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ABSTRACT
Background: Avian paramyxoviruses (APMVs), also termed avian avulaviruses, are
of a vast diversity and great significance in poultry. Detection of all known APMVs
is challenging, and distribution of APMVs have not been well investigated.
Methods: A set of reverse transcription polymerase chain reaction (RT-PCR) assays
for detection of all known APMVs were established using degenerate primers
targeting the viral polymerase L gene. The assays were preliminarily evaluated using
in-vitro transcribed double-stranded RNA controls and 24 known viruses, and then
they were employed to detect 4,346 avian samples collected from 11 provinces.
Results: The assays could detect 20–200 copies of the double-stranded RNA controls,
and detected correctly the 24 known viruses. Of the 4,346 avian samples detected
using the assays, 72 samples were found positive. Of the 72 positives, 70 were
confirmed through sequencing, indicating the assays were specific for APMVs.
The 4,346 samples were also detected using a reported RT-PCR assay, and the results
showed this RT-PCR assay was less sensitive than the assays reported here. Of the
70 confirmed positives, 40 were class I Newcastle disease virus (NDV or APMV-1)
and 27 were class II NDV from poultry including chickens, ducks, geese, and pigeons,
and three were APMV-2 from parrots. The surveillance identified APMV-2 in
parrots for the first time, and revealed that prevalence of NDVs in live poultry
markets was higher than that in poultry farms. The surveillance also suggested that
class I NDVs in chickens could be as prevalent as in ducks, and class II NDVs in
ducks could be more prevalent than in chickens, and class II NDVs could be more
prevalent than class I NDVs in ducks. Altogether, we developed a set of specific and
sensitive RT-PCR assays for detection of all known APMVs, and conducted a
large-scale surveillance using the assays which shed novel insights into APMV
epidemiology.
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INTRODUCTION
Avian paramyxoviruses (APMVs), newly designated as avian avulaviruses (AAvVs), belong
to the Avulavirinae subfamily of Paramyxoviridae. So far, as given in Table 1, three genera
(Orthoavulavirus, Metaavulavirus, Paravulavirus) and 20 species of APMVs (APMV-1 to
APMV-20) have been identified (Aziz-ul-Rahman, Munir & Shabbir, 2018; International
Committee on Taxonomy of Viruses, 2019). Of the 20 species, infections of APMV-1,
APMV-2, APMV-3, APMV-6, and APMV-7 can cause avian morbidity (Awang & Russell,
1990; Bankowski, Almquist & Dombruski, 1995; Lipkind et al., 1995; Woolcock et al., 1996;
Saif et al., 1997; Shihmanter et al., 2000). In particular, APMV-1, which is usually termed
Newcastle disease virus (NDV), is the pathogen of Newcastle disease, an acute, highly
contagious infectious disease that infects a variety of avian species (Dimitrov et al., 2019; Zhan
et al., 2020). NDVs are divided into class I and class II NDVs, and both classes have evolved
into multiple genotypes (Ramey et al., 2013; Dimitrov et al., 2016, 2019; Hicks et al., 2019).

Various reverse transcription polymerase chain reaction (RT-PCR) assays have been
established for detection of APMVs (Liu et al., 2011; Fornells et al., 2013; Sutton et al.,
2019). Most of these assays were designed with primers specific to one species, and
thus only one species of APMVs could be detected with one of these assays. Moreover,
these assays might be unable to detect the seven species ranging from APMV-14 to
APMV-20, which were identified in recent years and differ greatly from other species
in gene sequences (Karamendin et al., 2017; Lee et al., 2017; Neira et al., 2017;
Thampaisarn et al., 2017; Thomazelli et al., 2017). Therefore, it is highly desired to develop
novel assays for detection of all known species of APMVs.

The genomic sequences of APMVs are highly diversified, and comparative analysis
revealed that the whole genome sequences could differ at over 65% sites among APMVs
(Aziz-ul-Rahman, Munir & Shabbir, 2018). The extensive variability stems mainly from
nucleotide substitutions, insertions, and deletions, causing challenges in developing a
universal assay for detection of AMPVs based on their genomic sequences.

