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ABSTRACT
Background: Associated with the significant decrease in water resources, natural
vegetation degradation has also led to many widespread environmental problems in
the Aral Sea Basin. However, few studies have examined long-term vegetation
dynamics in the Aral Sea Basin or distinguished between natural vegetation and
cultivated land when calculating the fractional vegetation cover.
Methods: Based on the multi-temporal Moderate Resolution Imaging
Spectroradiometer, this study examined the natural vegetation coverage by
introducing the Linear Spectral Mixture Model to the Google Earth Engine platform,
which greatly reduces the experimental time. Further, trend line analysis, Sen trend
analysis, and Mann–Kendall trend test methods were employed to explore the
characteristics of natural vegetation cover change in the Aral Sea Basin from 2000 to
2018.
Results: Analyses of the results suggest three major conclusions. First, the
development of irrigated agriculture in the desert area is the main reason for the
decrease in downstream water. Second, with the reduction of water, the natural
vegetation coverage in the Aral Sea Basin showed an upward trend of 17.77% from
2000 to 2018. Finally, the main driving factor of vegetation cover changes in the Aral
Sea Basin is the migration of cultivated land to the desert.

Subjects Ecosystem Science, Plant Science, Environmental Impacts, Forestry, Spatial and
Geographic Information Science
Keywords The Aral Sea Basin, Fractional vegetation cover, The linear spectral mixture model,
Google earth engine

INTRODUCTION
Vegetation dominates the terrestrial ecosystem and plays an important role in the study of
global climate change. In arid areas, vegetation has essential impacts not only on
precipitation and temperature but also on atmospheric circulation, water vapor transport,
water balance and regional water resources (Gu et al., 2018; Zhang et al., 2019a). The Aral
Sea Basin belongs to the arid area of Central Asia, with low vegetation coverage, weak
anti-interference, fragile regional ecology, and obvious changes in land cover. Due to the
rapid development of irrigated agriculture and climate change, the Aral Sea area has
shrunk to approximately 10% of the original area, and the drastic reduction of water
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resources has a huge impact on the ecological environment and economic activities in the
neighboring areas. Soil erosion and vegetation cover changes have seriously threatened the
health and lives of residents (Crighton et al., 2010; Löw et al., 2018; Singh et al., 2018).
Therefore, monitoring and evaluating vegetation cover changes in the Aral Sea Basin are
important for soil erosion monitoring and global climate change and are significant for
improving the local ecological environment.

Due to the sharp shrinkage and salinization of the Aral Sea, most regional studies have
focused on changes in water bodies, such as measuring the inter-annual water storage
changes, checking the water balance, and revealing hydrologic changes (Singh, Seitz &
Schwatke, 2012; Cretaux et al., 2018; Sun & Ma, 2019). The change in water bodies in
this study area has a significant impact on the formation and development of vegetation
cover (Liu et al., 2020). Research has shown that the long-term rapid development of water
and soil resources around the Aral Sea has led to the continuous deterioration of the
ecological environment, dominated by water–the reduction of vegetation in natural oases,
the intensification of desertification, and the degradation of vegetation (Indoitu et al., 2015;
Shi & Wang, 2016; Xu, Wang & Zhang, 2016; Xu, Wang & Yang, 2017). Until 2019,
salt storms and the decrease of aquifers destroyed 40% of the vegetation in the surrounding
lands (Haag, Jones & Samimi, 2019). However, most of these studies and reports based on
countries and small regions describe the current situation. It is impossible to fully
understand the change in regional natural vegetation coverage without continuous
observation and in-depth analysis of long-term series. In addition, few studies have
separated cultivated land from natural vegetation when calculating vegetation coverage.
The large-scale development of irrigated farmland in this area has a certain degree of
disturbance to the water bodies and other features in the area. In this study, the dynamic
driving forces of natural vegetation cover are divided into climate factors and human
activity factors. Human activities determine the dynamics of cultivated land cover. It is
difficult to objectively evaluate the driving factors because of the large proportion of
human activities involved when discussing the dynamic reasons for vegetation cover
(Jiang et al., 2017). The growth cycles of crops and vegetation differ. Cultivated land and
natural vegetation can be distinguished by the phenological characteristics of sowing and
harvesting (Cao et al., 2020). At present, several major questions regarding regional
vegetation cover need to be answered: (1) What is the extent of vegetation coverage in
this region? (2) What is the impact of the sharp decrease of water area on the natural
vegetation coverage in this area? (3) What are the main driving factors affecting natural
vegetation cover changes in the watershed? An understanding of these issues can
contribute to the economic and social development of Central Asia. We analyzed the root
causes of these changes by monitoring the long-term natural vegetation dynamics, which is
of great significance to local ecological management and formulation of environmental
policies.

