e. Var[ϑ̂ (Shi)
i ] =Var[ϑ̂ (Ait)

i ]. Using µ̂i, σ̂
2
i ,98

and δ̂i from the samples, the estimated delta-lognormal mean ϑ̂
(Ait)
i and variance of ϑ̂

(Ait)
i are obtained.99

The following methods are the detailed construction of the CIs for the common delta-lognormal mean.100

Fiducial Generalized Confidence Interval101

Fiducial inference was introduced by Fisher (1930). Fisher’s fiducial argument was used to develop a102

generalized fiducial recipe that could be extended to the application of fiducial ideas (Hannig, 2009). The103

concept of the fiducial interval has been advanced by the idea of the generalized pivotal quantity (GPQ)104

such that it is directly used to apply for generalized inference. Later, Hannig et al. (2006) argued that a105

subclass of GPQs, the fiducial GPQ (FGPQ), provides a framework that shows the connection between106

a distribution and a parameter. Recall that µ̂i ∼ N(µi,σ
2
i /ni(1)) and (ni(1) −1)σ̂2

i /σ2
i ∼ χ2

ni(1)−1 are the107

independent random variables. The structure functions of µ̂i and σ̂2
i are108

µ̂i = µi+Vi

¿ÁÁÀ σ2
i

ni(1)

and σ̂2
i = σ2

i Ui

ni(1)−1
(13)

which are the function of Vi and Ui, respectively, where Vi ∼ N(0,1) and Ui ∼ χ2
ni(1)−1. Given the109

observed values, the estimates µ̂i and σ̂2
i can be obtained, and the unique solution of (µ̂i, σ̂

2
i ) =110

(µi+Vi

√
σ2

i

ni(1)
,

σ2
i Ui

ni(1)−1
) becomes111
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µi = µ̂i−Vi
σ̂i√
ni(1)

√
ni(1)−1

Ui

, σ2
i = (ni(1)−1)σ̂2

i

Ui

(14)

The respective FGPQs of µi and σ2
i are112

Gµi
= µ̂i−V∗i

σ̂i√
ni(1)

¿ÁÁÀni(1)−1

U∗i
(15)

Gσ2
i
= (ni(1)−1)σ̂2

i

U∗i
(16)

where V∗i and U∗i are independent copies of Vi and Ui, respectively. Hasan and Krishnamoorthy (2018)113

developed the FGPQ of δi using a beta distribution as Gδ ′
i
∼Beta(αi,βi); αi = ni(1)+0.5 and βi = ni(0)+0.5.114

The FGPQ of ϑ based on k individual samples is115

Gϑ = ∑k
i=1 Gwi

Gϑi∑k
i=1 Gwi

(17)

where Gϑi
=Gδ ′

i
exp(Gµi

+Gσ2
i
/2), Gwi

= 1/G
Var[ϑ̂(Ait)

i
], and116

G
Var[ϑ̂(Ait)

i
] = exp(2Gµi

+Gσ2
i
)[Gδ ′

i
(1−Gδ ′

i
)+ 1

2
Gδ ′

i
(2Gσ2

i
+Gσ4

i
)]/ni. Thus, the 100(1- ζ)%FGCI for117

ϑ is118

CI
( f gci)
ϑ = [L( f gci)

ϑ ,U
( f gci)
ϑ ] = [Gϑ (ζ /2),Gϑ (1−ζ /2)] (18)

where Gϑ (ζ) denotes the ζ th percentiles of Gϑ . Algorithm 1 shows the computational steps for obtaining119

the FGCI.120

Algorithm 1: FGCI121

1) Generate Vi ∼N(0,1) and Ui ∼ χ2
ni(1)−1 are independent.122

2) Compute the FGPQs Gµi
, Gσ2

i
and Gδ ′

i
.123

3) Compute Gwi
and Gϑi

leading to obtain Gϑ .124

4) Repeat steps 1-3, a number of times, m=2500, compute 95%FGCI for ϑ , as given in (18).125

Large Sample Interval126

Recall that the Aitchitson estimator is ϑ̂
(Ait)
i = (1− δ̂i)exp(µ̂i)ψni(1)

(σ̂2
i /2) and the variance of ϑ̂

(Ait)
i127

is Var[ϑ̂ (Ait)
i ] = exp(2µi+σ2

i )[δi(1−δi)+ 1
2
(1−δi)(2σ2

i +σ4
i )]/ni. The approximated variance is ob-128

tained by replacing µ̂i, σ̂2
i and δ̂i. The pooled estimate of ϑi is given by129

ϑ̂ = ∑k
i=1 wiϑ̂

(Ait)
i∑k

i=1 wi

(19)

where wi = 1/V̂ar[ϑ̂ (Ait)
i ]. Hence, the 100(1−ζ)% LS interval for ϑ is obtained as130

CI
(ls)
ϑ = [L(ls)ϑ ,U

(ls)
ϑ ] = ⎡⎢⎢⎢⎢⎣ϑ̂ − z

1−
ζ
2

¿ÁÁÀ1/ k∑
i=1

wi, ϑ̂ + z
1−

ζ
2

¿ÁÁÀ1/ k∑
i=1

wi

⎤⎥⎥⎥⎥⎦ (20)

where zζ denotes the ζ th percentiles of standard normal N(0,1). The LS interval can be estimated easily131

via Algorithm 2.132
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Algorithm 2: LS133

1) Compute ϑ̂
(Ait)
i and V̂ar[ϑ̂ (Ait)

i ].134

2) Compute ϑ̂ .135

3) Compute 95%LS interval for ϑ , as given in (20).136

Method of Variance Estimates Recovery137

This method produces a closed-form CI that is easy to compute. For this reason, the MOVER CI for138

the common delta-lognormal mean is considered for k individual random samples. The MOVER for a139

linear combination of ϑi; i = 1,2, ...,k is as follows. Let ϑ̂1, ϑ̂2, ..., ϑ̂k be independent unbiased estimators140

of ϑ1,ϑ2, ...,ϑk, respectively. In addition, let [li,ui] stand for the 100(1−ζ)%CI for ϑi. According to141

Krishnamoorthy and Oral (2015), the 100(1−ζ)%MOVER for ∑k
i=1 ciϑi is given by142

CI
∑k

i=1
ciϑi
= [L

∑k
i=1

ciϑi
,U
∑k

i=1
ciϑi
]