The L gene in the APMV’s genome encodes the RNA polymerase protein. This gene is
the most conserved in the viral genome, and its sequence differences are the criteria for the
delineation of APMVs species (Aziz-ul-Rahman, Munir & Shabbir, 2018; Rima et al.,
2018). We designed in this study four pairs of degenerate primers according to the
conserved region of the L gene of representative strains of 20 species of APMVs, with the
goal to establish a set of RT-PCR assays capable of detecting all APMVs. We further
applied these assays in surveillance of APMVs in China.

MATERIALS AND METHODS
Ethics statement
All procedures involving animals were performed in accordance with regulatory standards
and guidelines approved by the Animal Care and Use Committee of China Animal Health
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and Epidemiology Center (No. 2018LSAD-05). Swab and feces samples were collected with
permission granted by multiple relevant parties, including China Animal Health and
Epidemiology Center, the veterinary administration of local governments, and the relevant
farm owners (No. 2018LSAD-FD05).

Design and synthesis of primers
Nucleotide sequences of the L gene of 49 strains covering all the known genera and species
of APMVs were downloaded from GenBank and aligned using the software package
MEGA 7.0 for search of conserved regions. As per the conserved regions, four pairs of
degenerate primers were designed for detection of the known genera and species of
APMVs (Table 1).

Preparation of RNA controls
Double strand RNA (dsRNA) is stable than single strand RNA, and thus dsRNA was
employed as the RNA control for the assays, as described previously (Chen et al., 2006).
Briefly, to differentiate potential false positives caused by contamination of positive
controls, sequences of the positive controls were different in length from the target regions
of the RT-PCR assays (Table 1), through inserting or deleting some nucleotides flanking
the binding sites of the upstream and downstream primers in the positive controls.
The positive control sequences were shown in the Table S1.

The DNA sequences of the positive controls were synthesized and cloned into pUC57
vector. The constructed vectors were amplified using the vector-specific primers, pUC57F
(5′-TAATACGACTCACTATAGGGGACTGCAGAGGCCTGCATGC-3′) and pUC57R
(5′-TAATACGACTCACTATAGGGACCATGATTACGCCAAGCTT-3′). Primers
pUC57F and pUC57R contained the T7 promoter at the 5′ end. The PCR products were
purified using a QIAquick column extraction kit (Qiagen, Hilden, Germany). The purified
PCR products were transcribed using the T7 in vitro transcription kit (Takara, Dalian,
China). The transcribed product was digested with Exonuclease III (Takara, Dalian,
China) to remove the DNA template, and then purified with the RNAeasy purification kit
(Qiagen, Hilden, Germany). The dsRNA concentration was measured using the
NanoDrop ND-100 spectrophotometer (Nano Drop, Delaware, USA).

Table 1 Four pairs of degenerate primers for detection of avian paramyxoviruses.

Pair Primer sequencea Target genus Target species Amplicon size Control’s size

1 1/3F: AAGTACTGTCTTAAYTGGAGRTA
1R: ACTTGATTGTCACCYTGYACCAT

Orthoavulavirus APMV-1, -9, -12, -13, -16, -17, -18, -19 332 bp 420 bp

2 2F: GTCTCATACTCACTCAAAGAGAA
2R: GGGTCTGCAACRTACATRGTG

Paravulavirus APMV-3, -4 416 bp 370 bp

3 1/3F: AAGTACTGTCTTAAYTGGAGRTA
3R: CATAGTCCACATYTTYTGRCATA

Metaavulavirus APMV-5, -6, -7, -14 252 bp 310 bp

4 4F: AATGGAGTGTCRATGGARCA
4R: CGCTAATTGADATCATDGTCCA

Metaavulavirus APMV-2, -8, -10, -11, -15, -20 490 bp 400 bp

Note:
a R = A/G, Y = T/C, D = A/T/G.
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Establishment of the assays
Using the designed primers, dsRNA controls, and reverse transcription polymerase chain
reaction (RT-PCR), a set of four RT-PCR assays for detection of all APMVs were
optimized regarding primer concentration, annealing temperature, and other cycling
parameters. The assays were performed in a 25 mL reaction volume using PrimeScriptTM

One Step RT-PCR Kit Ver.2 (Takara, Dalian, China) as follows: 12.5 µL buffer, 2.0 µL
primer mixture (each 2 mM, final), 1.0 µL enzyme mixture, 3.0 µL template, and 6.5 µL
RNase Free H2O. The reaction was conducted with an initial reverse transcription
step at 50 �C for 30 min, followed by PCR activation at 95 �C for 2 min, 35 cycles of
amplification (30 s at 95 �C, 30 s at 55 �C, 30 s at 72 �C), and a final extension step at 72 �C
for 5 min. The RT-PCR products were then subjected to capillary electrophoresis using the
QIAxcel analyzer (Qiagen, Hilden, Germany).