The commonly used methods to extract vegetation coverage using remote sensing
include the vegetation index method, empirical model method, and spectral mixing model
(Du et al., 2013; Zanotta et al., 2014). The vegetation index method has been widely
employed. However, its accuracy is relatively low, and it is not suitable for regions with
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complex terrain. Comparatively, the empirical model for vegetation coverage inversion
has a relatively high accuracy, but high dependency on manual measurement data (Yun
et al., 2010; Li et al., 2018; Gu et al., 2018). The linear spectral mixture model (LSMM)
assumes that the mixed pixels are composed of several pure land cover categories
(end members) (Cheng, Yuanqing & Cong, 2012). This method solves the problem of
mixed pixels by obtaining the components of each end member. The nonlinear spectral
mixing model is closer to the actual mixing spectrum than LSMM, but the forms of
nonlinear spectral mixing models are generally complex, and many of the parameters
are difficult to measure accurately. In the practical application, the simplified treatment
greatly reduces the simulation of the actual spectrum. Therefore, the LSMM is selected,
which is convenient, precise, and easy to implement (Wu & Murray, 2003; Weng, 2012;
Deng & Wu, 2016; Zhang et al., 2019b). Because of the large basin area, it takes several
days to extract vegetation coverage using LSMM through Matlab or the ENVI platform.
The Google Earth engine (GEE) is a large-scale geospatial analysis platform based on
cloud data that can solve the problems of slow data download, large storage, and low
processing efficiency (Dong et al., 2016; Gorelick et al., 2017; Huang et al., 2017; Kumar &
Mutanga, 2018). We attempt to improve the LSMM and introduce it to the GEE platform
to shorten the experiment time and simplify the experiment process.

The process of trend line analysis is simple and intuitive. Regarding the nonlinear
and nonstationary nature of environmental systems, Sen trend analysis and the
Mann–Kendall trend test can be useful for analyzing trends in this system (Ahma et al.,
2015; Nourani, Mehr & Azad, 2018). Therefore, this study uses a trend line analysis, Sen
trend analysis, and the Mann–Kendall trend test to analyze the long-term natural
vegetation dynamics of the study area, which lays a foundation for the subsequent
discussion of the driving force analysis of natural vegetation cover.

This study involved three important steps: (1) the LSMM method was applied in
GEE and aimed to distinguish between cultivated land and natural vegetation; (2) the
large-scale and long-term monitoring of land cover in this area was performed; and
(3) after eliminating the interference of cultivated land on the vegetation coverage, we
utilized trend line analysis, Sen trend analysis and the Mann–Kendall trend test to compare
and analyze the characteristics of natural vegetation cover changes in the Aral Sea Basin
from 2000 to 2018. Additionally, we utilized multi-source data to explore the driving
factors for change, which provides the foundation for follow-up ecological governance and
agricultural development research.

MATERIALS AND METHODS
Study areas and data
The Aral Sea Basin belongs to the arid area of Central Asia, which is located to the west of
the Qinghai–Tibet Plateau. It is composed of two major units: the Turan Plain and the
mountain area. The Tianshan Mountains are in the east, the Pamirs plateau is in the
southeast, the Karakum Desert is in the southwest, and the Turgai plateau is in the north,
involving five Central Asian countries (Fig. 1). The Aral Sea Basin covers an area of
1.23 million km2. Excluding evaporation, water resources are mainly used for irrigation,
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forming a developed irrigation agricultural area. The main climate types are cold desert
climate and temperate desert climate, with annual rainfall of less than 100 mm
(Lioubimtseva, 2014; Izhitskiy et al., 2016).

The data used in this study was the Moderate Resolution Imaging Spectroradiometer
(MODIS) 16d synthetic NDVI data-MOD13A1, with a spatial resolution of 500 m.
The RED and NIR input by MOD13A1-NDVI are the ground reflection values after
atmospheric correction, and the wave amplitude is narrower, which avoids the problem
of water vapor absorption in the NIR band. MOD13A1 is not only calibrated before
launch, but the deviation can be constantly corrected during the process. To reduce the
impact of snow, ice, and low vegetation coverage on the classification results, 266 MODIS/
NDVI images were selected from April to November of each year from 2000 to 2018.
Five MODIS images can cover the entire research area. The accuracy verification data was
the Landsat 7 Collection 1 Tier 1. The auxiliary verification data were Google Earth
high-resolution remote sensing images. In addition, temperature, precipitation,
population, and GDP were selected to explore the driving forces of natural vegetation
dynamics (Table 1). Framework applied in this study is shown in Fig. 2.