= ⎡⎢⎢⎢⎢⎣
k∑

i=1

ciϑ̂i−
¿ÁÁÀ k∑

i=1

c2
i
(ϑ̂i− l∗i )2, k∑

i=1

ciϑ̂i+
¿ÁÁÀ k∑

i=1

c2
i
(ϑ̂i−u∗i )2

⎤⎥⎥⎥⎥⎦ (21)

where l∗i =
⎧⎪⎪⎨⎪⎪⎩

li ;ci > 0

ui ;ci < 0
and u∗i =

⎧⎪⎪⎨⎪⎪⎩
ui ;ci > 0

li ;ci < 0
. Next, the closed-form CIs for ϑi are needed to construct143

MOVER for ϑ . Thus, ϑi is log-transformed as144

lnϑi = lnδ∗i +(µi+σ2
i ) (22)

where δ∗i = 1−δi. Let µ̂i, and σ̂2
i and δ̂∗ be the unbiased estimates of µi, σ2

i , and δi, respectively. The145

MOVER for a single delta-lognormal mean presented by Hasan and Krishnamoorthy (2018), the MOVER146

for ϑi is given by147

Lϑi
= exp

⎧⎪⎪⎨⎪⎪⎩ln δ̂∗i +(µ̂i+ σ̂2
i )−
√
(ln δ̂∗i − llnδ∗

i
)2+(µ̂i+ σ̂2

i − lµi+σ2
i
)2
⎫⎪⎪⎬⎪⎪⎭

Uϑi
= exp

⎧⎪⎪⎨⎪⎪⎩ln δ̂∗i +(µ̂i+ σ̂2
i )−
√
(ln δ̂∗i −ulnδ∗

i
)2+(µ̂i+ σ̂2

i −uµi+σ2
i
)2
⎫⎪⎪⎬⎪⎪⎭

(23)

where148

(llnδ∗
i
,ulnδ∗

i
) = ln

⎡⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎝δ̂∗i + T 2

i,ζ/2

2ni

∓Ti,1−ζ/2

¿ÁÁÁÀ δ̂∗i (1− δ̂∗i )
ni

+ T 2
i,ζ/2

4n2
i

⎞⎟⎟⎠/(1+T 2
i,ζ/2/ni)

⎤⎥⎥⎥⎥⎥⎥⎦
(lµi+σ2

i
,uµi+σ2

i
) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(µ̂i+ σ̂2

i /2)−
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎝

Zi,ζ/2σ̂2
i

ni(1)

⎞⎠
2+ σ̂4

i

4

⎛⎜⎝1− ni(1)−1

χ2
i,1−ζ/2,ni(1)−1

⎞⎟⎠
2⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

1/2

, (24)

(µ̂i+ σ̂2
i /2)+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎝

Zi,ζ/2σ̂2
i

ni(1)

⎞⎠
2+ σ̂4

i

4

⎛⎜⎝
ni(1)−1

χ2
i,ζ/2,ni(1)−1

−1
⎞⎟⎠

2⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
1/2⎤⎥⎥⎥⎥⎥⎥⎥⎦

Note that both Ti = (ni(1)−niδ
∗)/√niδ

∗
i (1−δ∗i ) d∼ N(0,1), and Zi = (µ̂i−µi)/√σ̂2

i /ni(1)
d∼ N(0,1) are149

independent random variables. According to Krishnamoorthy and Oral (2015), the 100(1−ζ)% MOVER150

interval for ϑ is151
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CI
(mover)
ϑ = [Lϑ ,Uϑ ]

=
⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑k

i=1 wiϑ̂
(Ait)
i∑k

i=1 wi

−
¿ÁÁÁÁÀ∑k

i=1 w2
i (ϑ̂ (Ait)

i −Lϑi
)2

∑k
i=1 w2

i

,

∑k
i=1 wiϑ̂

(Ait)
i∑k

i=1 wi

−
¿ÁÁÁÁÀ∑k

i=1 w2
i (ϑ̂ (Ait)

i −Uϑi
)2

∑k
i=1 w2

i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(25)

where wi = 1/V̂ar[ϑ̂ (Ait)
i ]. Algorithm 3 describes the steps to construct the MOVER interval.152

Algorithm 3: MOVER153

1) Compute CIs for lnδ∗i and µi+σ2
i are (llnδ∗

i
,ulnδ∗

i
) and (lµi+σ2

i
,uµi+σ2

i
), respectively.154

2) Compute MOVER for ϑi, as given in (23).155

3) Compute 95%MOVER for ϑ , given in (25).156

Parametric Bootstrap157

This is developed from the parametric bootstrap on the common mean of several heterogeneous log-158

normal distributions, proposed by Malekzadeh and Kharrati-Kopaei (2019). The delta-lognormal mean is159

transformed by taking the logarithm as160

µi = ln( ϑ

1−δi

)− σ2
i

2
(26)

The likelihood of (ϑ ,σ2
i ,δi) is161

L(ϑ ,σ2
i ,δi∣wi j)= k∏

i=1

( ni

ni(0)

)δi(1−δi) 1

(2πσ2
i )ni(1)/2

exp

⎧⎪⎪⎨⎪⎪⎩−
1

2σ2
i

ni(1)∑
j=1

(lnwi j − ln( ϑ

1−δi

)+ σ2
i

2
)2⎫⎪⎪⎬⎪⎪⎭ (27)

which enables obtaining the maximum likelihood estimates of lnϑ and σ2
i as162

ln ϑ̂mle = ∑k
i=1 ŵmle,i [µ̂i+ ln(1− δ̂i)]+N/2

∑k
i=1 ŵmle,i

σ̂2
mle,i = −2+2

√
1+ σ̂2

i +{µ̂ − ln[ϑ̂/(1− δ̂i)]}2

(28)

where ŵmle,i = ni(1)/σ̂2
mle,i and ln ϑ̂=

∑
k
i=1 ŵi[µ̂i+ln(1−δ̂i)]+N/2

∑k
i=1

ŵi
; ŵi = ni(1)/σ̂2

i . If δi = 0, then it becomes the163

common lognormal mean (see Krishnamoorthy and Oral (2015) for a detailed explanation). By applying164

central limit theorem, we obtain (ln ϑ̂mle− lnϑ)√∑k
i=1 ŵmle,i ∼N(0,1) such that T = (ln ϑ̂mle− lnϑ)2∑k

i=1 ŵmle,i ∼165

χ2
ni(1)−1. It is well-known that µ̂i, σ̂2

i and δ̂i are independent random variables for which µ̂i ∼N(ln( ϑ
1−δi
)−166

σ2
i

2
,σ2

i /ni(1)), (ni(1) − 1)σ̂2
i /σ2

i ∼ χ2
ni(1)−1 and δ̂i ∼ N(δ ,δ(1− δ)/ni) are obtained, respectively. Let167

η = µi +σ2
i /2 so that we can write T = ∑k

i=1 ŵmle,i[µ̂i+ln(1−δ̂i)−η−ln(1−δi)]+N/2
∑k

i=1
ŵmle,i

. It can be seen that the dis-168

tribution of T is complicated, possibly depending on nuisance parameters σ2
i and δi, but not on lnϑ .169

Thus, the exact distribution of T is unknown in practice, and so we propose the PB pivotal variable170

corresponding to T PB as171

T PB = (ln ϑ̂ PB
mle− ln ϑ̂)2 k∑

i=1

ŵPB
mle,i (29)
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where ln ϑ̂ PB
mle = ∑k

i=1 ŵ
PB
mle,i[µ̂PB

i +ln(1−δ̂ PB
i )]+N/2

∑k
i=1

ŵPB
mle,i

, ŵPB
i =ni(1)/σ̂2B

i , µ̂PB
i ∼N(µ̂B

i , σ̂
2B
i /ni(1)), σ̂2PB

i ∼ σ̂B2
i χ2

ni(1)−1172

/(ni(1)−1) and δ̂ PB ∼ beta(nB
i(0)+0.5,nB

i(1)+0.5), nB
i(0) = niδ̂

B
i , and nB

i(1) = ni−nB
i(0). Note that µ̂B

i , σ̂2B
i ,173

and δ̂ B
i are the observed values of µ̂i, σ̂2

i , and δ̂i, respectively, from random sampling with replacement174

based on the bootstrap approach. Thus, the 100(1−ζ)%PB interval for ϑ is given by175