Preliminary evaluation of the RT-PCR assays
Two avian influenza viruses (AIVs), one infectious bronchitis virus, one infectious
bursal disease virus (IBDV), and twenty NDV strains were propagated in 10-day-old
embryonated specific-pathogen-free (SPF) chicken eggs in our laboratory. Their RNA was
extracted from 100 µL of allantoic fluid with the RNeasy Mini Kit (Qiagen, Hilden,
Germany), for detection of specificity of the RT-PCR assays.

Application of the developed assays in APMV surveillance
We conducted this APMV surveillance as per the methods of the surveillance we
published previously (Jiang et al., 2012). Briefly, 4,346 avian samples were collected
from 11 provinces of China, including 4,122 poultry swab samples from chickens, ducks,
geese (Anser cygnoides domestica), pigeons, and newly domesticated bar-headed geese
(Answer indicus). The 4,346 samples also included 224 feces samples collected from
parrots (Melopsittacus undulatus), thrushes (Garrulax canorus), mynahs (Acridotheres
cristatellus), skylarks (Alauda arvensis), and larks (Eremophila alpestris). These 4,346
samples were collected from 12 live bird wholesale markets, 42 live bird retail markets,
six poultry farms, two backyard flocks, four slaughtering houses, and three pet bird
markets in late 2018 and early 2019, mainly for surveillance of AIVs and NDVs circulating
in poultry in China. The host species, provinces, and sites where these samples were
collected were given in the Data S1.

Nylon flocked swabs were employed to take smears at both cloacal and oropharyngeal
tracts of a bird, and the swab samples were stored in 1.5 mL phosphate-buffered saline
(PBS) containing 10% glycerol. Feces samples were collected by taking approximately
0.5 mL fresh wet feces, and stored in 3.5 mL PBS containing 10% glycerol. The samples
were stored at 4 �C and detected in 72 h after collection.

The samples were centrifuged at 1,000 g for 5 min, and the supernatants were inoculated
in 10-day-old embryonated SPF chicken eggs via the allantoic sac route. The eggs were
further incubated for 4 d and checked twice each day. Dead ones were removed and stored
at 4 �C. Then, the allantoic fluids of the live embryos were collected and tested using the
hemagglutination assay in order to test for the presence of viruses. The RNA of all
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hemagglutination-positive allantoic fluids of live eggs, allantoic fluids of all the dead
eggs, and all feces samples was extracted by using the RNeasy Mini kit (Qiagen).
The extracted RNA was used for detection of AIVs, NDVs, IBVs, and APMVs using
relevant RT-PCR assays, and all positive amplicons were sequenced for confirmation and
molecular epidemiological analysis. The GenBank accession numbers for the sequences
originally reported in this study are MT738103–MT738172.

Phylogenetic analysis of viral sequences
Viral sequences were analyzed using the Software packages of Mega 7.0. Briefly,
sequences were aligned using the software Clustal X. Then, the phylogenetic relationships
were calculated using the maximum-likelihood and the model of K2P+G+I (Kimura
2-parameter plus gamma distribution with a fraction of evolutionary invariable sites),
because this model is considered to describe the nucleotide substitution pattern the
best since it has the lowest Bayesian Information Criterion (Kumar, Stecher & Tamura,
2016). Bootstrap values were calculated out of 1,000 replicates. Genetic distances were
calculated using the same model and parameters set for phylogenetic analysis.

RESULTS
Preparation of the dsRNA positive controls
The 20 dsRNA positive control standards were produced at the microgram level through in
vitro transcription. The absorbance ratio of OD260 nm to OD280 nm of the RNA
transcripts was in the range of 2.0 ± 0.1, which indicated the high quality of the RNA
positive controls. Figure 1 shows the results of agarose gel electrophoresis of the 20 dsRNA
controls with the expected sizes.