Feature classification
Linear spectral mixture model

The mixed pixels do not completely belong to a certain kind of feature. In order to achieve
higher classification accuracy, it is necessary to decompose the mixed pixels into the
percentage (abundance) of a kind of feature in the pixel, that is, the decomposition of
mixed pixels (Small, 2004; Deng & Wu, 2016). LSMM has obvious physical meaning,
simple operation, reliable accuracy, directly related to ground coverage, and solves the
problem of mixed pixels (Deng et al., 2018). The resolution of MODIS data is 0.5 km, and
there is a phenomenon of pixel mixing. LSMM addresses the issue by providing valuable
sub-pixel information (Zhang et al., 2019b), so we used LSMM for classification. This study
is a large-scale, long-term monitoring of natural vegetation coverage, while traditional
platforms require a long time to process data. Therefore, we improved the suitability of the

Figure 1 Study Area (the Aral Sea Basin). Full-size DOI: 10.7717/peerj.10747/fig-1
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Figure 2 Framework applied in this study. Full-size DOI: 10.7717/peerj.10747/fig-2

Table 1 Description of data.

Data Data sources Data description

MOD13A1/NDVI https://modis.gsfc.nasa.gov/ MODIS 16 d synthetic NDVI data

Landsat 7 https://www.usgs.gov/land-resources Spatial resolution: 30 m. Return visit period: 16 d

Google Earth Image https://earth.google.com Satellite image and aerial data integration, image resolution can reach
1m and 0.5 m

Meteorological data http://wps-web1.ceda.ac.uk/submit/from?proc
id=Subsetter

Weather data is collected at 192 weather stations located in the Aral
Sea area, including temperature and precipitation

Population, GDP data https://data.worldbank.org/ Population and GDP data cover five countries, including Kazakhstan,
Uzbekistan, Kyrgyzstan, Tajikistan and Turkmenistan

Elevation data https://www.usgs.gov/land-resources/eros/coastal-
changes-and-impacts

The data type is ASTER_GED with spatial resolution of 100 m
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LSMM method for MODIS data and introduced it to the GEE platform. LSMM refers to
the spectral reflectance of the pixel in a certain band, which is a linear combination of
the reflectance of the components that make up the pixel with the proportion of their area
as the weight coefficient. This is expressed as:

Ri� ¼ Pn
k¼1

f kirk� þ ji�

Pm
k¼1

f ki ¼ 1

8>><
>>:

0 � f ki � 1 (1)

where Ri� is the spectral reflectance of the i-th pixel in the λ band, rk� is the spectral
reflectance of the k-th basic component in the � band, f ki is the abundance of the k-th end
element in the i-th pixel; n is the number of end elements; and ji� is the residual error
value, which somewhat represents the multiple reflection and transmission of light
between image tuples. It has a nonlinear mixing effect. n is the number of end elements
(Wu & Murray, 2003).

Endmember selecting
It is important to select the end element in the LSMM. The quality of the end element
directly affects the overall accuracy of the experiment. Generally, three to four end
elements are selected through tests, and the inversion effect is good (Zanotta et al., 2014).
Because the image will be affected by the atmosphere, terrain, and sensors, the actual
spectral curve differs from the spectral curve in the ground measurement and ground
object spectral library, so it is more accurate to obtain the end element from the image
(Zare & Ho, 2014). There are many methods to select image endmembers. But the
disadvantage of the PPI algorithm is that the selected vector has a high degree of
arbitrariness; the performance of the N-FINDR algorithm is largely related to the nature of
the initially selected endmember (Zhong, Zhao & Zhang, 2014; Jafarzadeh & Hasanlou,
2019); and the nature of the AMEE algorithm also depends on the relationship between the
spatial characteristics of the structure element and the spectral distribution in the scene
(Li et al., 2011). Generally speaking, all kinds of endmember extraction algorithms are
still in the exploratory stage, and each algorithm has its own advantages and disadvantages,
which needs further improvement. Here, we tended to choose the final elements with a
basis to improve the accuracy of the classification results, and visual interpretation is also
widely used to verify the accuracy of machine classification (Yu et al., 2017), so visual
interpretation was selected for endmember selection (Feng et al., 2019; Jiang, Van der
Werff & Van der Meer, 2020). The specific experimental steps were (1) MOD13A1 was
overlapped with Landsat 7 and Google Earth images; (2) the pure ground object pixel
of Landsat 7 and Google Earth images were interpreted and recognized visually; and (3) the
pixel values in MOD13A1 at the same position as the pure ground object pixel were taken
as the end element values.

According to the distribution of ground features in the study area and the principle
of selecting end elements (Micklin, 2016), four types of end elements were selected:
cultivated land, vegetation, desert, and water body. The experiment selected 1,064 end
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elements from April to November in each year from 2000 to 2018. The water body of the
MOD13A1 product was Nodata. Figure 3 shows the other end member values in 2018.
The endmember values of each month in other years were selected using the same method.