CI
(pb)
ϑ = exp

⎡⎢⎢⎢⎢⎣ln ϑ̂mle∓
¿ÁÁÀqPB

ζ
/ k∑

i=1

ŵmle,i

⎤⎥⎥⎥⎥⎦ (30)

where qPB
ζ

denotes the (1−ζ)th percentile of distribution of T PB. The PB interval can be constructed as176

shown in Algorithm 4.177

Algorithm 4: PB178

1) Compute µ̂i, σ̂2
i and δ̂ leading to obtain ln ϑ̂ .179

2) Compute ln ϑ̂mle and σ̂2
mle,i.180

3) Generate µ̂PB
i , σ̂2PB

i and δ̂ PB
i leading to compute ln ϑ̂ PB

mle.181

4) Repeat steps 1-3, a number of time m = 2500, compute T PB to obtain qPB
ζ

.182

5) Compute 95%PB interval for ϑ , as given in (30).183

Highest Posterior Density Intervals184

The HPD interval is constructed from the posterior distribution, as defined by Box and Tiao (1973). Note185

that the prior of ϑi is updated with its likelihood function thereby obtaining the posterior distribution186

based on the Bayesian approach. Recall that Wi j ∼ ∆(µi,σ
2
i ,δi), then the likelihood is given by187

P(wi j ∣µi,σ
2
i ,δi)∝ k∏

i=1

δ
ni(0)

i (1−δi)ni(1)(σ2
i )−ni(1)/2 exp

⎧⎪⎪⎨⎪⎪⎩−
1

2σ2
i

ni(1)∑
j=1

(lnwi j −µi)2⎫⎪⎪⎬⎪⎪⎭ (31)

For k individual samples, Miroshnikov et al. (2015) described the pooled independent sub-posterior188

samples toward the joint posterior distributions ϑ are combined using weighted averages as follows:189

ϑ post = k∑
i=1

wiϑ
post
i ( k∑

i=1

wi)
−1

(32)

where ϑ
post
i are the posterior samples of ϑi, for i = 1,2, ...,k. The inverse of the sample variance is used to190

weight the posterior based on the ith samples is denoted as wi =Var−1(ϑ̂i∣wi j). Different priors have been191

developed for estimating the common delta-lognormal mean, two of which are derived in the following192

subsections.193

Jeffreys’ Rule Prior194

Harvey and van der Merwe (2012) defined this prior as195

P(ϑ)JR∝ k∏
i=1

σ−3
i δ

−1/2
i (1−δi)1/2 (33)

which is combined with the likelihood (34) to obtain the posterior of ϑ as196

P(wi j ∣ϑ) ∝ k∏
i=1

δ
ni(0)−1/2
i (1−δi)ni(1)+1/2(σ2

i )−(ni(1)+3)/2
exp

⎧⎪⎪⎨⎪⎪⎩−
1

2σ2
i

ni(1)∑
j=1

(lnwi j −µi)2⎫⎪⎪⎬⎪⎪⎭
∝ k∏

i=1

δ
(ni(0)+1/2)−1

i (1−δi)(ni(1)+3/2)−1(σ2
i )− (ni(1)+1)

2
−1

exp{− 1

2σ2
i

[(ni(1)−1)σ̂2
i +ni(1)(µ̂i−µi)2]} (34)
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This leads to obtaining the marginal posterior distributions of µi, σ2
i and δi as197

µ
(JR)
i ∣σ2

i,JR,wi j ∼N (µ̂i,σ
2(JR)
i /ni(1))

σ
2(JR)
i ∣wi j ∼ IG((ni(1)+1)/2,(ni(1)+1)σ̂2

i /2)
δ
(JR)
i ∣wi j ∼ beta(ni(0)+1/2,ni(1)+3/2)

(35)

The pooled posterior of ϑ is weighted by its inversely estimated variance as follows:198

ϑ post = k∑
i=1

w
(JR)
i ϑ

(JR)p

i ( k∑
i=1

w
(JR)
i )−1

(36)

where199

ϑ
(JR)p

i = (1−δ
(JR)
i )exp(µ(JR)

i +σ
2(JR)
i /2)200

w
(JR)
i = {n−1

i exp(2µ
(JR)
i +σ

2(JR)
i )[δ (JR)

i (1−δ
(JR)
i )+ 1

2
(1−δ

(JR)
i )(2σ

2(JR)
i +σ

4(JR)
i )]}−1

201

From (36), the 100(1−ζ)%HPD-based Jeffreys’ rule prior (HPD-JR) for ϑ is constructed as follows:202

Normal-Gamma-Beta Prior203

Maneerat et al. (2020) proposed a HPD based on the normal-gamma prior for the ratio of delta-lognormal204

variances that worked better than the HPD-JR of Harvey and van der Merwe (2012). Suppose that205

YYY = lnWWW be a random variable of normal distribution with mean µµµ = (µ1,µ2, ...,µk) and precision206

λλλ = (λ1,λ2, ...,λk) where WWW ∼ LN(µµµ,λλλ) and λi = σ−2
i . The HPD-based normal-gamma-beta prior (HPD-207

NGB) of ϑ = (µi,λi,δi)′ is defined as208

P(ϑ)∝ k∏
i=1

λ−1
i [δi(1−δi)]−1/2 (37)

where (µi,λi) follows a normal-gamma distribution, and δi follows a beta distribution, denoted as209 (µi,λi) ∼ NG(µi,λi∣µ,ki(0) = 0,αi(0) = −1/2,βi(0) = 0) and δi ∼ beta(1/2,1/2), respectively. When the210

the prior (37) is combined with the likelihood (34), then the posterior density of ϑ becomes211

P(ϑ ∣wi j) ∝ k∏
i=1

δ
ni(0)−1/2

i (1−δi)ni(1)−1/2λ

ni(1)−1

2
−1

i exp

⎧⎪⎪⎨⎪⎪⎩−
λi

2

ni(1)∑
j=1

(lnwi j − µ̂i)2⎫⎪⎪⎬⎪⎪⎭λ
1/2
i

exp{−ni(1)λi

2
(µi−µ∗i )2} (38)

which can be integrated out to obtain the marginal posterior distributions of µi, λi and δi as follows:212

µ
(NGB)
i ∣wi j ∼ td f

⎛⎝µi∣µ̂i,

ni(1)∑
j=1

(lnwi j − µ̂i)2/[ni(1)(ni(1)−1)]⎞⎠
λ
(NGB)
i ∣wi j ∼G

⎛⎝λi∣(ni(1)−1)/2,ni(1)∑
j=1

(lnwi j − µ̂i)2/2⎞⎠
δ
(NGB)
i ∣wi j ∼ beta(ni(0)+1/2,ni(1)+1/2)

