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ABSTRACT
The daily average natural rainfall amounts in the five regions of Thailand can be
estimated using the confidence intervals for the common mean of several delta-
lognormal distributions based on the fiducial generalized confidence interval (FGCI),
large sample (LS), method of variance estimates recovery (MOVER), parametric
bootstrap (PB), and highest posterior density intervals based on Jeffreys’ rule (HPD-JR)
and normal-gamma-beta (HPD-NGB) priors. Monte Carlo simulation was conducted
to assess the performance in terms of the coverage probability and average length of the
proposedmethods. The numerical results indicate thatMOVER and PB provided better
performances than the other methods in a variety of situations, even when the sample
case was large. The efficacies of the proposedmethods were illustrated by applying them
to real rainfall datasets from the five regions of Thailand.

Subjects Agricultural Science, Statistics, Computational Science, Natural Resource Management,
Ecohydrology
Keywords Agriculture, Bayesian approach, MOVER, Natural rainfall, Vague prior, Variance

INTRODUCTION
Approximately 82.2% of Thailand’s cultivated land area depends on natural
rainfall (Supasod, 2006), thereby indicating its importance for Thai agriculture. However,
it is a natural phenomenon with a significant level of uncertainty that can cause natural
disasters such as droughts, floods, and landslides. In many countries around the world,
extreme rainfall events have been increasing in frequency and duration. On December
5, 2017, Storm Desmond led to heavy rainfall causing flooding in northern England,
Southern Scotland, and Ireland (Otto & Oldenborgh, 2017). On July 6–7, 2018, extreme
rainfall events such as floods and landslides affected over 5,000 houses, and approximately
1.9 million people in Japan were evacuated from the at-risk area (Oldenborgh, 2018). In
mid-September 2019, the amount of rainfall was extreme during Tropical Storm Imelda
in Southeast Texas, USA, where over 1,000 people were affected by large-scale flooding
and there were five deaths (Oldenborgh et al., 2019). Thus, it is necessary to assess how
rainfall varies in each region of a country on a daily basis. Due to the climate pattern and
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meteorological conditions, Thailand is commonly separated into five regions: northern,
northeastern, central, eastern, and southern. The rainfall in each region varies widely due
to both location and seasonality. Importantly, Thailand’s rainfall data include many zeros
with probability δ > 0 and positive right-skewed data following a lognormal distribution for
the remainder of the probability. Thus, applying a delta-lognormal distribution (Aitchison,
1955) is appropriate.

The mean is a measure of the center of a set of observations (Casella & Berger, 2002) that
can be used in statistical inference, while functions of themean such as the ratio or difference
between twomeans can also be used. These parameters have been applied in many research
areas, such asmedicine, fish stocks, pharmaceutics, and climatology. For example, they have
been used for hypothesis testing of the effect of race on the average medical costs between
African American and Caucasian patients with type I diabetes (Zhou, Gao & Hui, 1997), to
estimate the mean charges for diagnostic tests on patients with unstable chronic medical
conditions (Zhou & Tu, 2000; Tian, 2005; Tian & Wu, 2007; Li, Zhou & Tian, 2013), to
estimate the maximum alcohol concentration in men in an alcohol interaction study (Tian
& Wu, 2007; Krishnamoorthy & Oral, 2015), to estimate the mean red cod density around
New Zealand as an indication of fish abundance (Fletcher, 2008;Wu & Hsieh, 2014), and to
estimate the mean of the monthly rainfall totals to compare rainfall in Bloemfontein and
Kimberley in South African (Harvey & van der Merwe, 2012).

In practice, the mean has been widely used in many fields, as mentioned before.
When independent samples are recorded from several situations, then the common
mean is of interest when studying more than one population. Many researchers have
investigated methods for constructing confidence interval (CIs) for the common mean of
several distributions. For example, Fairweather (1972) proposed a linear combination of
Student’s t to construct CIs for the commonmean of several normal distributions. Jordan &
Krishnamoorthy (1996) solved the problem of CIs for the common mean under unknown
andunequal variances based on Student’s t and independent F variables from several normal
populations. Krishnamoorthy & Mathew (2003) presented the generalized CI (GCI) and
compared it with the CIs constructed by Fairweather (1972), and Jordan & Krishnamoorthy
(1996). Later, Lin & Lee (2005) developed a GCI for the common mean of several normal
populations. Tian & Wu (2007) provided CIs for the common mean of several lognormal
populations using the generalized variable approach, which was shown to be consistently
better than the large sample (LS) approach. Lin & Wang (2013) studied the modification of
the quadratic method to make inference via hypothesis testing and interval estimation for
several lognormal means. Krishnamoorthy & Oral (2015) proposed the method of variance
estimates recovery (MOVER) approach for the common mean of lognormal distributions.

As mentioned earlier, many researchers have developed CIs for the common mean
of several normal and lognormal distributions. However, there has not yet been an
investigation of statistical inference using the common mean of several delta-lognormal
distributions. Since the common mean is used to study more than one population, the
average precipitation in the five regions in Thailand can be estimated using it as there
is an important need to estimate the daily rainfall trends in these regions. Furthermore,
the daily rainfall records from the five regions in Thailand satisfy the assumptions for
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a delta-lognormal distribution. Herein, CIs for the common mean of several delta-
lognormal models based on the fiducial GCI (FGCI), LS, MOVER, parametric bootstrap
(PB), and highest posterior density (HPD) intervals based on Jeffreys’ rule (HPD-JR)
and normal-gamma-beta (HPD-NGB) priors are proposed. The outline of this article is
as follows. The ideas behind the proposed methods are detailed in the Methods section.
Numerical computations are reported in ‘Simulation Studies and Results’. In ‘An Empirical
Application’, the daily natural rainfall records of the five regions in Thailand are used to
illustrate the efficacy of the methods. Finally, the paper is ended with a discussion and
conclusions.

METHODS
Let Wij = (Wi1,Wi2,...,Wini) be random samples drawn from a delta-lognormal
distribution, for i= 1,2,...,k and j = 1,2,..,ni. There are three parameters in this
distribution: the mean µi, variance σ 2

i and the probability of obtaining a zero observation
δi. The distribution ofWij is given by

H (wij;µi,σ
2
i ,δi)=

{
δi ;wij = 0
δi+ (1−δi)G(wij;µi,σ

2
i ) ;wij > 0

(1)

where G(wij;µi,σ
2
i ) is a lognormal distribution function, denoted as LN (µi,σ

2
i ) such

that lnWij ∼ N (µi,σ
2
i ). The number of zeros has a binomial distribution ni(0) = #{

j :wij = 0
}
∼B(ni,δi). The population mean ofWij is given by

ϑi= (1−δi)exp
(
µi+

σ 2
i

2

)
(2)

The unbiased estimates of µi,σ
2
i , and δi are µ̂i = n−1i(1)

∑
j:wij>0 lnWij , σ̂ 2

i = (ni(1)−

1)−1
∑

j:wij>0
[
lnWij− µ̂i

]2, and δ̂i= ni(0)/ni, respectively, where ni= ni(0)+ni(1); ni(1)= #{
j :wij > 0

}
. Suppose that the delta-lognormal mean in Eq. (2) for all k populations are

the same, then according to Tian & Wu (2007) and Krishnamoorthy & Oral (2015), the
common delta-lognormal mean is defined as

ϑ = (1−δi)exp
(
µi+

σ 2
i

2

)
. (3)

For the ith sample, the estimates of ϑi are ϑ̂∗i = (1− δ̂i)exp(µ̂i+
σ̂ 2
i
2 ) which contains the

unbiased estimates µ̂i, σ̂ 2
i and δ̂i. According to Longford (2009), the expected value of ϑ̂∗i

is derived as

E[ϑ̂∗i ] =
[
1−E(δ̂i)

]
E
[
exp

{
µ̂i+

σ̂ 2
i

2

}]
(4)

= (1−δi)exp
(
µi+

σ 2
i

ni(1)

)(
li

li−σ 2
i

)li/2

(5)
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where δ̂i ∼N (δi, δi(1−δi)ni
) as ni→∞, E[exp(µ̂i)] = exp

(
µi+

σ 2
i

2ni(1)

)
and E[exp(ciYi)] =

(1− 2ci)−l/2; Yi = li
σ̂ 2
i
σ 2
i
∼ χ2

li and ci =
σ 2
i
2li
, σ̂ 2

i = (ni(1)− 1)−1
∑ni(1)

j=1
[
ln(Wij)− µ̂i

]2. If
li−σ 2

i
li
= exp

[
−2σ 2

i
li

( 12−
1

2ni(1)
)
]
, then we can obtain that

E[ϑ̂∗i ] = (1−δi)exp
(
µi+

σ 2
i

2ni(1)

){
exp

[
−2σ 2

i

li
(
1
2
−

1
2ni(1)

)
]}−li/2

= (1−δi)exp
(
µi+

σ 2
i

2

)
. (6)

According to Aitchison & Brown (1963), the Aitchison estimate of ϑi is expressed as