Accuracy verification
Structural similarity index model (SSIM) is a common image quality evaluation method
used as an index to measure the similarity between two images (Brunet, Vrscay & Zhou,
2012). This method calculates the error between the corresponding pixels of the two
images and divides the image evaluation into three parts: brightness comparison, contrast
comparison and structural similarity. Therefore, this method considers not only the
coverage area but also the location allocation (Li & Bovik, 2010; Ma et al., 2020).
This method fully considers the correlation between human visual characteristics and
images, which is an effective and correct image quality evaluation standard in line with
the characteristics of the human visual system, and the subjective evaluation results are
highly consistent. Attempt to imitate the metric of the human visual system-Structural
Similarity Index with a local method, which was used as a comparative statistic
for exploratory maps (Robertson et al., 2014). In recent years, it has been widely used
(Okarma, Jarosław &Mateusz, 2016). The formula for calculating structural similarity is as
follows:

SSIM ¼ 2m1m2 þ C1ð Þ s12 þ C2ð Þ
m2
1 þ m2

2 þ C1ð Þ s1 þ s2 þ C2ð Þ (2)

where m1 is the average value of the spectral pixel decomposition model fraction; m2 is
the average value of the visual interpretation fraction of Landsat 7; s1 and s2 are the
variance between the modeled fraction and the visual interpretation fraction, respectively;
s12 is the covariance; and C1 and C2 are constants. The closer the SSIM value is to 1,
the higher the similarity between the modeled fraction and the visual interpretation
fraction (Dosselmann & Yang, 2011; Wang et al., 2014).
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Figure 3 Endmember value. Endmember categories: agricultural land, desert, and natural vegetation.
Choosing the end element value of 16 days from April to November can better reflect the regional annual
phenological changes. The figure shows the end element value of the ground feature in 2018.

Full-size DOI: 10.7717/peerj.10747/fig-3
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Time series analysis
Trend line analysis
Regression analysis is a mathematical model used to study the relationship between
multiple variables and is widely employed in long-term studies and analysis of land cover
change (Zhu et al., 2019; Parvin, 2019). The mathematical model implemented in this
study was:

y ¼ kx þ aþ @ (3)

where a and k are unknown constants, @ is the error, and x is the time independent
variable. y is the dependent variable for ground object cover areas, k can be calculated by
the x, y observations:

k ¼
Pn

i¼1 xi � 1
n

Xn

i¼1
xi

� �
yi �

1
n

Xn

i¼1
yi

� �
Pn

i¼1 xi � �xð Þ2 (4)

where n is the year.
The slope of the equation k > 0 indicates that the ground cover increases with the year.

The fitting accuracy is checked using the decision coefficient R2. The closer x is to 1, the
higher the goodness of fit.

Sen trend analysis and Mann–Kendall trend test
Sen trend analysis can calculate the trend degree, and the Mann–Kendall trend test can
test the significance of the change trend (Drápela & Drápelová, 2011). The combination of
the two methods has formed a new long time series trend analysis method, which can
reduce the impact of data noise (Bi et al., 2020). The Sen trend analysis combined with the
Mann–Kendall test can be utilized to determine the variation trend of long-term series data
(Jiang et al., 2015). The calculation formula is:

b ¼ Median
xj � xi
j� i

� �
; j . i; i ¼ 1; 2; 3 . . . ;N (5)

Among, xj and xi are elements of the time series of the trend to be analyzed. When β > 0, it
indicates an upward trend; when β < 0, it indicates a downward trend.

Mann–Kendall trend test does not require the test data to follow certain distribution
rules, and can avoid the influence of a few outliers. The test statistic S is calculated as
follows:

S ¼
Xn�1

K¼1

Xn
j¼kþ1

Sgn ðXJ � XKÞ (6)

Inside,

Sgn ðXJ � XKÞ ¼
þ1 XJ � XK . 0
0 XJ � XK ¼ 0
�1 XJ � XK < 0

8<
: (7)
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S is a normal distribution and the mean value of 0, variance Var Sð Þ ¼ n n�1ð Þ 2nþ5ð Þ
18 , When

n > 10, the standard normal variable is calculated as follows:

Z ¼

S� 1ffiffiffiffiffiffiffiffiffiffiffi
VarðSÞ

p S > 0

0 S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p S < 0

8>>>><
>>>>:

(8)

In this study, the confidence level a = 0.01 or a = 0.05, Z > 0 was the rising trend; Z < 0 is
a downward trend, and when |Z| ≥ 1.96 and |Z| ≥ 2.576, the reliability was 95% and 99%,
respectively (Gocic & Trajkovic, 2013).