(39)

where d f = 2(ni(1) − 1) and σ
2(NGB)
i ∣wi j ∼ IG(σ2

i ∣(ni(1)−1)/2,∑ni(1)

j=1 (lnwi j − µ̂i)2/2). Similarly, the213

pooled posterior of ϑ is given by214

ϑ post = k∑
i=1

w
(NGB)
i ϑ

(NGB)p

i ( k∑
i=1

w
(NGB)
i )−1

(40)
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where215

ϑ
(NGB)p

i = (1−δ
(NGB)
i )exp(µ(NGB)

i +σ
2(NGB)
i /2)216

w
(NGB)
i ={n−1

i exp(2µ
(NGB)
i +σ

2(NGB)
i )[δ (NGB)

i (1−δ
(NGB)
i ) 1

2
(1−δ

(NGB)
i )(2σ

2(NGB)
i +σ

4(NGB)
i )]}−1

217

Hence, the 100(1−ζ)%HPD-HGB for ϑ is constructed in (40). Algorithm 5 details the steps to construct218

the HPD-JR and HPD-NGB.219

Algorithm 5: HPD-JR and HPD-NGB220

1) Compute µ̂i, σ̂2
i and δ̂ .221

2) Generate the posterior densities of µi, σ2
i and δi based-Jeffreys’ rule (JR) and normal-gamma-beta222

(NGB) priors, as given in (35) and (39), respectively.223

3) Compute the pooled posterior of ϑ based on JR and NGB priors, as given in (36) and (40),224

respectively.225

4) Compute 95%HPD-JR and HPD-NGB for ϑ , defined by Box and Tiao (1973).226

SIMULATION STUDIES AND RESULTS227

The performances of the CIs were assessed by comparing their coverage probabilities (CPs) and average228

length (ALs) using Monte Carlo simulation. The best-performing CI is the one where the CP is closest229

to or greater than the nominal confidence level 1−ζ while also having an AL with the narrowest width.230

The CIs for the common delta-lognormal mean constructed using FGCI, LS, MOVER, PB, HPD-JR, and231

HPD-NGB were assessed in the study, the parameter settings for which are provided in Table 1. The232

number of generated random samples was fixed at M = 5000. For FGCI, the number of FGPQs was233

Q = 2500 for each set of 5000 random samples. Algorithm 6 shows the computational steps to estimate234

the CP and AL performances of all of the methods.235

Table 1. Parameter settings for sample cases k = 2,5,10.

Scenarios (n1, ...,nk) (δ1, ...,δk) (σ2
1 , ...,σ

2
k )

k = 2

1-9 (302) (0.1,0.2), (0.2,0.5), (0.3,0.7) (1,2), (2,4), (3,5)

10-18 (30,50) (0.1,0.2), (0.2,0.5), (0.3,0.7) (1,2), (2,4), (3,5)

19-27 (502) (0.1,0.2), (0.2,0.5), (0.3,0.7) (1,2), (2,4), (3,5)

28-36 (50,100) (0.1,0.2), (0.2,0.5), (0.3,0.7) (1,2), (2,4), (3,5)

37-45 (1002) (0.1,0.2), (0.2,0.5), (0.3,0.7) (1,2), (2,4), (3,5)

k = 5

46-54 (305) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
55-63 (302,503) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
64-72 (302,502,100) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
73-81 (30,502,1002) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
82-90 (505) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
91-99 (502,1003) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)

100-108 (1005) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
k = 10

109-114 (305,505) (0.15,0.25), (0.25,0.55) (15,25), (25,45), (35,55)
115-120 (303,503,1004) (0.15,0.25), (0.25,0.55) (15,25), (25,45), (35,55)
121-126 (505,1005) (0.15,0.25), (0.25,0.55) (15,25), (25,45), (35,55)

Note: (305) stands for (30,30,30,30,30).

Algorithm 6: Comparison of CPs and ALs for all CIs.236

For g = 1 to M. Generate wi j ∼ ∆(µi,σ
2
i ,δi).237

Compute the unbiased estimates µ̂i, σ̂2
i and δ̂ .238

Compute the 95%CIs for ϑ based on FGCI, LS, MOVER, PB and the HPDs via Algorithms 1, 2, 3, 4239

and 5, respectively.240

Let Ag = 1 if ϑ falls within the intervals of FGCI, LS, MOVER, PB or the HPDs, else Ag = 0.241

The CP and AL for each method are obtained by CP= (1/M)∑M
g=1 Ag and AL= (U −L)/M, respectively,242

where U and L are the upper and lower confidence limits, respectively. (end g loop)243

244
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The numerical results for the CI performances are presented in terms of CP and AL for various245

sample cases. For k = 2 (Table 2 and Figure 1), FGCI performed well for small-to-moderate sample sizes,246

as well as for large σ2
i and a moderate-to-large sample size. HPD-NGB attained stable and the best CP247

and AL values for small σ2
i and a moderate-to-large sample size. MOVER and PB attained correct CPs248

but wider ALs than the other methods whereas LS and HPD-JR had lower CPs and narrower ALs. For249

k = 5 (Table 3 and Figure 2), there were only two methods producing better CPs than the other methods in250

the various situations: MOVER (small δi and σ2
i ) and PB (large δi and σ2

i ). Moreover, the results were251

similar for k = 10 (Table 4 and Figure 3).252

As previously mentioned, our findings show that FGCI works well for small sample case because the253

FGPQ of σ2
i might contain some weak points that affect the FGPQ of µi as the sample case increases. For254

large sample sizes, MOVER was the best method for small σ2, which is possibly caused by the CI for255

µi+σ2
i . Meanwhile, the next best one was PB, which has the strong point of using a resampling technique256

to collect information about several populations even when the variance σ2 is large.257