Preliminary evaluation of the assays
Using the serial dilutions of the dsRNA controls, the developed assays, after optimized in
primer concentration, annealing temperature, and other cycling parameters, could detect

Figure 1 Electrophoresis of the amplification products of the 20 dsRNA positive controls.
Full-size DOI: 10.7717/peerj.10748/fig-1
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20–200 of the dsRNA copies. Detection of the extracted RNA of two AIVs, one IBV, one
IBDV, and twenty NDVs with the assays only found that the RNA from the 20 NDVs were
positive. These data indicated that the assays could be sensitive and specific.

Application of the assays for surveillance of APMVs
The 4,346 samples were tested using the set of four RT-PCR assays developed in this study,
and 72 samples were positive detected with at least one pair of the primers (Table 2).
Of these 72 positives, 70 positives were confirmed through sequencing and BLAST
analysis of the sequences, and we did not obtain reliable sequences from the remaining
two positive amplicons. This suggested that the set of RT-PCR assays were highly
specific (the specificity which is the possibility that an authentically negative sample to
be detected as a positive sample ≥ 1−2/(4,346−70) = 99.95%). A few NDV-positive samples
were also detected with the primers designed for other species of APMVs (Tables 1 and 2).
The 4,346 samples were also detected using a reported RT-PCR assay targeting the
F gene of all NDVs (Liu et al., 2011), and 55 positives were found, and 52 of these
55 samples were also found positive in the set of RT-PCR assays developed in this
study (see the Data S2). These data suggested that our RT-PCR assays were significantly
higher in sensitivity than the reported RT-PCR assay targeting all NDVs (P < 0.01, by the
Chi-square test).

Of the 70 APMV positives, 67 APMV-1 or NDV positives which were all from poultry,
and three APMV-2 positives which were all from the parrots in pet bird markets.
We checked all sequences of APMV-2 in GenBank, and found that this study identified
APMV-2 in parrots for the first time. The 224 feces samples were detected twice, with
and without inoculation in embryonated eggs. All the three APMV-2 positives were
detected without inoculation in embryonated eggs, and only one of the three APMV-2
positives were detected with inoculation in embryonated eggs.

No samples from poultry farms were found NDV positive by the assays, and one or
more positive NDV samples from backyard flocks, live wholesale poultry markets, and live
retail poultry markets were found (Table 3). The NDV-positive rate in the samples from
live retail poultry markets was significantly higher than that in the samples from live
wholesale poultry markets (P < 0.01, by the Chi-square test), which was further higher
than that in the samples from poultry farms (P < 0.01, by the Chi-square test).

Phylogenetic relationships among the sequences of the amplicons of the NDV positives
were analyzed along with some standard sequences used for universal classification of
NDVs (Dimitrov et al., 2019). The results suggested that the amplicon sequences could be
employed to clearly differentiate class I NDVs and class II NDVs (Fig. 2). Among the

Table 2 Detection of 72 positives with the four pairs of primers.

Sequencing confirmed First pair Second pair Third pair Fourth pairs

67 NDV 67 1 4 2

3 APMV2 0 0 0 3

2 unknown 2 0 0 0
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67 NDV positives, 40 were class I NDVs and 27 were class II NDVs, and their prevalence in
different species of birds was given in Table 4. As mentioned above, 52 of the 67 NDV
positives were also found NDV positive with a previously reported RT-PCR assay targeting
the viral F gene (Liu et al., 2011). Classification of these 52 NDVs into the two classes using
the amplicon sequences of the assays reported here was the same as that using the
amplicon sequences of the assay reported previously.

It was assumed in the past that class I NDVs mainly circulate in wild birds and
waterfowls, and class II NDVs in ducks are less prevalent than class II NDVs in chickens
and class I NDVs in ducks (Ramey et al., 2013; Dimitrov et al., 2016, 2019; Hicks et al.,
2019). Interestingly, here we showed that class I NDVs in chickens were as prevalent as
in ducks (P > 0.05, by the Chi-square test), and that class II NDVs in ducks was
significantly more prevalent than class II NDVs in chickens and class I NDVs in ducks
(P < 0.01, by the Chi-square test). These data suggested that ducks could be the
asymptomatic reservoir of class II NDVs, some of which could cause severe disease in
chickens (Wu et al., 2015).