Principal component analysis

Principal Component Analysis (PCA) is a statistical analysis method that converts
multiple variables into unrelated comprehensive variables (Zhang et al., 2020). The basic
principle of PCA is to ensure the minimum loss of information, reduce the dimensionality
of the original data, and improve research efficiency while ensuring research accuracy
(Bunnell et al., 2020). PCA as a descriptive tool needs no distributional assumptions and, as
such, is very much an adaptive exploratory method which can be used on numerical data
of various types (Jolliffe & Cadima, 2016). Its mathematical model is as follows:

X ¼ Xij
� �

A � B; i ¼ 1; 2; � � � ;B (9)

A is number of study areas, original sample matrix X of B selection indicators.
Calculate the correlation coefficient matrix between each indicator Rb�b, eigenvalues and

normal eigenvectors ej, this gives the principal component Ti, as follows: Ti ¼ Xej.

The contribution rate formula is as follows: a ¼ Pq
i
aj

When the j-th principal component variance contribution rate is 85–95%, the original B
index information can be reflected. At the same time, the comprehensive score of
ecological security in the study area can be obtained, as follows:
W ¼ aX1 þ bX2 þ � � � þ xXx, where X is eigenvectors; a, b,… , x are standardized data of
the original data (Licciardi et al., 2012).

RESULTS
Spatio-temporal variation characteristics of natural vegetation cover
Based on the GEE platform, the abundance map of the ground objects calculated by LSMM
was extracted. The vegetation coverage in the Aral Sea Basin was generally lower.
According to statistics, in the past nineteen years, the average area of vegetation cover in
the Aral Sea Basin was 77,200 km2, accounting for 6.26% of the total drainage area, and the
coverage was generally poor (Figs. 4A and 4B).

To reduce the outliers and ensure the accuracy of the data, the mean sliding filter model
was used. A sliding filter model with an interval of three years was used to process the
annual average vegetation coverage data of the Aral Sea Basin in the past nineteen years,

Su et al. (2021), PeerJ, DOI 10.7717/peerj.10747 9/26

http://dx.doi.org/10.7717/peerj.10747
https://peerj.com/


and the corresponding linear equations were fitted using the least squares method.
The fitting results are shown in Fig. 5A. The slope of the regression equation was k > 0.
From the results of the Sen trend analysis and Mann–Kendall trend test (β = 579.14 > 0,
Z > 0), the vegetation coverage had an upward trend in the past twenty years. The average
vegetation coverage increased from 4.70% in 2000 to 7.19% in 2018, an increase of
2.49%. The growth rate from 2000 to 2003 was large, with an increase of 25,400 km2.
During the same period, the water bodies also increased significantly, providing sufficient
water sources for vegetation growth. In 2006 and 2009–2012, there was a decreasing
trend. The change was the most significant in 2006. The area of the reduction was
18,500 km2. During the same period, the desert area showed a rapid expansion trend.
The area of vegetation coverage increased by 12,900 km2 from 2000 to 2018, and the area
of decreased by 12,300 km2. The coverage of natural vegetation generally increased.

Through superposition analysis and difference calculation of the generated abundance
map, the percentage change of vegetation in each pixel of the Aral Sea Basin in the last
nineteen years was obtained. According to the change range, the vegetation change in the
Aral Sea Basin was divided into five categories: severe degradation, mild degradation,
basically unchanged, mild improvement, and significant improvement by using the

Figure 4 Change trend of natural vegetation coverage from 2000 to 2018. (A) Annual change trends
in natural vegetation coverage; (B) significance (p-value) of the change trends in natural vegetation
coverage; (C) hierarchical map of the change trend (the trend classified into five types: SD, severe
degradation; MD, mild degradation; BU, basically unchanged; MI, mild improvement; SI, significantly
improvement); (D) statistical results of cover area for different vegetation types.

Full-size DOI: 10.7717/peerj.10747/fig-4
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standard deviation classification method; this can be seen in Figs. 4C and 4D. In the past
nineteen years, the vegetation coverage of the Aral Sea Basin remained unchanged, and
the area where the vegetation coverage has significantly improved is larger than the
degraded area. The changes and spatial distribution of each category are shown in Table 2.

Figure 5 Change of land cover area in the Aral Sea Basin. (A) Natural vegetation; (B) cultivated land;
(C) desert; (D) water. Full-size DOI: 10.7717/peerj.10747/fig-5
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The overall fluctuation of vegetation coverage in the Aral Sea Basin is small, showing
low central and high east and west features. The high fluctuation range (severely degraded
and significantly improved areas) is small, accounting for 7.49% of the basin, mainly
concentrated in the mountains and rivers. The improvement area is more obvious (red
part), and the improvement area greatly exceeds the degraded area (improved 17.77%,
degradation only 2.24%).