Table 2. Performance measures of 95%CIs for ϑ : 2 sample cases

CP AL
Scenarios

FG LS MO PB HJ HN FG LS MO PB HJ HN

k = 2

1 0.959 0.897 0.967 0.994 0.916 0.941 1.556 1.296 2.005 2.324 1.353 1.436

2 0.958 0.857 0.947 0.996 0.924 0.941 5.169 3.770 7.287 8.631 4.186 4.335

3 0.963 0.821 0.959 0.996 0.919 0.932 13.088 8.675 23.312 22.883 9.905 10.220

4 0.962 0.886 0.978 0.995 0.917 0.939 1.487 1.211 2.181 2.155 1.247 1.386

5 0.953 0.832 0.962 0.995 0.913 0.922 4.875 3.487 9.881 7.818 3.811 4.066

6 0.951 0.793 0.971 0.991 0.901 0.912 12.311 7.740 37.615 21.129 8.875 9.378

7 0.961 0.829 0.972 0.982 0.920 0.940 1.511 1.095 3.968 2.173 1.224 1.406

8 0.950 0.778 0.974 0.995 0.900 0.911 4.821 3.123 293.620 7.649 3.566 3.916

9 0.939 0.725 0.973 0.988 0.866 0.887 13.159 7.067 8.0e4 23.632 8.680 9.419

10 0.960 0.900 0.965 0.992 0.915 0.941 1.503 1.249 1.936 2.225 1.362 1.395

11 0.961 0.848 0.941 0.992 0.924 0.940 5.128 3.712 6.765 8.667 4.298 4.368

12 0.965 0.819 0.952 0.998 0.919 0.931 12.297 8.382 20.057 21.597 9.819 9.894

13 0.960 0.896 0.977 0.992 0.917 0.942 1.366 1.147 1.909 2.004 1.203 1.271

14 0.961 0.851 0.964 0.996 0.916 0.931 4.593 3.422 7.236 7.458 3.761 3.889

15 0.949 0.790 0.958 0.994 0.894 0.905 11.116 7.517 22.293 19.310 8.507 8.718

16 0.963 0.860 0.972 0.974 0.928 0.943 1.354 1.033 2.141 1.928 1.155 1.257

17 0.952 0.803 0.976 0.992 0.900 0.917 4.397 3.048 10.772 6.889 3.418 3.630

18 0.940 0.737 0.968 0.989 0.872 0.889 11.065 6.663 43.755 19.011 7.903 8.247

19 0.961 0.914 0.966 0.992 0.921 0.946 1.153 1.009 1.382 1.696 1.043 1.076

20 0.965 0.895 0.946 0.991 0.938 0.949 3.668 2.924 4.309 5.981 3.178 3.229

21 0.962 0.863 0.952 0.996 0.930 0.940 8.747 6.665 11.805 14.651 7.272 7.395

22 0.958 0.910 0.978 0.985 0.919 0.944 1.091 0.945 1.414 1.555 0.945 1.031

23 0.965 0.883 0.969 0.996 0.926 0.937 3.336 2.695 4.578 5.204 2.811 2.950

24 0.961 0.840 0.972 0.995 0.921 0.928 7.887 5.987 13.164 12.757 6.338 6.605

25 0.969 0.868 0.980 0.958 0.930 0.953 1.120 0.866 1.610 1.503 0.937 1.070

26 0.954 0.839 0.970 0.997 0.916 0.926 3.208 2.433 6.544 4.735 2.621 2.830

27 0.946 0.773 0.970 0.992 0.893 0.903 7.803 5.443 26.105 12.382 6.011 6.376

28 0.958 0.912 0.972 0.979 0.916 0.947 1.119 0.952 1.397 1.615 1.054 1.051

29 0.956 0.872 0.921 0.958 0.927 0.943 3.745 2.836 4.238 6.098 3.338 3.330

30 0.961 0.846 0.937 0.987 0.925 0.936 8.488 6.274 10.833 13.991 7.332 7.320

31 0.962 0.927 0.985 0.978 0.919 0.949 0.984 0.876 1.322 1.433 0.908 0.929

32 0.960 0.880 0.958 0.992 0.925 0.940 3.214 2.618 4.169 5.150 2.818 2.860

33 0.958 0.838 0.960 0.994 0.910 0.925 7.360 5.744 10.824 12.105 6.256 6.279

34 0.963 0.888 0.977 0.922 0.938 0.954 0.975 0.785 1.322 1.352 0.876 0.922

35 0.958 0.860 0.971 0.995 0.917 0.929 2.915 2.343 4.321 4.424 2.486 2.586

36 0.951 0.820 0.973 0.995 0.901 0.916 6.726 5.103 11.951 10.823 5.511 5.626

37 0.957 0.935 0.960 0.970 0.927 0.948 0.802 0.722 0.923 1.168 0.743 0.753

38 0.955 0.916 0.926 0.953 0.942 0.948 2.442 2.044 2.541 3.935 2.220 2.219

39 0.957 0.888 0.939 0.981 0.937 0.945 5.608 4.594 6.295 9.049 4.984 4.998

40 0.961 0.942 0.975 0.957 0.924 0.954 0.740 0.679 0.911 1.062 0.659 0.702

41 0.961 0.920 0.960 0.988 0.933 0.950 2.199 1.925 2.558 3.401 1.958 2.012

42 0.955 0.875 0.960 0.994 0.925 0.931 4.976 4.209 6.298 7.813 4.318 4.439

43 0.967 0.909 0.980 0.863 0.937 0.960 0.773 0.625 0.972 1.012 0.659 0.743

44 0.960 0.896 0.970 0.993 0.928 0.939 2.076 1.750 2.684 3.013 1.788 1.921

45 0.952 0.835 0.970 0.996 0.908 0.914 4.683 3.786 7.007 7.008 3.952 4.182

Notes: FG, fiducial generalized confidence interval; MO, method of variance estimates

HJ, HPD-based Jeffreys’ rule prior, HPD-JR; HN, HPD-based normal-gamma-beta prior.

Bold denoted as the best-performing method each case.
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Table 3. Performance measures of 95%CIs for ϑ : 5 sample cases.