ϑ̂
(Ait )
i =


0 ;ni(1)= 0
wi1/ni ;ni(1)= 1

(1− δ̂i)exp(µ̂i)ψni(1)(
σ̂ 2
i

2
) ;ni(1)> 1

(7)

where ψa(b) is a Bessel function defined as

ψa(b)= 1+
(a−1)b

a
+

(a−1)3

a22!
b2

a+1
+

(a−1)5

a33!
b3

(a+1)(a+3)
+ ... (8)

To investigate the unbiased estimate ϑ̂ (Ait )
i , the expected value is

E
[
ϑ̂
(Ait )
i

]
=

ni∑
j=1

P(ni(1)= j)E
[
ϑ̂i|ni(1)= j

]
= 0+P(ni(1)= 1)E [wi1/ni]+

ni∑
j=2

P(ni(1)= j)E
[
ϑ̂i|ni(1)= j

]
= P(ni(1)= 1)

exp(µi+
σ 2
i
2 )

ni
+

ni∑
j=2

P(ni(1)= j)E
[
ni(1)
ni

exp(µi+
σ 2
i

2
)|ni(1)= j

]

=

ni∑
j=0

P(ni(1)= j)E
[
ni(1)
ni

exp(µi+
σ 2
i

2
)|ni(1)= j

]

= E
[
ni(1)
ni

exp(µi+
σ 2
i

2
)
]

= (1−δi)exp(µi+
σ 2
i

2
).

According to Shimizu & Iwase (1981), the uniformly minimum variance unbiased
(UMVU) estimate of ϑi is

ϑ̂
(Shi)
i =

 0 ;ni(1)< 1
ni(1)
ni

exp(µ̂i)0F1

(
ni(1)−1

2
;
ni(1)−1
4ni(1)

S2i

)
;ni(1)≥ 1

(9)
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where S2i =
∑ni(1)

j=1
[
ln(Wij)− µ̂i

]2 and 0F1(a;z)=
∑
∞

m=0
zm

(a)mm!
;

(a)m=

{
1 ;m= 0

a(a+1)...(a+m−1) ;m≥ 1
(10)

From Kunio (1983), E
[
0F1
(
ni(1)−1

2 ;
a
2S

2
i

)]
= exp(aσ 2) is obtained, then

E
[
ϑ̂
(Shi)
i

]
= E

[
ni(1)
n

exp(µ̂i)0F1

(
ni(1)−1

2
,
ni(1)−1
4ni(1)

S2i

)]
=

ni(1−δi)
ni

exp
[
µi+

σ 2
i

2ni(1)

]
exp

[
ni(1)−1
2ni(1)

σ 2
i

]
= (1−δi)exp

(
µi+

σ 2
i

2

)
(11)

where E(ni(1))= ni(1−δi). The asymptotic variance of ϑ̂ (Shi)
i is given by

Var
[
ϑ̂
(Shi)
i

]
= exp(2µi+σ

2
i )

 1
n2i

ni∑
j=1

(
ni
j

)
(1−δi)jδni−j j2exp

(
σ 2
i

j

)

0F1

(
j−1
2
;
(j−1)2

4j2
σ 4
i

)
− (1−δi)2

]
=

exp(2µi+σ
2
i )

ni

[
δi(1−δi)+

1
2
(1−δi)(2σ 2

i +σ
4
i )
]
+O(n−2). (12)

Actually, ψni(1)(
σ̂ 2
i
2 )=0F1

(
ni(1)−1

2 ;
ni(1)−1
4ni(1)

S2i
)
such that ϑ̂ (Shi)

i and ϑ̂ (Ait )
i are the unbiased

estimates of ϑi under different ideas, although their variances are the same i.e.,
Var

[
ϑ̂
(Shi)
i

]
=Var

[
ϑ̂
(Ait )
i

]
. Using µ̂i,σ̂

2
i , and δ̂i from the samples, the estimated delta-

lognormal mean ϑ̂ (Ait )
i and variance of ϑ̂ (Ait )

i are obtained. The following methods are the
detailed construction of the CIs for the common delta-lognormal mean.

Fiducial generalized confidence interval
Fiducial inference was introduced by Fisher (1930). Fisher’s fiducial argument was used to
develop a generalized fiducial recipe that could be extended to the application of fiducial
ideas (Hannig, 2009). The concept of the fiducial interval has been advanced by the idea of
the generalized pivotal quantity (GPQ) such that it is directly used to apply for generalized
inference. Later,Hannig, Iyer & Patterson (2006) argued that a subclass ofGPQs, the fiducial
GPQ (FGPQ), provides a framework that shows the connection between a distribution
and a parameter. Recall that µ̂i∼N (µi,σ

2
i /ni(1)) and (ni(1)−1)σ̂ 2

i /σ
2
i ∼ χ

2
ni(1)−1 are the

independent random variables. The structure functions of µ̂i and σ̂ 2
i are

µ̂i=µi+Vi

√
σ 2
i

ni(1)
and σ̂ 2

i =
σ 2
i Ui

ni(1)−1
(13)

which are the function of Vi and Ui, respectively, where Vi ∼N (0,1) and Ui ∼ χ
2
ni(1)−1.

Given the observed values, the estimates µ̂i and σ̂ 2
i can be obtained, and the unique solution
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of
(
µ̂i,σ̂

2
i
)
=

(
µi+Vi

√
σ 2
i

ni(1)
,
σ 2
i Ui

ni(1)−1

)
becomes

µi= µ̂i−Vi
σ̂i
√ni(1)

√
ni(1)−1

Ui
, σ 2

i =
(ni(1)−1)σ̂ 2

i

Ui
. (14)

The respective FGPQs of µi and σ 2
i are

Gµi = µ̂i−V ∗i
σ̂i
√ni(1)

√
ni(1)−1
U ∗i

(15)

Gσ 2
i
=

(ni(1)−1)σ̂ 2
i

U ∗i
(16)

where V ∗i and U ∗i are independent copies of Vi and Ui, respectively. Hasan &
Krishnamoorthy (2018) developed the FGPQ of δi using a beta distribution as Gδ′i ∼
Beta(αi,βi); αi = ni(1)+0.5 and βi = ni(0)+0.5. The FGPQ of ϑ based on k individual
samples is

Gϑ =
∑k

i=1GwiGϑi∑k
i=1Gwi

(17)

where Gϑi = Gδ′i exp(Gµi +Gσ 2
i
/2), Gwi = 1/G

Var
[
ϑ̂
(Ait )
i

], and G
Var

[
ϑ̂
(Ait )
i

] = exp(2Gµi +

Gσ 2
i
)
[
Gδ′i (1−Gδ′i )+

1
2Gδ′i (2Gσ 2

i
+Gσ 4

i
)
]
/ni. Thus, the 100(1−ζ )% FGCI for ϑ is

CI (fgci)ϑ = [L(fgci)ϑ ,U (fgci)
ϑ ] = [Gϑ (ζ/2),Gϑ (1−ζ/2)] (18)

where Gϑ (ζ ) denotes the ζ th percentiles of Gϑ . Algorithm 1 shows the computational steps
for obtaining the FGCI.

Algorithm 1: FGCI
(1) Generate Vi∼N (0,1) and Ui∼χ

2
ni(1)−1 are independent.

(2) Compute the FGPQs Gµi , Gσ 2
i
and Gδ′i .

(3) Compute Gwi and Gϑi leading to obtain Gϑ .
(4) Repeat steps 1-3, a number of times, m= 2500, compute 95%FGCI for ϑ , as given in

Eq. (18).

Large sample interval
Recall that the Aitchitson estimator is ϑ̂ (Ait )

i = (1− δ̂i)exp(µ̂i)ψni(1)(σ̂
2
i /2) and the

variance of ϑ̂ (Ait )
i is Var

[
ϑ̂
(Ait )
i

]
= exp(2µi+σ

2
i )
[
δi(1−δi)+ 1

2(1−δi)(2σ
2
i +σ

4
i )
]
/ni.

The approximated variance is obtained by replacing µ̂i, σ̂ 2
i and δ̂i. The pooled estimate of

ϑi is given by

ϑ̂ =

∑k
i=1wiϑ̂

(Ait )
i∑k

i=1wi
(19)
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where wi= 1/V̂ar
[
ϑ̂
(Ait )
i

]
. Hence, the 100(1−ζ )% LS interval for ϑ is obtained as

CI (ls)ϑ = [L
(ls)
ϑ ,U

(ls)
ϑ ] =

ϑ̂−z1− ζ2
√√√√1/

k∑
i=1

wi,ϑ̂+z1− ζ2

√√√√1/
k∑

i=1

wi

 (20)

where zζ denotes the ζ th percentiles of standard normal N (0,1). The LS interval can be
estimated easily via ‘Algorithm 2’.

Algorithm 2: LS
(1) Compute ϑ̂ (Ait )

i and V̂ar
[
ϑ̂
(Ait )
i

]
.

(2) Compute ϑ̂ .
(3) Compute 95%LS interval for ϑ , as given in Eq. (20).