Analysis of land coverage changes
Spatio–temporal variation characteristics of ground cover
In order to better explore the driving forces affecting natural vegetation coverage, this
study quantitatively analyzes the dynamic changes in the abundance maps of other
features of the Aral Sea Basin (Table 3). The average area of cultivated land in the Aral
Sea Basin was 136,600 km2, accounting for 10.54% of the total basin area. The area of
cultivated land increased from 96,600 km2 in 2000 to 135,000 in 2018, an increase of
3.10%. The growth rate was large in 2000–2005 and 2011–2014, and the total increase in
area was 166,000 km2, mainly distributed on both sides of the Amu Darya, upstream of the
Syr Darya, and the Zeravshan River. The reduction was large in 2005–2008 and
2014–2017, with an area reduction of 127,600 km2, mainly distributed in Kokand and
northern Tashkent. Overall, the distribution decreased inside the city and increased
around the city periphery and the river (Figs. 5B and 6A).

The average desert area of the Aral Sea Basin is 778,300 km2, accounting for 62.85% of
the basin area, nearly 3/5. From 2000 to 2018, the average annual desert area decreased
from 858,500 km2 to 778,300 km2, a decrease of 6.47%. The reduced area is striped
along the Aral Sea basin boundary. From 2005–2008 and 2009–2011 there was an
increasing trend, with a total growth area of 300,600 km2. The more obvious increase was
observed around the South Aral Sea. As the lake subsided, new deserts formed around the

Table 2 Classification criteria and statistical results of natural vegetation trend.

Types Range Pixels Area/km2 Percentage/% Bistribution area

SD <−0.1790 54,062 10,815.03 0.87 North of Tianshan Mountain

MD −0.1790 to −0.1611 434,127 16,926.05 1.37 Eastern Tianshan and western Amu Darya delta

BU −0.1611 to 0.6533 4,363,687 966,115.09 79.98 Turan Plain and desert area

MI 0.6533–0.2282 758,782 137,491.11 11.15 The northwest of the basin and the north of the Pamirs

SI 0.2282–1.0000 159,934 81,558.91 6.62 Eastern mountain and delta coast

Note:
The range is the pixel vegetation abundance value.

Table 3 Statistical results of land cover types in the Aral Sea Basin (unit: %).

Land cover types SD MD BU MI SI

Desert 8.75 33.14 39.07 16.05 2.98

Cultivated 1.48 9.59 73.02 8.74 7.17

Water 1.95 12.85 78.30 4.82 2.09

Vegetation 0.87 1.37 79.98 11.15 6.62
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Figure 6 Hierarchical map of the change trend of the land coverage. (A) Cultivated land; (B) desert;
(C) water. Full-size DOI: 10.7717/peerj.10747/fig-6
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edge. The distribution of deserts decreased around the edge and increased in the center
(Figs. 5C and 6B).

The average area of the water body in the Aral Sea Basin was 63,800 km2, accounting for
5.15% of the entire basin area, and its coverage was low. It decreased from 72,500 km2

in 2000 to 46,400 km2 in 2018, a decrease of 2.11%. The reduction was largely in
2004–2008, with a total area reduction of 88,400 km2. The primary reason is that the
amount of water in the South Aral Sea has decreased dramatically. The increased water
areas are mainly distributed in the North Aral Sea and the Pamirs. The reason for the
reversal of the South Aral Sea and the North Aral Sea is that Kazakhstan built a dam in
2005 to introduce the Syr Darya from the South Aral Sea to the North Aral Sea. Over the
past nineteen years, water bodies reduced by a total area of 22,300 km2 more than the
increase in area, and the water body is decreasing (Figs. 5D and 6C).

Correlation analysis of desert and cultivated land cover change
By analyzing the inter-annual spatial distribution characteristics of the cover area of
cultivated land and deserts, we obtained a slope of k < 0 and a determination coefficient of
0.44 (Fig. 7). This shows that the change in cultivated land coverage has a significant
relationship with the desert area. Areas with significantly increased cultivated land
coverage showed an expanding trend from the original farmland to the surrounding areas
(the red part in Fig. 6A). The desert shows a degrading trend (black part in Fig. 6B).
The spatial distribution of desert degradation areas and farmland growth areas is similar,
mainly distributed along the banks of the Amu Darya, deltas, and around cities. In desert
areas, the temperature is relatively high, and the surface water evaporates quickly
which limits the growth of crops. The development of irrigated farmland in this area
requires a large amount of river water to be directed to the cultivated land, and the soil
in Central Asia has a high salt content. In order to reduce the salinity, cultivated land
must be ‘washed’ regularly. According to statistics, more than 1 billion km3 of water is used
to clean farmland every year. A large amount of surface runoff is used for irrigation,
resulting in a decrease in the amount of water in the lower Amu Darya and Syr Darya
Basin, which exacerbated the shrinkage of the Aral Sea (Fig. 6C).
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Figure 7 Correlation analysis between cultivated land area and desert area.
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Analysis of driving forces of natural vegetation cover
Impact of climate variability on natural vegetation cover