DISCUSSION
In this study, we designed a set of four RT-PCR assays for detection of all known APMVs,
and prepared dsRNA controls for the assays. These assays were preliminarily evaluated
using the dsRNA and some known avian viruses. Then these assays were employed in a
large-scale surveillance of avian diseases including APMVs. The surveillance results
demonstrated that the assays were highly specific and more sensitive than a reported
RT-PCR targeting the viral F gene. The surveillance results also provided novel important
epidemiological information pertaining to APMVs in China.

Because the genome sequences of APMVs are highly variable, we tried but failed to
design a single pair of primers for detection of all known APMVs. A conserved RT-PCR
assay for detection all paramyxoviruses was reported (Van Boheemen et al., 2012), but
we analyzed on computer and found that the conserved RT-PCR assay is suitable for many
paramyxoviruses, but not for some species of APMVs. A set of semi-nested or nested
RT-PCR assays targeting the viral L gene sequences had been established for detection of
all paramyxoviruses (Tong et al., 2008). These assays could sensitively detect APMVs.
However, the assays require two steps of amplification and opening of the amplification
system. They are thus time-consuming and risky in nucleic acid contamination.
Our RT-PCR assays only require one step of amplification without opening of the
amplification system, and are thus more suitable for APMV detection and surveillance.

Table 3 NDV positives identified in the samples from different poultry sites.

Poultry
farms

Live wholesale
markets

Live retail
markets

Slaughtering
houses

Backyard
flocks

No. samples 360 1,195 2,175 337 55

No. positives 0 11 51 4 1

Prevalence (%) 0.00 0.92 2.34 1.19 1.82

Jin et al. (2021), PeerJ, DOI 10.7717/peerj.10748 7/13

http://dx.doi.org/10.7717/peerj.10748
https://peerj.com/


Figure 2 Phylogenetic relationships among 67 NDVs identified in this study and 24 reference strains
for the universal NDV classification. The reference strains were marked with triangles and initiated with
their nomenclature (e.g., C1/1.2/ means class I genotype 1.2, and C2/10/ means class II genotype X).
The scale bar indicated genetic distances. The viruses identified in this study were designated with the
corresponding bird species, sample collection locations, sample numbers, and sample collection years.

Full-size DOI: 10.7717/peerj.10748/fig-2
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The dsRNA positive controls used in our RT-PCR assays have advantages over normal
RNA controls used in RT-PCR, because they are stable and can differentiate false positives
caused by nucleic acid contamination.

The large-scale surveillance conducted in this study updated our knowledge pertaining
to the epidemiology of APMVs. First, it demonstrated that class I NDVs in chickens
could be as prevalent as in ducks, and class II NDVs could be more prevalent in ducks
than in chickens, and class II NDVs could be more prevalent than class I NDVs in ducks,
all of which are different from our previous views (Ramey et al., 2013; Dimitrov et al.,
2016, 2019; Hicks et al., 2019). Second, the surveillance suggested that the prevalence of
NDV increased during their transportation from poultry farms to live wholesale poultry
markets and then to live retail poultry markets. This indicated that live poultry markets
are the hot sites not only for transmission and replication of AIVs (Liu et al., 2020), but
also for transmission and replication of NDVs. Third, the surveillance identified for the
first time that APMV-2 circulated in parrots which are popular pet birds worldwide.
We will analyze the genomic features of the APMVs and investigate their pathogenesis in
parrots in the coming future.

The surveillance was of some limitations. First, the tested samples were collected mainly
for surveillance of AIVs and NDVs, and they were hence incubated with embryonated eggs.
Some APMVs could be undetected through this way because they grow inefficiently in
embryonated eggs or have no hemagglutination activity, as suggested by the detection of
AMPV-2 in this study and a hemagglutination-negative APMV-4 strain we identified in
2013 (Wang et al., 2013). Second, only a few poultry farms, backyard flocks, slaughtering
houses, and pet bird markets were detected, and thus the results could not reflect the
prevalence of APMVs in these types of poultry sites. Meanwhile, samples from geese, and
pigeons were also inadequate to reflect the prevalence of APMVs in these species of birds.
We will circumvent these limitations for performing surveillance of APMVs in the future.

CONCLUSION
In conclusion, we developed a set of specific and sensitive RT-PCR assays for detection of
all known APMVs, and conducted a large-scale surveillance using the assays which shed
novel insights into to APMV epidemiology in China.
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