Method of variance estimates recovery
Thismethodproduces a closed-formCI that is easy to compute. For this reason, theMOVER
CI for the common delta-lognormal mean is considered for k individual random samples.
The MOVER for a linear combination of ϑi;i=1 ,2,...,k is as follows. Let ϑ̂1,ϑ̂2,...,ϑ̂k
be independent unbiased estimators of ϑ1,ϑ2,...,ϑk , respectively. In addition, let [li,ui]
stand for the 100(1− ζ )%CI for ϑi. According to Krishnamoorthy & Oral (2015), the
100(1−ζ )%MOVER for

∑k
i=1ciϑi is given by

CI∑k
i=1 ciϑi

= [L∑k
i=1 ciϑi

,U∑k
i=1 ciϑi
]

=

 k∑
i=1

ciϑ̂i−

√√√√ k∑
i=1

c2i
(
ϑ̂i− l∗i

)2
,

k∑
i=1

ciϑ̂i+

√√√√ k∑
i=1

c2i
(
ϑ̂i−u∗i

)2 (21)

where l∗i =
{
li ;ci > 0
ui ;ci < 0 and u∗i =

{
ui ;ci > 0
li ;ci < 0 . Next, the closed-form CIs for ϑi are needed

to construct MOVER for ϑ . Thus, ϑi is log-transformed as

lnϑi= lnδ∗i + (µi+σ
2
i ) (22)

where δ∗i = 1− δi. Let µ̂i, and σ̂ 2
i and δ̂∗ be the unbiased estimates of µi, σ 2

i , and δi,
respectively. The MOVER for a single delta-lognormal mean presented by Hasan &
Krishnamoorthy (2018), the MOVER for ϑi is given by

Lϑi = exp

{
lnδ̂∗i + (µ̂i+ σ̂

2
i )−

√(
lnδ̂∗i − llnδ∗i

)2
+

(
µ̂i+ σ̂

2
i − lµi+σ

2
i

)2}

Uϑi = exp

{
lnδ̂∗i + (µ̂i+ σ̂

2
i )−

√(
lnδ̂∗i −ulnδ∗i

)2
+

(
µ̂i+ σ̂

2
i −uµi+σ

2
i

)2}
(23)

where

(llnδ∗i ,ulnδ∗i ) = ln

δ̂∗i + T 2
i,ζ /2

2ni
∓Ti,1−ζ/2

√
δ̂∗i (1− δ̂

∗

i )
ni

+
T 2
i,ζ /2

4n2i

/(1+T 2
i,ζ /2/ni)
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(lµi+σ
2
i
,uµi+σ

2
i
)=

(µ̂i+ σ̂
2
i /2)−


(
Zi,ζ /2σ̂

2
i

ni(1)

)2

+
σ̂ 4
i

4

(
1−

ni(1)−1
χ2
i,1−ζ/2,ni(1)−1

)2


1/2

,

(µ̂i+ σ̂
2
i /2)+


(
Zi,ζ /2σ̂

2
i

ni(1)

)2

+
σ̂ 4
i

4

(
ni(1)−1

χ2
i,ζ /2,ni(1)−1

−1

)2


1/2
. (24)

Note that bothTi= (ni(1)−niδ∗)/
√
niδ∗i (1−δ

∗

i )
d
∼N (0,1), andZi= (µ̂i−µi)/

√
σ̂ 2
i /ni(1)

d
∼

N (0,1) are independent random variables. According to Krishnamoorthy & Oral (2015),
the 100(1−ζ )% MOVER interval for ϑ is

CI (mover)
ϑ = [Lϑ ,Uϑ ]

=


∑k

i=1wiϑ̂
(Ait )
i∑k

i=1wi
−

√√√√√∑k
i=1w

2
i

(
ϑ̂
(Ait )
i −Lϑi

)2
∑k

i=1w
2
i

,

∑k
i=1wiϑ̂

(Ait )
i∑k

i=1wi
−

√√√√√∑k
i=1w

2
i

(
ϑ̂
(Ait )
i −Uϑi

)2
∑k

i=1w
2
i

 (25)

where wi = 1/V̂ar
[
ϑ̂
(Ait )
i

]
. ‘Algorithm 3’ describes the steps to construct the MOVER

interval.

Algorithm 3: MOVER
(1) Compute CIs for ln δ∗i and µi+σ

2
i are (llnδ∗i ,ulnδ∗i ) and (lµi+σ

2
i
,uµi+σ

2
i
), respectively.

(2) Compute MOVER for ϑi, as given in Eq. (23).
(3) Compute 95%MOVER for ϑ , given in Eq. (25).

Parametric Bootstrap
This is developed from the parametric bootstrap on the common mean of several
heterogeneous log-normal distributions, proposed by Malekzadeh & Kharrati-Kopaei
(2019). The delta-lognormal mean is transformed by taking the logarithm as

µi= ln
(

ϑ

1−δi

)
−
σ 2
i

2
. (26)

The likelihood of (ϑ,σ 2
i ,δi) is

L(ϑ,σ 2
i ,δi|wij)=

k∏
i=1

(
ni
ni(0)

)
δi(1−δi)

1
(2πσ 2

i )
ni(1)/2

exp− 1
2σ 2

i

ni(1)∑
j=1

(
lnwij− ln

(
ϑ

1−δi

)
+
σ 2
i

2

)2
 (27)
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which enables obtaining the maximum likelihood estimates of lnϑ and σ 2
i as

lnϑ̂mle =

∑k
i=1 ŵmle,i

[
µ̂i+ ln(1− δ̂i)

]
+N/2∑k

i=1 ŵmle,i

σ̂ 2
mle,i =−2+2

√
1+ σ̂ 2

i +{µ̂− ln[ϑ̂/(1− δ̂i)]}2 (28)

where ŵmle,i= ni(1)/σ̂ 2
mle,i and lnϑ̂=

∑k
i=1ŵi[µ̂i+ln(1−δ̂i)]+N/2∑k

i=1ŵi
; ŵi= ni(1)/σ̂ 2

i . If δi= 0, then it
becomes the common lognormal mean (see Krishnamoorthy & Oral (2015) for a detailed

explanation). By applying central limit theorem, we obtain
(
lnϑ̂mle− lnϑ

)√∑k
i=1ŵmle,i∼

N (0,1) such that T =
(
lnϑ̂mle− lnϑ

)2∑k
i=1ŵmle,i∼ χ

2
ni(1)−1. It is well-known that µ̂i, σ̂ 2

i

and δ̂i are independent random variables for which µ̂i ∼N (ln
(

ϑ
1−δi

)
−

σ 2
i
2 ,σ

2
i /ni(1)),

(ni(1)− 1)σ̂ 2
i /σ

2
i ∼ χ

2
ni(1)−1 and δ̂i ∼ N (δ,δ(1− δ)/ni) are obtained, respectively. Let

η=µi+σ
2
i /2 so that we can write T =

∑k
i=1ŵmle,i[µ̂i+ln(1−δ̂i)−η−ln(1−δi)]+N/2∑k

i=1ŵmle,i
. It can be

seen that the distribution of T is complicated, possibly depending on nuisance parameters
σ 2
i and δi, but not on lnϑ . Thus, the exact distribution of T is unknown in practice, and so

we propose the PB pivotal variable corresponding to T PB as

T PB
=
(
lnϑ̂PB

mle− lnϑ̂
)2 k∑

i=1

ŵPB
mle,i (29)

where lnϑ̂PB
mle =

∑k
i=1ŵ

PB
mle,i[µ̂PB

i +ln(1−δ̂
PB
i )]+N/2∑k

i=1ŵ
PB
mle,i

, ŵPB
i = ni(1)/σ̂ 2B

i , µ̂PB
i ∼N (µ̂B

i ,σ̂
2B
i /ni(1)),

σ̂ 2PB
i ∼ σ̂ B2

i χ
2
ni(1)−1/(ni(1)− 1) and δ̂PB ∼ beta(nBi(0)+ 0.5,nBi(1)+ 0.5), nBi(0) = niδ̂Bi , and

nBi(1) = ni−nBi(0). Note that µ̂
B
i , σ̂

2B
i , and δ̂Bi are the observed values of µ̂i, σ̂ 2

i , and δ̂i,
respectively, from random sampling with replacement based on the bootstrap approach.
Thus, the 100(1−ζ )% PB interval for ϑ is given by

CI (pb)ϑ = exp

lnϑ̂mle∓

√√√√qPBζ /
k∑

i=1

ŵmle,i

 (30)

where qPBζ denotes the (1−ζ )th percentile of distribution of T PB. The PB interval can be
constructed as shown in ‘Algorithm 4’.

Algorithm 4: PB
(1) Compute µ̂i, σ̂ 2

i and δ̂ leading to obtain lnϑ̂ .
(2) Compute lnϑ̂mle and σ̂ 2

mle,i.
(3) Generate µ̂PB

i , σ̂ 2PB
i and δ̂PBi leading to compute lnϑ̂PB

mle .
(4) Repeat steps 1-3, a number of time m= 2500, compute T PB to obtain qPBζ .
(5) Compute 95%PB interval for ϑ , as given in Eq. (30).