Climate change profoundly affects the growth and distribution of plants, temperature
affects the growth cycle of vegetation, and precipitation affects the composition and
physiological changes of vegetation. The Aral Sea is in a semi-arid area, and the climate has
a greater impact on vegetation cover changes. As shown in Fig. 8A, the temperature growth
rate from 2000 to 2018 is 0.56 �C/a, which indicates climate warming in this region in
the past 19 years. However, the temperature in winter showed the opposite trend, and the
temperature in the Pamirs dropped significantly. The region has a climate with hotter
summers and colder winters. The precipitation in this area also has a slight increase
trend, and there is a clear increasing trend of precipitation in Kazakhstan, where Rain Fed

Figure 8 Driving forces of natural vegetation cover. (A) Changes in annual average temperature and
total annual precipitation; (B) changes in total population and GDP; and (C) principal component scores
of human activities and climate factors. Full-size DOI: 10.7717/peerj.10747/fig-8
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Crops account for 10.12% of the total cultivated land area in Central Asia (Lioubimtseva,
2014).

Impact of human activities on natural vegetation cover

The Aral Sea Basin is located in five Central Asian countries. Since the disintegration of the
Soviet Union in 1991, the economic and social patterns of the region have varied. Among
them, agriculture has changed from state-owned to private and free operations, and
human activities inevitably affect the growth of regional vegetation. Population quantity,
distribution, migration and human production activities can destroy the surface and
land cover, and the physical and chemical properties of soil and water. They are closely
related to changes in regional vegetation cover. The state of economic development reflects
the degree of urbanization and land use in the region. In the past nineteen years, the GDP
growth rate was 6.7% (Fig. 8B).

Driving forces of natural vegetation cover changes
We selected five factors to determine natural vegetation cover changes: annual average
temperature, total precipitation, total population, GDP, and cultivated land area. PCA was
used to quantitatively analyze the impact of various factors on vegetation coverage.
The total population, GDP and arable land area contributed 0.82 to the first principal
component, which can somewhat reflect the impact of human activities on vegetation
coverage. The annual average temperature and annual total precipitation contributed
0.87 to the second principal component, which can somewhat represent the impact of
climate factors on regional vegetation (Table 4). In the past nineteen years, the impact of
climatic factors on the Aral Sea Basin generally initially increased and then decreased.
The impact of human factors on the vegetation coverage of the Aral Sea Basin initially
decreased and then increased (Fig. 8C). Overall, human activities were the major driving
factor that affected the changes in vegetation cover in the Aral Sea Basin, of which
the change in cultivated land area had a higher impact. Among the natural factors,
precipitation was the main factor affecting the change in vegetation coverage in the Aral
Sea Basin, followed by temperature.

Compared with natural factors, the impact of human activities on vegetation cover
changes is more rapid and direct. According to statistics, the petrochemical, non-ferrous
metallurgical, and power industries in the region show a growth trend, while the
output value of the light and wood industries shows a downward trend. The rapid
industrialization has caused substantial damage to vegetation coverage. Regional economic

Table 4 Principal component analysis results.

Ingredient Eigenvalues Contribution rate/% Cumulative contribution rate/%

1 2.4876 0.4975 0.4975

2 1.4457 0.2891 0.7866

3 0.6816 0.1363 0.9229

4 0.3839 0.0769 0.9998

5 0.0012 0.0002 1.0000
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development has a profound impact on regional population growth and migration.
Combining the results of the Mann–Kendall test and Sen median trend analysis can
effectively characterize the trend changes of ground features. By analyzing the change
curve of natural vegetation and arable land, we found that the area of arable land increased
in 2004–2005, 2007–2013 and 2015–2018; the vegetation area decreased. Jiang et al. (2017)
also pointed out that the expansion of irrigated farmland led to the degradation of
some natural vegetation. The Aral Sea Basin is also a hot spot for abandoned farmland.
The residents of the former prosperous ports migrated to Kazakhstan and Uzbekistan due
to the dryness of the Aral Sea, and a large amount of arable land was abandoned.
Abandoned farmland was gradually restored to other vegetation types.