CP AL
Scenarios

FG LS MO PB HJ HN FG LS MO PB HJ HN

k = 5

46 0.885 0.790 0.988 0.989 0.757 0.846 0.963 0.819 1.794 1.532 0.848 0.956

47 0.789 0.627 0.973 0.996 0.674 0.715 2.240 1.908 4.982 3.897 1.991 2.176

48 0.840 0.613 0.953 0.997 0.723 0.746 5.325 4.529 13.769 12.250 4.744 4.870

49 0.894 0.800 0.993 0.978 0.779 0.864 0.900 0.765 1.825 1.439 0.773 0.905

50 0.783 0.623 0.972 0.998 0.680 0.711 2.008 1.711 5.203 3.608 1.750 1.955

51 0.797 0.580 0.959 0.996 0.680 0.701 4.700 4.066 16.626 11.353 4.118 4.287

52 0.893 0.735 0.989 0.896 0.816 0.853 0.753 0.589 2.849 1.433 0.636 0.764

53 0.768 0.517 0.977 0.997 0.666 0.676 1.474 1.168 19.967 3.364 1.282 1.406

54 0.742 0.467 0.983 0.996 0.624 0.629 3.250 2.654 1.5e4 11.238 2.817 2.855

55 0.884 0.779 0.988 0.979 0.743 0.846 0.940 0.777 1.739 1.434 0.857 0.930

56 0.806 0.645 0.973 0.995 0.681 0.740 2.204 1.822 4.586 3.561 2.045 2.141

57 0.858 0.622 0.949 0.986 0.725 0.771 5.620 4.542 12.575 12.073 5.122 5.162

58 0.901 0.827 0.995 0.962 0.770 0.870 0.845 0.728 1.699 1.326 0.771 0.841

59 0.793 0.644 0.978 0.997 0.675 0.726 1.904 1.629 4.351 3.262 1.750 1.850

60 0.825 0.605 0.952 0.997 0.710 0.734 4.753 4.058 12.745 10.793 4.373 4.353

61 0.905 0.785 0.992 0.822 0.809 0.865 0.685 0.564 1.632 1.219 0.620 0.686

62 0.786 0.578 0.969 0.993 0.683 0.704 1.368 1.142 4.477 2.775 1.260 1.309

63 0.755 0.496 0.963 0.998 0.639 0.637 3.177 2.714 18.995 8.911 2.884 2.822

64 0.892 0.787 0.991 0.970 0.737 0.858 0.928 0.751 1.740 1.364 0.872 0.919

65 0.822 0.647 0.975 0.996 0.673 0.763 2.168 1.738 4.371 3.326 2.047 2.114

66 0.852 0.593 0.943 0.981 0.715 0.767 5.710 4.413 12.195 11.422 5.267 5.278

67 0.905 0.827 0.996 0.949 0.768 0.873 0.816 0.697 1.637 1.256 0.770 0.811

68 0.801 0.654 0.979 0.995 0.683 0.737 1.839 1.549 4.069 3.016 1.753 1.797

69 0.821 0.595 0.947 0.994 0.693 0.733 4.806 3.976 12.174 10.326 4.431 4.432

70 0.917 0.803 0.994 0.775 0.817 0.886 0.650 0.539 1.499 1.133 0.616 0.650

71 0.804 0.612 0.973 0.992 0.692 0.730 1.310 1.094 3.962 2.543 1.236 1.262

72 0.756 0.502 0.958 0.997 0.631 0.646 3.158 2.695 16.604 8.356 2.888 2.835

73 0.924 0.832 0.994 0.942 0.772 0.893 0.822 0.673 1.505 1.186 0.856 0.808

74 0.853 0.699 0.985 0.990 0.696 0.798 1.971 1.589 3.823 2.899 2.000 1.923

75 0.883 0.652 0.952 0.945 0.755 0.817 5.330 4.072 9.997 9.911 5.224 4.974

76 0.924 0.857 0.997 0.913 0.771 0.901 0.723 0.626 1.418 1.088 0.746 0.715

77 0.826 0.695 0.986 0.989 0.689 0.767 1.670 1.406 3.476 2.610 1.692 1.632

78 0.854 0.638 0.955 0.984 0.718 0.771 4.456 3.628 9.715 8.788 4.311 4.160

79 0.930 0.846 0.998 0.683 0.811 0.900 0.581 0.486 1.253 0.964 0.586 0.580

80 0.830 0.658 0.981 0.980 0.705 0.762 1.215 1.019 3.179 2.168 1.225 1.181

81 0.788 0.555 0.967 0.997 0.675 0.689 2.992 2.554 11.873 7.026 2.927 2.738

82 0.915 0.844 0.993 0.964 0.788 0.889 0.769 0.662 1.337 1.158 0.692 0.753

83 0.858 0.735 0.982 0.993 0.741 0.804 1.882 1.599 3.605 2.920 1.698 1.825

84 0.886 0.705 0.969 0.981 0.782 0.827 4.650 3.895 8.767 9.068 4.208 4.335

85 0.925 0.865 0.998 0.939 0.803 0.897 0.707 0.618 1.315 1.068 0.618 0.700

86 0.834 0.705 0.987 0.994 0.735 0.775 1.683 1.439 3.493 2.683 1.482 1.642

87 0.855 0.684 0.968 0.994 0.751 0.783 4.027 3.489 8.924 8.068 3.613 3.766

88 0.929 0.824 0.994 0.677 0.835 0.903 0.611 0.495 1.322 0.993 0.515 0.616

89 0.823 0.627 0.981 0.985 0.729 0.749 1.284 1.045 3.692 2.296 1.121 1.250

90 0.799 0.578 0.972 0.997 0.699 0.705 2.875 2.453 13.603 6.644 2.519 2.641

91 0.927 0.831 0.997 0.906 0.777 0.898 0.753 0.614 1.389 1.064 0.703 0.735

92 0.871 0.731 0.988 0.986 0.720 0.820 1.821 1.466 3.459 2.601 1.721 1.769

93 0.905 0.693 0.957 0.897 0.791 0.852 5.015 3.768 8.461 8.829 4.621 4.690

94 0.931 0.879 0.999 0.873 0.781 0.909 0.651 0.571 1.279 0.972 0.608 0.639

95 0.847 0.738 0.991 0.986 0.719 0.797 1.541 1.313 3.117 2.351 1.447 1.499

96 0.875 0.679 0.966 0.969 0.760 0.806 4.125 3.374 8.002 7.707 3.808 3.865

97 0.935 0.866 0.998 0.541 0.832 0.911 0.529 0.450 1.097 0.856 0.493 0.523

98 0.848 0.697 0.986 0.971 0.735 0.782 1.126 0.956 2.572 1.916 1.060 1.091

99 0.817 0.613 0.963 0.994 0.698 0.725 2.784 2.418 7.510 6.042 2.565 2.571

100 0.941 0.888 0.998 0.863 0.813 0.920 0.557 0.484 0.954 0.806 0.510 0.536

101 0.906 0.827 0.995 0.973 0.799 0.875 1.413 1.201 2.515 2.029 1.288 1.361

102 0.929 0.790 0.975 0.861 0.845 0.889 3.639 2.946 5.529 6.174 3.365 3.428

103 0.948 0.923 1.000 0.801 0.816 0.931 0.501 0.456 0.909 0.741 0.452 0.487

104 0.888 0.816 0.996 0.978 0.784 0.853 1.253 1.095 2.373 1.852 1.121 1.216

105 0.905 0.775 0.981 0.953 0.822 0.859 3.147 2.678 5.326 5.441 2.893 2.975

106 0.955 0.907 0.999 0.289 0.852 0.943 0.438 0.372 0.838 0.668 0.373 0.433

107 0.881 0.761 0.994 0.939 0.781 0.833 0.992 0.823 2.044 1.536 0.863 0.972

108 0.868 0.722 0.984 0.987 0.781 0.805 2.331 2.005 5.072 4.308 2.088 2.208

Notes: FG, fiducial generalized confidence interval; MO, method of variance estimates recovery;

HJ, HPD-based Jeffreys’ rule prior, HPD-JR; HN, HPD-based normal-gamma-beta prior.

Bold denoted as the best-performing method each case.
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Table 4. Performance measures of 95%CIs for ϑ : 10 sample cases.