Highest posterior density intervals
The HPD interval is constructed from the posterior distribution, as defined by Box & Tiao
(1973). Note that the prior of ϑi is updated with its likelihood function thereby obtaining
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the posterior distribution based on the Bayesian approach. Recall that Wij ∼1(µi,σ
2
i ,δi),

then the likelihood is given by

P(wij |µi,σ
2
i ,δi)∝

k∏
i=1

δ
ni(0)
i (1−δi)ni(1)(σ 2

i )
−ni(1)/2exp

− 1
2σ 2

i

ni(1)∑
j=1

(
lnwij−µi

)2. (31)

For k individual samples, Miroshnikov, Wei & Conlon (2015) described the pooled
independent sub-posterior samples toward the joint posterior distributionsϑ are combined
using weighted averages as follows:

ϑpost
=

k∑
i=1

wiϑ
post
i

( k∑
i=1

wi

)−1
(32)

where ϑpost
i are the posterior samples of ϑi, for i = 1,2,...,k. The inverse of the

sample variance is used to weight the posterior based on the ith samples is denoted as
wi = Var−1(ϑ̂i|wij). Different priors have been developed for estimating the common
delta-lognormal mean, two of which are derived in the following subsections.

Jeffreys’ rule prior
Harvey & van der Merwe (2012) defined this prior as

P(ϑ)JR∝
k∏

i=1

σ−3i δ
−1/2
i (1−δi)1/2 (33)

which is combined with the likelihood Eq. (34) to obtain the posterior of ϑ as

P(wij |ϑ)∝
k∏

i=1

δ
ni(0)−1/2
i (1−δi)ni(1)+1/2(σ 2

i )
−(ni(1)+3)/2exp

− 1
2σ 2

i

ni(1)∑
j=1

(
lnwij−µi

)2
∝

k∏
i=1

δ
(ni(0)+1/2)−1
i (1−δi)(ni(1)+3/2)−1(σ 2

i )
−

(ni(1)+1)
2 −1

exp
{
−

1
2σ 2

i

[
(ni(1)−1)σ̂ 2

i +ni(1)(µ̂i−µi)2
]}
. (34)

This leads to obtaining the marginal posterior distributions of µi, σ 2
i and δi as

µ
(JR)
i |σ

2
i,JR,wij ∼N

(
µ̂i,σ

2(JR)
i /ni(1)

)
σ
2(JR)
i |wij ∼ IG

(
(ni(1)+1)/2,(ni(1)+1)σ̂ 2

i /2
)

δ
(JR)
i |wij ∼ beta

(
ni(0)+1/2,ni(1)+3/2

)
. (35)

The pooled posterior of ϑ is weighted by its inversely estimated variance as follows:

ϑpost
=

k∑
i=1

w(JR)
i ϑ

(JR)p
i

( k∑
i=1

w(JR)
i

)−1
(36)

where
ϑ
(JR)p
i = (1−δ(JR)i )exp(µ(JR)

i +σ
2(JR)
i /2)
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w(JR)
i =

{
n−1i exp(2µ(JR)

i +σ
2(JR)
i )

[
δ
(JR)
i (1−δ(JR)i )+ 1

2(1−δ
(JR)
i )(2σ 2(JR)

i +σ
4(JR)
i )

]}−1
.

From Eq. (36), the 100(1− ζ )%HPD-based Jeffreys’ rule prior (HPD-JR) for ϑ is
constructed as follows:

Normal-gamma-beta prior
Maneerat, Niwitpong & Niwitpong (2020) proposed a HPD based on the normal-gamma
prior for the ratio of delta-lognormal variances that worked better than the HPD-JR of
Harvey & van der Merwe (2012). Suppose that Y = lnW be a random variable of normal
distribution with mean µ= (µ1,µ2,...,µk) and precision λ= (λ1,λ2,...,λk) where
W ∼ LN (µ,λ) and λi= σ−2i . The HPD-based normal-gamma-beta prior (HPD-NGB) of
ϑ = (µi,λi,δi)′ is defined as

P(ϑ)∝
k∏

i=1

λ−1i [δi(1−δi)]
−1/2 (37)

where (µi,λi) follows a normal-gamma distribution, and δi follows a beta distribution,
denoted as (µi,λi)∼NG(µi,λi|µ,ki(0)= 0,αi(0)=−1/2,βi(0)= 0) and δi∼ beta(1/2,1/2),
respectively. When the the prior Eq. (37) is combined with the likelihood Eq. (34), then
the posterior density of ϑ becomes

P(ϑ |wij)∝
k∏

i=1

δ
ni(0)−1/2
i (1−δi)ni(1)−1/2λ

ni(1)−1
2 −1

i exp

−λi2
ni(1)∑
j=1

(lnwij− µ̂i)2

λ1/2i

exp
{
−
ni(1)λi
2

(µi−µ
∗

i )
2
}

(38)

which can be integrated out to obtain the marginal posterior distributions of µi, λi and δi
as follows:

µ
(NGB)
i |wij ∼ tdf

µi|µ̂i,

ni(1)∑
j=1

(lnwij− µ̂i)2/[ni(1)(ni(1)−1)]


λ
(NGB)
i |wij ∼G

λi|(ni(1)−1)/2, ni(1)∑
j=1

(lnwij− µ̂i)2/2


δ
(NGB)
i |wij ∼ beta

(
ni(0)+1/2,ni(1)+1/2

)
(39)

where df = 2 (ni(1)− 1) and σ 2(NGB)
i |wij ∼ IG

(
σ 2
i |(ni(1)−1)/2,

∑ni(1)
j=1 (lnwij− µ̂i)2/2

)
.

Similarly, the pooled posterior of ϑ is given by

ϑpost
=

k∑
i=1

w(NGB)
i ϑ

(NGB)p
i

( k∑
i=1

w(NGB)
i

)−1
(40)

where ϑ
(NGB)p
i = (1 − δ

(NGB)
i )exp(µ(NGB)

i + σ
2(NGB)
i /2)w(NGB)

i

=

{
n−1i exp(2µ(NGB)

i +σ
2(NGB)
i )

[
δ
(NGB)
i (1−δ(NGB)i ) 12(1−δ

(NGB)
i )(2σ 2(NGB)

i +σ
4(NGB)
i )

]}−1
.
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Table 1 Parameter settings for sample cases k = 2,5,10.

Scenarios (n1,...,nk) (δ1,...,δk) (σ2
1,...,σ

2
k )

k= 2
1–9 (302) (0.1,0.2), (0.2,0.5), (0.3,0.7) (1,2), (2,4), (3,5)
10–18 (30,50) (0.1,0.2), (0.2,0.5), (0.3,0.7) (1,2), (2,4), (3,5)
19–27 (502) (0.1,0.2), (0.2,0.5), (0.3,0.7) (1,2), (2,4), (3,5)
28–36 (50,100) (0.1,0.2), (0.2,0.5), (0.3,0.7) (1,2), (2,4), (3,5)
37–45 (1002) (0.1,0.2), (0.2,0.5), (0.3,0.7) (1,2), (2,4), (3,5)

k= 5
46–54 (305) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
55–63 (302,503) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
64–72 (302,502,100) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
73–81 (30,502,1002) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
82–90 (505) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
91–99 (502,1003) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)
100–108 (1005) (0.05,0.12,0.22), (0.22,0.43), (0.52,0.73) (12,23), (22,33), (32,53)

k= 10
109–114 (305,505) (0.15,0.25), (0.25,0.55) (15,25), (25,45), (35,55)
115–120 (303,503,1004) (0.15,0.25), (0.25,0.55) (15,25), (25,45), (35,55)
121–126 (505,1005) (0.15,0.25), (0.25,0.55) (15,25), (25,45), (35,55)

Notes.
Note: (305) stands for (30,30,30,30,30).

Hence, the 100(1−ζ )%HPD-HGB for ϑ is constructed in Eq. (40). ‘Algorithm 5’ details
the steps to construct the HPD-JR and HPD-NGB.

Algorithm 5: HPD-JR and HPD-NGB
(1) Compute µ̂i, σ̂ 2

i and δ̂.
(2) Generate the posterior densities of µi, σ 2

i and δi based-Jeffreys’ rule (JR) and normal-
gamma-beta (NGB) priors, as given in Eq. (35) and Eq. (39), respectively.

(3) Compute the pooled posterior of ϑ based on JR and NGB priors, as given in Eq. (36)
and Eq. (40), respectively.

(4) Compute 95%HPD-JR and HPD-NGB for ϑ , defined by Box & Tiao (1973).

SIMULATION STUDIES AND RESULTS
The performances of the CIs were assessed by comparing their coverage probabilities (CPs)
and average length (ALs) using Monte Carlo simulation. The best-performing CI is the
one where the CP is closest to or greater than the nominal confidence level 1−ζ while also
having an AL with the narrowest width. The CIs for the common delta-lognormal mean
constructed using FGCI, LS, MOVER, PB, HPD-JR, and HPD-NGB were assessed in the
study, the parameter settings for which are provided in Table 1. The number of generated
random samples was fixed atM = 5000. For FGCI, the number of FGPQs wasQ= 2500 for
each set of 5,000 random samples. ‘Algorithm 6’ shows the computational steps to estimate
the CP and AL performances of all of the methods.
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Table 2 Performance measures of 95%CIs for ϑ: 2 sample cases.