CP AL
Scenarios

FG LS MO PB HJ HN FG LS MO PB HJ HN

k = 10

109 0.728 0.675 0.998 0.927 0.566 0.692 0.612 0.501 1.554 0.932 0.545 0.623

110 0.661 0.500 0.979 0.891 0.570 0.588 1.644 1.291 3.867 3.278 1.500 1.637

111 0.504 0.352 0.950 0.978 0.481 0.404 3.159 2.561 8.645 7.286 2.996 3.076

112 0.720 0.692 0.999 0.904 0.587 0.690 0.557 0.459 1.519 0.832 0.483 0.574

113 0.532 0.452 0.976 0.985 0.512 0.462 1.393 1.159 3.853 2.682 1.260 1.404

114 0.361 0.290 0.955 0.998 0.403 0.274 2.556 2.218 8.570 5.943 2.411 2.505

115 0.789 0.723 0.999 0.808 0.561 0.762 0.554 0.440 1.416 0.789 0.546 0.560

116 0.716 0.524 0.985 0.578 0.590 0.653 1.635 1.180 3.478 2.915 1.559 1.624

117 0.593 0.406 0.964 0.872 0.519 0.507 3.289 2.406 7.754 6.380 3.189 3.214

118 0.782 0.773 1.000 0.780 0.586 0.758 0.477 0.404 1.317 0.696 0.474 0.483

119 0.626 0.514 0.988 0.947 0.535 0.561 1.337 1.076 3.348 2.360 1.284 1.341

120 0.447 0.347 0.965 0.992 0.450 0.355 2.570 2.108 7.290 5.180 2.506 2.531

121 0.826 0.773 1.000 0.736 0.592 0.796 0.488 0.399 1.266 0.695 0.444 0.486

122 0.774 0.620 0.994 0.438 0.647 0.720 1.460 1.086 3.072 2.512 1.328 1.438

123 0.659 0.460 0.977 0.798 0.553 0.577 3.002 2.236 6.597 5.502 2.775 2.921

124 0.828 0.826 1.000 0.708 0.606 0.802 0.426 0.368 1.187 0.615 0.387 0.427

125 0.688 0.595 0.995 0.912 0.591 0.627 1.205 0.992 2.912 2.039 1.094 1.197

126 0.520 0.426 0.979 0.984 0.486 0.439 2.390 1.989 6.222 4.479 2.224 2.344

Notes: FG, fiducial generalized confidence interval; MO, method of variance estimates recovery;

HJ, HPD-based Jeffreys’ rule prior, HPD-JR; HN, HPD-based normal-gamma-beta prior.

Bold denoted as the best-performing method each case.

AN EMPIRICAL APPLICATION258

Daily rainfall data obtained from the Thai Meteorological Department (TMD) were divided into the259

northern, northeastern, central, and eastern regions, while the southern region was a combination of260

the data from the southeastern and southwestern shores. Due to the differences in the climate patterns261

and meteorological conditions in the five regions, we focused was on estimating the daily rainfall data262

in these regions by treating them as separate sets of observations rather than using the average rainfall263

for the whole of Thailand by pooling them and treating them as a single population. The daily rainfall264

amounts were recorded on August 5 and 9, 2019, which is in the middle of the rainy season (mid-May to265

mid-October) when rice farming is conducted in Thailand. Entries with rainfall of less than 0.1 mm were266

considered as zero records.267

Tables 5-6 contain the daily rainfall records for the five regions, while Figures 4-5 show histogram268

plots of rainfall observations, and Figures 6-7 exhibit normal Q-Q plots of the log-positive rainfall data269

on August 5 and 9, 2019, respectively. It can be seen that the data for all of the regions contained zero270

observations. After that, the fitted distribution of the positive observations was checked using the Akaike271

information criterion (AIC), as reported in Table 7. It can be concluded that the rainfall data in all of272

the regions on August 5 and 9, 2019 follow a delta-lognormal distribution. All data sets and R code are273

available in the Supplemental Files. The summary statistics are reported in Table 8. In the approximation274

of the daily rainfall amounts in the five regions, the estimated common means were 4.4506 and 13.2621275

mm/day on August 5 and 9, 2019, respectively. The computed 95%CIs of the common rainfall mean are276

reported in Table 9. Under the rain criteria issued by the TMD (Department, 2018), it can be interpreted277

that the daily rainfall in Thailand on August 5, 2019, was light (0.1–10.0 mm), while it was moderate278

(10.1-35.0 mm) on August 9, 2019. These results confirm the simulation results for k = 5 in the previous279

section.280

DISCUSSION281

It can be seen that for MOVER and PB developed from the studies of Krishnamoorthy and Oral (2015)282

and Malekzadeh and Kharrati-Kopaei (2019), respectively, the simulation results are similar to both283

of these studies provided that the zero observations are omitted. CIs for the common mean have been284

investigated in both normal and lognormal distributions (Fairweather, 1972; Jordan and Krishnamoorthy,285

1996; Krishnamoorthy and Mathew, 2003; Lin and Lee, 2005; Tian and Wu, 2007; Krishnamoorthy and286

Oral, 2015). However, the common mean of delta-lognormal populations is especially of interest because287
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Table 5. Daily rainfall data in five Thailand’s regions on August 5, 2019.

Northern Northeastern Central Eastern Southern

3 0 3 0 0 49.5 0 0 0 2.9 3.2 0 4.1 0 0 2.7

2.6 5 0 40 1.5 10.5 0 0 0 0.2 0 3.2 0 0 0 0

1 23.8 0 3.5 18.5 60.4 4 0 11 0.3 0 10.4 11.5 3.5 0 0

3.6 16 0 0 42 12.7 0 0 0 2.5 4.7 1.1 2.5 13.6 0 0

0 11.5 0 12 9.1 6.8 0 20.3 0 0.4 19.3 0.2 9.7 0 0.2 0

13.2 1.2 0 15 6 69.3 0 0 0 0.4 3.1 4.3 10.4 0 0 0

22.4 10.3 0 0 7.5 36.5 0 2.4 0.3 1.1 2.9 0 9.6 0 0 0

1.4 1.7 0 1.5 0 8.6 0 0 1 0 5.7 0 19 0 0 0

18.3 5.5 0 0.7 6.3 0 0 0 0 1.3 0.9 0 8.3 0 0 0

0 7.3 0 0 0 0 0 0 0 0.1 0 0 0 4.8 0 6.2

15.5 24.3 1.7 3 0.4 0 0 0 0 2.9 0 0.2 0 0 0 0

0 27.2 2.3 0 0 3.8 0 0 0 0 2.6 0.1 0 0 0 0

0 12.6 0.5 0 0 0 0 3.2 0 1 17 62.8 0 0 0 6.1

0 22.7 3.9 0 0 0 0 0 0 4.7 0 36.7 17.8 0 0 0

9.8 0 6.9 29.4 1.8 0 0 0 0 0.5 3.5 15.6 12.3 0 0 0

24.3 2.6 2.2 48 0 0 0 0 0 5 0 50 2.5 0 0 0

24.6 0 3.2 0 0 0 6 0 0 2.5 0 35.5 0 0 0 0.3

8.8 3.2 5.3 70.8 14.3 0 0 0 0 0 0 35 0.9 0 0 0

0 2.6 11 3.5 0 0 0 0 0 0 5.1 5.9 0 0 0 0

19.8 2 0.6 14.2 0 0 0 4.8 0 0 60.4 0 2.6 0 0 0

5 8 0 7 0 0 2.3 0 0 0 6.9 0 0 0 0 0

12.3 1.9 1 0 0 21.5 0 0 0 6.6 3 3 0 0 0 0

8.1 0.8 2.4 0 0 2.5 1 0 0 0 15.1 60.4 2 0 0 0

4.8 2.2 13.2 0 0 0 0 0 0 9.5 6 60 0 0 0 0

5.8 6.5 0.4 0 0 13 0 0 5.1 13.4 76 0 0 0 0

17 0 0 10.8 0 26.2 0 0 12.5 6.2 79.7 0 0 0 0

25.1 2.2 1.3 0 10.1 2.2 4.6 5.4 0 65.7 3.5 0 0

8.3 0 10 6.3 0 3 0 0 0 108 0 0 36.1

22.9 4.3 2.5 0 4.8 10.5 10 0 3.2 10.5 0 0 41.8

26.9 0.2 4.6 4 0 0 0 12 0 0 0 30

0 0 0 19.3 0 0 9.5 0 2.2 0 0 0

Source: Thai Meteorological Department

https://www.tmd.go.th/services/weekly report.php

it can be used to fit the data from real-world situations such as investigating medical costs (Zou et al.,288