Scenarios CP AL

FG LS MO PB HJ HN FG LS MO PB HJ HN

k= 2
1 0.959 0.897 0.967 0.994 0.916 0.941 1.556 1.296 2.005 2.324 1.353 1.436
2 0.958 0.857 0.947 0.996 0.924 0.941 5.169 3.770 7.287 8.631 4.186 4.335
3 0.963 0.821 0.959 0.996 0.919 0.932 13.088 8.675 23.312 22.883 9.905 10.220
4 0.962 0.886 0.978 0.995 0.917 0.939 1.487 1.211 2.181 2.155 1.247 1.386
5 0.953 0.832 0.962 0.995 0.913 0.922 4.875 3.487 9.881 7.818 3.811 4.066
6 0.951 0.793 0.971 0.991 0.901 0.912 12.311 7.740 37.615 21.129 8.875 9.378
7 0.961 0.829 0.972 0.982 0.920 0.940 1.511 1.095 3.968 2.173 1.224 1.406
8 0.950 0.778 0.974 0.995 0.900 0.911 4.821 3.123 293.620 7.649 3.566 3.916
9 0.939 0.725 0.973 0.988 0.866 0.887 13.159 7.067 8.0e4 23.632 8.680 9.419
10 0.960 0.900 0.965 0.992 0.915 0.941 1.503 1.249 1.936 2.225 1.362 1.395
11 0.961 0.848 0.941 0.992 0.924 0.940 5.128 3.712 6.765 8.667 4.298 4.368
12 0.965 0.819 0.952 0.998 0.919 0.931 12.297 8.382 20.057 21.597 9.819 9.894
13 0.960 0.896 0.977 0.992 0.917 0.942 1.366 1.147 1.909 2.004 1.203 1.271
14 0.961 0.851 0.964 0.996 0.916 0.931 4.593 3.422 7.236 7.458 3.761 3.889
15 0.949 0.790 0.958 0.994 0.894 0.905 11.116 7.517 22.293 19.310 8.507 8.718
16 0.963 0.860 0.972 0.974 0.928 0.943 1.354 1.033 2.141 1.928 1.155 1.257
17 0.952 0.803 0.976 0.992 0.900 0.917 4.397 3.048 10.772 6.889 3.418 3.630
18 0.940 0.737 0.968 0.989 0.872 0.889 11.065 6.663 43.755 19.011 7.903 8.247
19 0.961 0.914 0.966 0.992 0.921 0.946 1.153 1.009 1.382 1.696 1.043 1.076
20 0.965 0.895 0.946 0.991 0.938 0.949 3.668 2.924 4.309 5.981 3.178 3.229
21 0.962 0.863 0.952 0.996 0.930 0.940 8.747 6.665 11.805 14.651 7.272 7.395
22 0.958 0.910 0.978 0.985 0.919 0.944 1.091 0.945 1.414 1.555 0.945 1.031
23 0.965 0.883 0.969 0.996 0.926 0.937 3.336 2.695 4.578 5.204 2.811 2.950
24 0.961 0.840 0.972 0.995 0.921 0.928 7.887 5.987 13.164 12.757 6.338 6.605
25 0.969 0.868 0.980 0.958 0.930 0.953 1.120 0.866 1.610 1.503 0.937 1.070
26 0.954 0.839 0.970 0.997 0.916 0.926 3.208 2.433 6.544 4.735 2.621 2.830
27 0.946 0.773 0.970 0.992 0.893 0.903 7.803 5.443 26.105 12.382 6.011 6.376
28 0.958 0.912 0.972 0.979 0.916 0.947 1.119 0.952 1.397 1.615 1.054 1.051
29 0.956 0.872 0.921 0.958 0.927 0.943 3.745 2.836 4.238 6.098 3.338 3.330
30 0.961 0.846 0.937 0.987 0.925 0.936 8.488 6.274 10.833 13.991 7.332 7.320
31 0.962 0.927 0.985 0.978 0.919 0.949 0.984 0.876 1.322 1.433 0.908 0.929
32 0.960 0.880 0.958 0.992 0.925 0.940 3.214 2.618 4.169 5.150 2.818 2.860
33 0.958 0.838 0.960 0.994 0.910 0.925 7.360 5.744 10.824 12.105 6.256 6.279
34 0.963 0.888 0.977 0.922 0.938 0.954 0.975 0.785 1.322 1.352 0.876 0.922
35 0.958 0.860 0.971 0.995 0.917 0.929 2.915 2.343 4.321 4.424 2.486 2.586
36 0.951 0.820 0.973 0.995 0.901 0.916 6.726 5.103 11.951 10.823 5.511 5.626
37 0.957 0.935 0.960 0.970 0.927 0.948 0.802 0.722 0.923 1.168 0.743 0.753
38 0.955 0.916 0.926 0.953 0.942 0.948 2.442 2.044 2.541 3.935 2.220 2.219
39 0.957 0.888 0.939 0.981 0.937 0.945 5.608 4.594 6.295 9.049 4.984 4.998

(continued on next page)
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Table 2 (continued)

Scenarios CP AL

FG LS MO PB HJ HN FG LS MO PB HJ HN

40 0.961 0.942 0.975 0.957 0.924 0.954 0.740 0.679 0.911 1.062 0.659 0.702
41 0.961 0.920 0.960 0.988 0.933 0.950 2.199 1.925 2.558 3.401 1.958 2.012
42 0.955 0.875 0.960 0.994 0.925 0.931 4.976 4.209 6.298 7.813 4.318 4.439
43 0.967 0.909 0.980 0.863 0.937 0.960 0.773 0.625 0.972 1.012 0.659 0.743
44 0.960 0.896 0.970 0.993 0.928 0.939 2.076 1.750 2.684 3.013 1.788 1.921
45 0.952 0.835 0.970 0.996 0.908 0.914 4.683 3.786 7.007 7.008 3.952 4.182

Notes.
FG, fiducial generalized confidence interval; MO, method of variance estimates; HJ, HPD-based Jeffreys’ rule prior; HPD-JR, HN, HPD-based normal-gamma-beta prior.
Bold denoted as the best-performing method each case.

Figure 1 CP performances of 95%CIs for ϑ: 2 sample cases in the following cases (sample sizes,
variances): (A) (302,1,2), (B) (30,30,2,4), (C) (30,30,3,5), (D) (30,50,1,2), (E) (30,50,2,4), (F)
(30,50,3,5), (G) (502,1,2), (H) (502,2,4), (I) (502,3,5), (J) (50,100,1,2), (K) (50,100,2,4), (L)
(50,100,3,5), (M) (1002,1,2), (N) (1002,2,4), (O) (1002,3,5).

Full-size DOI: 10.7717/peerj.10758/fig-1

Algorithm 6: Comparison of CPs and ALs for all CIs
(1) For g = 1 to M . Generate wij ∼1(µi,σ

2
i ,δi).

(2) Compute the unbiased estimates µ̂i, σ̂ 2
i and δ̂.

(3) Compute the 95%CIs for ϑ based on FGCI, LS, MOVER, PB and the HPDs via
Algorithm 1, 2, 3, 4 and 5, respectively.

(4) Let Ag = 1 if ϑ falls within the intervals of FGCI, LS, MOVER, PB or the HPDs, else
Ag = 0.
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Figure 2 CP performances of 95%CIs for ϑ: 5 sample cases in the following cases (sample sizes,
variances): (A) (305,12,23), (B) (305,22,33), (C) (305,32,53), (D) (302,503,12,23), (E) (302,503,22,33),
(F) (302,503,32,53), (G) (302,503,100,12,23), (H) (302,503,100,22,33), (I) (302,503,100,32,53),
(J) (30,502,1002,12,23), (K) (30,502,1002,12,23), (L) (30,502,1002,12,23), (M) (505,12,23), (N)
(505,22,33), (O) (505,32,53), (P) (502,1003,12,23), (Q) (502,1003,22,33), (R) (502,1003,32,53), (S)
(1005,12,23), (T) (1005,22,33), (U) (1005,32,53).

Full-size DOI: 10.7717/peerj.10758/fig-2

(5) The CP and AL for each method are obtained by CP = (1/M )
∑M

g=1Ag and
AL= (U −L)/M , respectively, where U and L are the upper and lower confidence
limits, respectively. (end g loop)
The numerical results for the CI performances are presented in terms of CP and

AL for various sample cases. For k = 2 (Table 2 and Fig. 1), FGCI performed well for
small-to-moderate sample sizes, as well as for large σ 2

i and a moderate-to-large sample size.
HPD-NGB attained stable and the best CP and AL values for small σ 2

i and a moderate-
to-large sample size. MOVER and PB attained correct CPs but wider ALs than the other
methods whereas LS and HPD-JR had lower CPs and narrower ALs. For k = 5 (Table 3
and Fig. 2), there were only two methods producing better CPs than the other methods in
the various situations: MOVER (small δi and σ 2

i ) and PB (large δi and σ 2
i ). Moreover, the

results were similar for k= 10 (Table 4 and Fig. 3).
As previously mentioned, our findings show that FGCI works well for small sample case

because the FGPQ of σ 2
i might contain some weak points that affect the FGPQ of µi as the

sample case increases. For large sample sizes, MOVER was the best method for small σ 2,
which is possibly caused by the CI for µi+σ

2
i . Meanwhile, the next best one was PB, which

has the strong point of using a resampling technique to collect information about several
populations even when the variance σ 2 is large.
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Table 3 Performance measures of 95% CIs for ϑ: 5 sample cases.

Scenarios CP AL

FG LS MO PB HJ HN FG LS MO PB HJ HN

k= 5
46 0.885 0.790 0.988 0.989 0.757 0.846 0.963 0.819 1.794 1.532 0.848 0.956
47 0.789 0.627 0.973 0.996 0.674 0.715 2.240 1.908 4.982 3.897 1.991 2.176
48 0.840 0.613 0.953 0.997 0.723 0.746 5.325 4.529 13.769 12.250 4.744 4.870
49 0.894 0.800 0.993 0.978 0.779 0.864 0.900 0.765 1.825 1.439 0.773 0.905
50 0.783 0.623 0.972 0.998 0.680 0.711 2.008 1.711 5.203 3.608 1.750 1.955
51 0.797 0.580 0.959 0.996 0.680 0.701 4.700 4.066 16.626 11.353 4.118 4.287
52 0.893 0.735 0.989 0.896 0.816 0.853 0.753 0.589 2.849 1.433 0.636 0.764
53 0.768 0.517 0.977 0.997 0.666 0.676 1.474 1.168 19.967 3.364 1.282 1.406
54 0.742 0.467 0.983 0.996 0.624 0.629 3.250 2.654 1.5e4 11.238 2.817 2.855
55 0.884 0.779 0.988 0.979 0.743 0.846 0.940 0.777 1.739 1.434 0.857 0.930
56 0.806 0.645 0.973 0.995 0.681 0.740 2.204 1.822 4.586 3.561 2.045 2.141
57 0.858 0.622 0.949 0.986 0.725 0.771 5.620 4.542 12.575 12.073 5.122 5.162
58 0.901 0.827 0.995 0.962 0.770 0.870 0.845 0.728 1.699 1.326 0.771 0.841
59 0.793 0.644 0.978 0.997 0.675 0.726 1.904 1.629 4.351 3.262 1.750 1.850
60 0.825 0.605 0.952 0.997 0.710 0.734 4.753 4.058 12.745 10.793 4.373 4.353
61 0.905 0.785 0.992 0.822 0.809 0.865 0.685 0.564 1.632 1.219 0.620 0.686
62 0.786 0.578 0.969 0.993 0.683 0.704 1.368 1.142 4.477 2.775 1.260 1.309
63 0.755 0.496 0.963 0.998 0.639 0.637 3.177 2.714 18.995 8.911 2.884 2.822
64 0.892 0.787 0.991 0.970 0.737 0.858 0.928 0.751 1.740 1.364 0.872 0.919
65 0.822 0.647 0.975 0.996 0.673 0.763 2.168 1.738 4.371 3.326 2.047 2.114
66 0.852 0.593 0.943 0.981 0.715 0.767 5.710 4.413 12.195 11.422 5.267 5.278
67 0.905 0.827 0.996 0.949 0.768 0.873 0.816 0.697 1.637 1.256 0.770 0.811
68 0.801 0.654 0.979 0.995 0.683 0.737 1.839 1.549 4.069 3.016 1.753 1.797
69 0.821 0.595 0.947 0.994 0.693 0.733 4.806 3.976 12.174 10.326 4.431 4.432
70 0.917 0.803 0.994 0.775 0.817 0.886 0.650 0.539 1.499 1.133 0.616 0.650
71 0.804 0.612 0.973 0.992 0.692 0.730 1.310 1.094 3.962 2.543 1.236 1.262
72 0.756 0.502 0.958 0.997 0.631 0.646 3.158 2.695 16.604 8.356 2.888 2.835
73 0.924 0.832 0.994 0.942 0.772 0.893 0.822 0.673 1.505 1.186 0.856 0.808
74 0.853 0.699 0.985 0.990 0.696 0.798 1.971 1.589 3.823 2.899 2.000 1.923
75 0.883 0.652 0.952 0.945 0.755 0.817 5.330 4.072 9.997 9.911 5.224 4.974
76 0.924 0.857 0.997 0.913 0.771 0.901 0.723 0.626 1.418 1.088 0.746 0.715
77 0.826 0.695 0.986 0.989 0.689 0.767 1.670 1.406 3.476 2.610 1.692 1.632
78 0.854 0.638 0.955 0.984 0.718 0.771 4.456 3.628 9.715 8.788 4.311 4.160
79 0.930 0.846 0.998 0.683 0.811 0.900 0.581 0.486 1.253 0.964 0.586 0.580
80 0.830 0.658 0.981 0.980 0.705 0.762 1.215 1.019 3.179 2.168 1.225 1.181
81 0.788 0.555 0.967 0.997 0.675 0.689 2.992 2.554 11.873 7.026 2.927 2.738
82 0.915 0.844 0.993 0.964 0.788 0.889 0.769 0.662 1.337 1.158 0.692 0.753

(continued on next page)
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Table 3 (continued)

Scenarios CP AL

FG LS MO PB HJ HN FG LS MO PB HJ HN

83 0.858 0.735 0.982 0.993 0.741 0.804 1.882 1.599 3.605 2.920 1.698 1.825
84 0.886 0.705 0.969 0.981 0.782 0.827 4.650 3.895 8.767 9.068 4.208 4.335
85 0.925 0.865 0.998 0.939 0.803 0.897 0.707 0.618 1.315 1.068 0.618 0.700
86 0.834 0.705 0.987 0.994 0.735 0.775 1.683 1.439 3.493 2.683 1.482 1.642
87 0.855 0.684 0.968 0.994 0.751 0.783 4.027 3.489 8.924 8.068 3.613 3.766
88 0.929 0.824 0.994 0.677 0.835 0.903 0.611 0.495 1.322 0.993 0.515 0.616
89 0.823 0.627 0.981 0.985 0.729 0.749 1.284 1.045 3.692 2.296 1.121 1.250
90 0.799 0.578 0.972 0.997 0.699 0.705 2.875 2.453 13.603 6.644 2.519 2.641
91 0.927 0.831 0.997 0.906 0.777 0.898 0.753 0.614 1.389 1.064 0.703 0.735
92 0.871 0.731 0.988 0.986 0.720 0.820 1.821 1.466 3.459 2.601 1.721 1.769
93 0.905 0.693 0.957 0.897 0.791 0.852 5.015 3.768 8.461 8.829 4.621 4.690
94 0.931 0.879 0.999 0.873 0.781 0.909 0.651 0.571 1.279 0.972 0.608 0.639
95 0.847 0.738 0.991 0.986 0.719 0.797 1.541 1.313 3.117 2.351 1.447 1.499
96 0.875 0.679 0.966 0.969 0.760 0.806 4.125 3.374 8.002 7.707 3.808 3.865
97 0.935 0.866 0.998 0.541 0.832 0.911 0.529 0.450 1.097 0.856 0.493 0.523
98 0.848 0.697 0.986 0.971 0.735 0.782 1.126 0.956 2.572 1.916 1.060 1.091
99 0.817 0.613 0.963 0.994 0.698 0.725 2.784 2.418 7.510 6.042 2.565 2.571
100 0.941 0.888 0.998 0.863 0.813 0.920 0.557 0.484 0.954 0.806 0.510 0.536
101 0.906 0.827 0.995 0.973 0.799 0.875 1.413 1.201 2.515 2.029 1.288 1.361
102 0.929 0.790 0.975 0.861 0.845 0.889 3.639 2.946 5.529 6.174 3.365 3.428
103 0.948 0.923 1.000 0.801 0.816 0.931 0.501 0.456 0.909 0.741 0.452 0.487
104 0.888 0.816 0.996 0.978 0.784 0.853 1.253 1.095 2.373 1.852 1.121 1.216
105 0.905 0.775 0.981 0.953 0.822 0.859 3.147 2.678 5.326 5.441 2.893 2.975
106 0.955 0.907 0.999 0.289 0.852 0.943 0.438 0.372 0.838 0.668 0.373 0.433
107 0.881 0.761 0.994 0.939 0.781 0.833 0.992 0.823 2.044 1.536 0.863 0.972
108 0.868 0.722 0.984 0.987 0.781 0.805 2.331 2.005 5.072 4.308 2.088 2.208

Notes.
FG, fiducial generalized confidence interval; MO, method of variance estimates; HJ, HPD-based Jeffreys’ rule prior; HPD-JR, HN, HPD-based normal-gamma-beta prior.
Bold denoted as the best-performing method each case.