2009; Tierney et al., 2003; Tian, 2005), analyzing airborne contaminants (Owen and DeRouen, 1980;289

Tian, 2005) and measuring fish abundance (Fletcher, 2008; Wu and Hsieh, 2014). Furthermore, it is290

possible that some extreme rainfall data also fulfill the assumptions of a delta-lognormal distribution.291

Note that such natural disasters as floods and landslides have been caused by the extreme rainfall events,292

as evidenced in many country around the world: Europe (e.g. Northern England, Southern Scotland and293

Ireland (Otto and Oldenborgh, 2017)), Asia (e.g. Japan (Oldenborgh, 2018)) and North America (e.g.294

Southeast Texas (Oldenborgh et al., 2019)). Our findings show that some of the methods studied had CPs295

that were too low or too high for large sample cases, a shortcoming that should be addressed in future296

work.297

CONCLUSIONS298

The objective of this study was to propose CIs for the common mean of several delta-lognormal dis-299

tributions using FGCI, LS, MOVER, PB, HPD-JR, and HPD-NGB. The CP and AL as performance300

measures of the methods were assessed via Monte Carlo simulation. The findings confirm that for small301

sample case (k = 2), FGCI and HPD-NGB are the recommended methods in different situations: FGCI302

(a small-to-moderate sample size and a large σ2
i with a moderate-to-large sample size) and HPD-NGB303

(small σ2
i with a moderate-to-large sample size). For large sample cases (k = 5,10), MOVER (small δi304

and σ2
i ) and PB (large δi and σ2

i ) performed the best.305
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Table 6. Daily rainfall data in five Thailand’s regions on August 9, 2019.

Northern Northeastern Central Eastern Southern

9.5 0 25.3 20 6.6 8.4 0 67 0 39.6 0 0 27.9 4.1 0.4 114.6

4.9 10 25.5 14.5 16.9 0.8 2.9 65.4 0 25 0 0 0 9 3.8 0

0 21.6 24 3 10 20.2 0 21 0 0 0 26.5 3.4 27.3 0.6 0

4.7 15 8 28 48.2 0 14.3 6.4 7.2 0 0 36.4 0 6.5 0 0

0 15.5 0 27 6.5 0.5 0 0 3.5 29.7 0.1 0 0.8 3.5 10.8 0

63.2 14 20 50 4.8 5.3 6 52 0 0 0.3 4.5 37.9 0 5 18.2

9.6 8.5 0 24 25 16.7 0 45 40.5 3.1 0.5 0 32.4 0 12.2 40.4

10.7 11.5 0 30 0 45.2 28 41.4 25.8 8.2 31.5 0.5 33.8 0 3.6 0

13 17.4 0 22 0 0 0 14.3 30.4 3.2 8.2 0.7 15.8 0 0 0

0 15.6 0 16 3.2 0.6 0 45 0 7.1 0 12.3 0 3.6 8.8 10.8

0 31.6 33.8 0 44 0 0 27 0 0 0 0.5 0 3 0 0

0 20.6 33.7 0 0 3.1 27.6 0.2 0 3.2 0 1.9 0 1 0 0

0 31.1 15.1 0 9.3 33.3 33 30 0 4.2 0 66.4 0 3.7 6.2 35

0 16.3 18.5 0 0 6 0 0 0 5.7 0 93.6 11.5 15.6 0 0

2.8 0 44.8 39.7 20 0 0 0 8.3 30 0 68.7 1.7 11.2 3.8 33.5

11.3 33.1 37.5 9.3 0 13.2 0 0 0 4 0 40 1.2 24 0 57

0.6 29.2 0 0 4.8 0 0 0 0 0 0 65 21.2 0 0 10.5

36.1 11.2 47 2.1 0 21 0 0 0 0 0 63.7 0 0 0 0

0 14.4 20 0 0 0 0 1 36.1 0 0 9.2 30 10.2 0.2 0

2.6 60 30.8 46.7 0 8.4 15 0 0 0 1.2 0 5.1 0 0 0

5 42.3 30 10.5 0 0 0 0 12.5 0 0 0 2.5 0 0 30.8

13.4 9.5 1 0 56.5 0 0 2.5 0 14.7 0.1 11 2.4 0 0.4 10.7

12.3 34.5 1.2 41 39.2 0.5 0 0 0 0 1 69.6 5 0 0 0

25.8 36.5 56.3 10.3 0 4.5 25.7 9.5 0 0 3 89.6 1.7 0 0 15.9

30.2 9.7 0 1.2 6.4 16.2 41.4 0 0 0.5 160 0 0 2.2 0

16.4 0 6 23.9 5.3 0 41.6 0 0 1.6 34.3 0 0 0 0

6 0 0 22.2 0 3.5 53.8 0 0 0 2.1 0 0.6

33.1 7.6 5.3 24.1 9.8 20 48.5 0 0 25 0 0 76.6

16.4 9.6 7.2 38 0 0 78.5 2.1 0 19.5 10.5 7 121.6

19.8 9.3 24.6 9 9.7 0 12.7 0 0 15.3 10.6 60

0 0 30 9.2 4.5 1.2 80.9 0 0 0 3.6 0

Source: Thai Meteorological Department

URL: https://www.tmd.go.th/services/weekly report.php
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Table 7. AIC results of daily rainfall records in five Thailand’s regions.
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AIC

Cauchy Logistic Lognormal Normal T-distribution
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Table 9. 95%CIs of common rainfall mean in five Thailand’s regions.

Methods
95%CIs for ϑ

Lengths
Lower Upper

On August 5, 2020

FGCI 2.5545 6.3342 3.7798

LS 3.2166 5.6846 2.4681
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Figure 3. CP performances of 95%CIs for ϑ : 10 sample cases in the following cases (sample sizes,

variances): (A) (305,505,12,25), (B) (305,505,25,45), (C) (305,505,35,55), (D) (303,503,1004,12,25),
(E) (303,503,1004,25,45), (F) (303,503,1004,35,55), (G) (505,1005,15,25), (H) (505,1005,25,45), (I)(505,1005,32,53).
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Figure 4. Histogram plots of daily rainfall data in five Thailand’s regions on August 5, 2019: (A)

Northern (B) Northeastern (C) Central (D) Eastern (E) Southern.

Figure 5. Histogram plots of daily rainfall data in five Thailand’s regions on August 9, 2019: (A)

Northern (B) Northeastern (C) Central (D) Eastern (E) Southern.
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Figure 6. Normal Q-Q plots of log-positive daily rainfall data in five Thailand’s regions on August 5,

2019: (A) Northern (B) Northeastern (C) Central (D) Eastern (E) Southern.

Figure 7. Normal Q-Q plots of log-positive daily rainfall data in five Thailand’s regions on August 9,

2019: (A) Northern (B) Northeastern (C) Central (D) Eastern (E) Southern.
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