AN EMPIRICAL APPLICATION
Daily rainfall data obtained from the ThaiMeteorological Department (TMD)were divided
into the northern, northeastern, central, and eastern regions, while the southern region
was a combination of the data from the southeastern and southwestern shores. Due to
the differences in the climate patterns and meteorological conditions in the five regions,
we focused was on estimating the daily rainfall data in these regions by treating them as
separate sets of observations rather than using the average rainfall for the whole of Thailand
by pooling them and treating them as a single population. The daily rainfall amounts were
recorded on August 5 and 9, 2019, which is in the middle of the rainy season (mid-May
to mid-October) when rice farming is conducted in Thailand. Entries with rainfall of less
than 0.1 mm were considered as zero records.
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Figure 3 CP performances of 95%CIs for ϑ: 10 sample cases in the following cases (sample sizes,
variances): (A) (305,505,12,25), (B) (305,505,25,45), (C) (305,505,35,55), (D) (303,503,1004,12,25),
(E) (303,503,1004,25,45), (F) (303,503,1004,35,55), (G) (505,1005,15,25), (H) (505,1005,25,45), (I)
(505,1005,32,53).

Full-size DOI: 10.7717/peerj.10758/fig-3

Tables 5–6 contain the daily rainfall records for the five regions, while Figs. 4–5 show
histogram plots of rainfall observations, and Figs. 6–7 exhibit normal Q-Q plots of the
log-positive rainfall data on August 5 and 9, 2019, respectively. It can be seen that the
data for all of the regions contained zero observations. After that, the fitted distribution
of the positive observations was checked using the Akaike information criterion (AIC),
as reported in Table 7. It can be concluded that the rainfall data in all of the regions on
August 5 and 9, 2019 follow a delta-lognormal distribution. All data sets and R code are
available in the Supplemental Information. The summary statistics are reported in Table 8.
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Table 4 Performance measures of 95% CIs for ϑ: 10 sample cases.

CP AL

Scenarios FG LS MO PB HJ HN FG LS MO PB HJ HN

k= 10
109 0.728 0.675 0.998 0.927 0.566 0.692 0.612 0.501 1.554 0.932 0.545 0.623
110 0.661 0.500 0.979 0.891 0.570 0.588 1.644 1.291 3.867 3.278 1.500 1.637
111 0.504 0.352 0.950 0.978 0.481 0.404 3.159 2.561 8.645 7.286 2.996 3.076
112 0.720 0.692 0.999 0.904 0.587 0.690 0.557 0.459 1.519 0.832 0.483 0.574
113 0.532 0.452 0.976 0.985 0.512 0.462 1.393 1.159 3.853 2.682 1.260 1.404
114 0.361 0.290 0.955 0.998 0.403 0.274 2.556 2.218 8.570 5.943 2.411 2.505
115 0.789 0.723 0.999 0.808 0.561 0.762 0.554 0.440 1.416 0.789 0.546 0.560
116 0.716 0.524 0.985 0.578 0.590 0.653 1.635 1.180 3.478 2.915 1.559 1.624
117 0.593 0.406 0.964 0.872 0.519 0.507 3.289 2.406 7.754 6.380 3.189 3.214
118 0.782 0.773 1.000 0.780 0.586 0.758 0.477 0.404 1.317 0.696 0.474 0.483
119 0.626 0.514 0.988 0.947 0.535 0.561 1.337 1.076 3.348 2.360 1.284 1.341
120 0.447 0.347 0.965 0.992 0.450 0.355 2.570 2.108 7.290 5.180 2.506 2.531
121 0.826 0.773 1.000 0.736 0.592 0.796 0.488 0.399 1.266 0.695 0.444 0.486
122 0.774 0.620 0.994 0.438 0.647 0.720 1.460 1.086 3.072 2.512 1.328 1.438
123 0.659 0.460 0.977 0.798 0.553 0.577 3.002 2.236 6.597 5.502 2.775 2.921
124 0.828 0.826 1.000 0.708 0.606 0.802 0.426 0.368 1.187 0.615 0.387 0.427
125 0.688 0.595 0.995 0.912 0.591 0.627 1.205 0.992 2.912 2.039 1.094 1.197
126 0.520 0.426 0.979 0.984 0.486 0.439 2.390 1.989 6.222 4.479 2.224 2.344

Notes.
FG, fiducial generalized confidence interval; MO, method of variance estimates recovery; HJ, HPD-based Jeffreys’ rule prior; HPD-JR, HN, HPD-based normal-gamma-beta
prior.
Bold denoted as the best-performing method each case.

Table 5 Daily rainfall data in five Thailand’s regions on August 5, 2019.

Northern Northeastern Central Eastern Southern

3 0 3 0 0 49.5 0 0 0 2.9 3.2 0 4.1 0 0 2.7
2.6 5 0 40 1.5 10.5 0 0 0 0.2 0 3.2 0 0 0 0
1 23.8 0 3.5 18.5 60.4 4 0 11 0.3 0 10.4 11.5 3.5 0 0
3.6 16 0 0 42 12.7 0 0 0 2.5 4.7 1.1 2.5 13.6 0 0
0 11.5 0 12 9.1 6.8 0 20.3 0 0.4 19.3 0.2 9.7 0 0.2 0
13.2 1.2 0 15 6 69.3 0 0 0 0.4 3.1 4.3 10.4 0 0 0
22.4 10.3 0 0 7.5 36.5 0 2.4 0.3 1.1 2.9 0 9.6 0 0 0
1.4 1.7 0 1.5 0 8.6 0 0 1 0 5.7 0 19 0 0 0
18.3 5.5 0 0.7 6.3 0 0 0 0 1.3 0.9 0 8.3 0 0 0
0 7.3 0 0 0 0 0 0 0 0.1 0 0 0 4.8 0 6.2
15.5 24.3 1.7 3 0.4 0 0 0 0 2.9 0 0.2 0 0 0 0
0 27.2 2.3 0 0 3.8 0 0 0 0 2.6 0.1 0 0 0 0
0 12.6 0.5 0 0 0 0 3.2 0 1 17 62.8 0 0 0 6.1
0 22.7 3.9 0 0 0 0 0 0 4.7 0 36.7 17.8 0 0 0

(continued on next page)
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Table 5 (continued)

Northern Northeastern Central Eastern Southern

9.8 0 6.9 29.4 1.8 0 0 0 0 0.5 3.5 15.6 12.3 0 0 0
24.3 2.6 2.2 48 0 0 0 0 0 5 0 50 2.5 0 0 0
24.6 0 3.2 0 0 0 6 0 0 2.5 0 35.5 0 0 0 0.3
8.8 3.2 5.3 70.8 14.3 0 0 0 0 0 0 35 0.9 0 0 0
0 2.6 11 3.5 0 0 0 0 0 0 5.1 5.9 0 0 0 0
19.8 2 0.6 14.2 0 0 0 4.8 0 0 60.4 0 2.6 0 0 0
5 8 0 7 0 0 2.3 0 0 0 6.9 0 0 0 0 0
12.3 1.9 1 0 0 21.5 0 0 0 6.6 3 3 0 0 0 0
8.1 0.8 2.4 0 0 2.5 1 0 0 0 15.1 60.4 2 0 0 0
4.8 2.2 13.2 0 0 0 0 0 0 9.5 6 60 0 0 0 0
5.8 6.5 0.4 0 0 13 0 0 5.1 13.4 76 0 0 0 0
17 0 0 10.8 0 26.2 0 0 12.5 6.2 79.7 0 0 0 0
25.1 2.2 1.3 0 10.1 2.2 4.6 5.4 0 65.7 3.5 0 0
8.3 0 10 6.3 0 3 0 0 0 108 0 0 36.1
22.9 4.3 2.5 0 4.8 10.5 10 0 3.2 10.5 0 0 41.8
26.9 0.2 4.6 4 0 0 0 12 0 0 0 30
0 0 0 19.3 0 0 9.5 0 2.2 0 0 0

Notes.
Source: Thai Meteorological Department: https://www.tmd.go.th/services/weekly report.php.

Table 6 Daily rainfall data in five Thailand’s regions on August 9, 2019.

Northern Northeastern Central Eastern Southern

9.5 0 25.3 20 6.6 8.4 0 67 0 39.6 0 0 27.9 4.1 0.4 114.6
4.9 10 25.5 14.5 16.9 0.8 2.9 65.4 0 25 0 0 0 9 3.8 0
0 21.6 24 3 10 20.2 0 21 0 0 0 26.5 3.4 27.3 0.6 0
4.7 15 8 28 48.2 0 14.3 6.4 7.2 0 0 36.4 0 6.5 0 0
0 15.5 0 27 6.5 0.5 0 0 3.5 29.7 0.1 0 0.8 3.5 10.8 0
63.2 14 20 50 4.8 5.3 6 52 0 0 0.3 4.5 37.9 0 5 18.2
9.6 8.5 0 24 25 16.7 0 45 40.5 3.1 0.5 0 32.4 0 12.2 40.4
10.7 11.5 0 30 0 45.2 28 41.4 25.8 8.2 31.5 0.5 33.8 0 3.6 0
13 17.4 0 22 0 0 0 14.3 30.4 3.2 8.2 0.7 15.8 0 0 0
0 15.6 0 16 3.2 0.6 0 45 0 7.1 0 12.3 0 3.6 8.8 10.8
0 31.6 33.8 0 44 0 0 27 0 0 0 0.5 0 3 0 0
0 20.6 33.7 0 0 3.1 27.6 0.2 0 3.2 0 1.9 0 1 0 0
0 31.1 15.1 0 9.3 33.3 33 30 0 4.2 0 66.4 0 3.7 6.2 35
0 16.3 18.5 0 0 6 0 0 0 5.7 0 93.6 11.5 15.6 0 0
2.8 0 44.8 39.7 20 0 0 0 8.3 30 0 68.7 1.7 11.2 3.8 33.5
11.3 33.1 37.5 9.3 0 13.2 0 0 0 4 0 40 1.2 24 0 57
0.6 29.2 0 0 4.8 0 0 0 0 0 0 65 21.2 0 0 10.5
36.1 11.2 47 2.1 0 21 0 0 0 0 0 63.7 0 0 0 0
0 14.4 20 0 0 0 0 1 36.1 0 0 9.2 30 10.2 0.2 0

(continued on next page)
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Table 6 (continued)

Northern Northeastern Central Eastern Southern

2.6 60 30.8 46.7 0 8.4 15 0 0 0 1.2 0 5.1 0 0 0
5 42.3 30 10.5 0 0 0 0 12.5 0 0 0 2.5 0 0 30.8
13.4 9.5 1 0 56.5 0 0 2.5 0 14.7 0.1 11 2.4 0 0.4 10.7
12.3 34.5 1.2 41 39.2 0.5 0 0 0 0 1 69.6 5 0 0 0
25.8 36.5 56.3 10.3 0 4.5 25.7 9.5 0 0 3 89.6 1.7 0 0 15.9
30.2 9.7 0 1.2 6.4 16.2 41.4 0 0 0.5 160 0 0 2.2 0
16.4 0 6 23.9 5.3 0 41.6 0 1.6 34.3 0 0 0
6 0 0 22.2 0 3.5 53.8 0 0 0 2.1 0 0.6
33.1 7.6 5.3 24.1 9.8 20 48.5 0 0 25 0 0 76.6
16.4 9.6 7.2 38 0 0 78.5 2.1 0 19.5 10.5 7 121.6
19.8 9.3 24.6 9 9.7 0 12.7 0 0 15.3 10.6 60
0 0 30 9.2 4.5 1.2 80.9 0 0 0 3.6 0

Notes.
Source: Thai Meteorological Department: https://www.tmd.go.th/services/weekly_report.php.

Figure 4 Histogram plots of daily rainfall data in five Thailand’s regions on August 5, 2019: (A) North-
ern (B) Northeastern (C) Central (D) Eastern (E) Southern.

Full-size DOI: 10.7717/peerj.10758/fig-4
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Figure 5 Histogram plots of daily rainfall data in five Thailand’s regions on August 9, 2019: (A) North-
ern (B) Northeastern (C) Central (D) Eastern (E) Southern.

Full-size DOI: 10.7717/peerj.10758/fig-5

In the approximation of the daily rainfall amounts in the five regions, the estimated
common means were 4.4506 and 13.2621 mm/day on August 5 and 9, 2019, respectively.
The computed 95% CIs of the common rainfall mean are reported in Table 9. Under the
rain criteria issued by the TMD (Department, 2018), it can be interpreted that the daily
rainfall in Thailand on August 5, 2019, was light (0.1–10.0 mm), while it was moderate
(10.1–35.0 mm) on August 9, 2019. These results confirm the simulation results for k = 5
in the previous section.

DISCUSSION
It can be seen that for MOVER and PB developed from the studies of Krishnamoorthy &
Oral (2015) andMalekzadeh & Kharrati-Kopaei (2019), respectively, the simulation results
are similar to both of these studies provided that the zero observations are omitted. CIs
for the common mean have been investigated in both normal and lognormal distributions
(Fairweather, 1972; Jordan & Krishnamoorthy, 1996; Krishnamoorthy & Mathew, 2003; Lin
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Figure 6 Normal Q-Q plots of log-positive daily rainfall data in five Thailand’s regions on August 5,
2019: (A) Northern (B) Northeastern (C) Central (D) Eastern (E) Southern.

Full-size DOI: 10.7717/peerj.10758/fig-6

& Lee, 2005; Tian & Wu, 2007; Krishnamoorthy & Oral, 2015). However, the common
mean of delta-lognormal populations is especially of interest because it can be used to
fit the data from real-world situations such as investigating medical costs (Zou, Taleban
& Huo, 2009; Tierney et al., 2003; Tian, 2005), analyzing airborne contaminants (Owen &
DeRouen, 1980; Tian, 2005) and measuring fish abundance (Fletcher, 2008; Wu & Hsieh,
2014). Furthermore, it is possible that some extreme rainfall data also fulfill the assumptions
of a delta-lognormal distribution. Note that such natural disasters as floods and landslides
have been caused by the extreme rainfall events, as evidenced in many country around the
world: Europe (e.g., Northern England, Southern Scotland and IrelandOtto & Oldenborgh,
2017), Asia (e.g., Japan Oldenborgh, 2018) and North America (e.g., Southeast Texas
Oldenborgh et al., 2019). Our findings show that some of the methods studied had CPs that
were too low or too high for large sample cases, a shortcoming that should be addressed in
future work.
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Figure 7 Normal Q-Q plots of log-positive daily rainfall data in five Thailand’s regions on August 9,
2019: (A) Northern (B) Northeastern (C) Central (D) Eastern (E) Southern.

Full-size DOI: 10.7717/peerj.10758/fig-7

Table 7 AIC results of daily rainfall records in five Thailand’s regions.

Regions AIC
Cauchy Logistic Lognormal Normal T-distribution

On August 5, 2019
Northern 373.1958 357.3122 336.8724 353.7757 354.3055
Northeastern 600.9473 642.1779 543.9619 667.2334 664.6152
Central 240.0227 266.4162 220.8503 293.9151 283.2302
Eastern 229.8995 220.2523 202.8394 218.7240 219.1471
Southern 194.9368 197.5586 178.5587 201.1654 200.1388

On August 9, 2019
Northern 389.6257 387.3072 375.7994 391.1802 390.2479
Northeastern 1123.7491 1080.8694 1052.8953 1080.1467 1079.9365
Central 178.8516 189.5353 155.0261 190.6855 190.5103
Eastern 233.5236 227.1725 215.9306 228.0501 227.4559
Southern 541.0477 569.2615 487.4667 592.2242 588.2377
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Table 8 The summary statistics.

Regions Estimated parameters

ni µ̂i σ̂2
i δ̂i ϑ̂i

August 5, 2020
Northern 62 1.866 1.277 0.210 9.472
Northeastern 210 1.734 1.578 0.619 4.668
Central 57 1.085 1.784 0.316 4.741
Eastern 29 2.366 4.545 0.241 59.391
Southern 119 1.684 1.730 0.782 2.639

August 9, 2020
Northern 62 2.621 0.732 0.226 15.187
Northeastern 210 2.577 1.502 0.405 16.429
Central 57 1.190 3.054 0.579 5.542
Eastern 29 2.860 3.070 0.241 52.813
Southern 119 2.007 2.051 0.462 10.811

Table 9 95%CIs of common rainfall mean in five Thailand’s regions.

Methods 95%CIs for ϑ Lengths

Lower Upper

On August 5, 2020
FGCI 2.5545 6.3342 3.7798
LS 3.2166 5.6846 2.4681
MOVER 2.7216 9.0296 6.3080
PB 5.8876 11.4965 5.6089
HPD-JR 3.5216 7.8533 4.3317
HPD-NGB 2.4969 6.0904 3.5935

On August 9, 2020
FGCI 7.1127 16.8809 9.7682
LS 10.4880 16.0363 5.5483
MOVER 7.5814 23.3171 15.7357
PB 14.5229 23.5821 9.0591
HPD-JR 12.8404 20.4349 7.5945
HPD-NGB 7.2928 17.1265 9.8337

CONCLUSIONS
The objective of this study was to propose CIs for the common mean of several delta-
lognormal distributions using FGCI, LS, MOVER, PB, HPD-JR, and HPD-NGB. The CP
and AL as performancemeasures of the methods were assessed viaMonte Carlo simulation.
The findings confirm that for small sample case ()k=2 (), FGCI and HPD-NGB are the
recommended methods in different situations: FGCI (a small-to-moderate sample size
and a large σ 2

i with a moderate-to-large sample size) and HPD-NGB (small σ 2
i with a

moderate-to-large sample size). For large sample cases (k = 5,10), MOVER small δi and
σ 2
i ) and PB (large δi and σ 2

i ) performed the best.
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