Accuracy verification
To reflect the accuracy of the analysis results, we used the remote sensing data of Landsat
7 Collection 1 Tier 1 with a spatial resolution of 30 m. The auxiliary data is Google
Earth images. The combination of the two images can distinguish the types of surface
features in the study area and create a high-precision classifier (Yun et al., 2010; Löw et al.,
2018; Pauleus & Aide, 2020). Based on the ArcGIS platform, we randomly selected 80
sampling points in the study area to establish a circular buffer with a radius of 1,000 m.
We conducted visual interpretation of shape files based on Landsat 7 and Google Earth
images, and calculated the pixel area of objects in the buffer area and compared them
with the area calculated by the abundance map in the same buffer area. The vegetation
coverage area calculated by LSMM was taken as the abscissa, and the interpretation result
was taken as the ordinate. The scatter plot is shown in Fig. 9. The scatter points are evenly
distributed near the line with a slope of 1.

The root mean square error (RMSE), determination coefficient (R2) and SSIM
parameters were used to quantitatively evaluate the experimental results.

From Fig. 9, there are more points at the lower end of the y ¼ x line than at the upper
end, indicating that the vegetation coverage calculated by the LSMM is higher than the
vegetation coverage interpreted by Landsat. However, most of the points are distributed
on the line R2 = 0.98, showing that the calculated value has a significant relationship with
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Figure 9 Two-dimensional scatter diagram of calculated and interpreted values.
Full-size DOI: 10.7717/peerj.10747/fig-9
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the interpreted value. RMSE is small, representing a slight difference between the
calculated and interpreted values. The SSIM is 0.88, indicating that there was a significant
similarity between the calculated planting area and the interpreted value.

DISCUSSION
Vegetation dynamics
With the decrease in water, the change in vegetation coverage in the Aral Sea Basin is a
matter of concern. Because the watershed is located at the junction of five countries,
detailed information on vegetation coverage is difficult to obtain using traditional
measurement methods (Lioubimtseva, 2014). In this study, by using a linear regression
model to analyze the temporal and spatial changes in vegetation coverage, we found
that the overall natural vegetation coverage in the Aral Sea Basin has continued to increase
with the decrease in water bodies since 2000. This result indicates that the vegetation
coverage in the Aral Sea area has improved, but Piao et al. (2011) and Jiang et al. (2017)
showed that the vegetation in the Aral Sea area was degraded. There are two main reasons
for the inconsistent results: (1) Previous studies were conducted at different scales,
focusing on part of the Aral Sea basin or the entire Central Asian region (Xi & Sokolik,
2016; Jiang et al., 2017; Xu, Wang & Yang, 2017); (2) A variation in time spans. Some
studies have shown that the Aral Sea Basin had an obvious degradation trend before
2000 (Crighton et al., 2013; Piao et al., 2011). We focused on 2000–2018. The vegetation
improvement areas are mainly located in Kyrgyzstan, Tajikistan and along the riverbanks.
Degraded areas are mainly located in southern Kazakhstan, where the oil, natural gas
and chemical industries are thriving, but their extraction and transportation processes
destroy the surface vegetation (Karnieli et al., 2008), especially sparse vegetation.

Causes of vegetation dynamics
At present, the driving factors of vegetation change in this area are still unclear, and
previous studies are limited to the impact of climate change on vegetation coverage
(De Beurs et al., 2015). The study of vegetation cover does not omit the interference of
cultivated land and artificial green space on the exploration of vegetation cover driving
forces. The change in the coverage of cultivated land and artificial green space is
determined by human activities. When discussing the driving force of vegetation cover
change, cultivated land affects the analysis results. Therefore, distinguishing between
cultivated land and natural vegetation is an important part of exploring the driving
force of vegetation coverage. Climate and human activities jointly affect vegetation change,
both of which need to be considered when exploring the driving forces of vegetation
coverage. Climatic and human factor analysis concluded that the reason for the change in
natural vegetation cover from 2000 to 2018 is the development of irrigated farmland in
desert areas. This is clearer in northern Turkmenistan and southern Kazakhstan desert
areas. Using Google Earth software, we found that there is abandoned farmland in Eastern
Kazakhstan, Amu Darya, and lower reaches of the Sylar River, accounting for 13% of
the irrigated farmland in the Aral Sea Basin, which is also suitable for farming. Studies have
shown that approximately one-third of river water is diverted to cultivated land, and

Su et al. (2021), PeerJ, DOI 10.7717/peerj.10747 18/26

http://dx.doi.org/10.7717/peerj.10747
https://peerj.com/


unreasonable irrigation of farmland is also a major reason for the decrease in water volume
in the basin. In particular, the irrigation of farmland in Uzbekistan and Kazakhstan is a key
factor affecting the decline of the Aral Sea (Löw et al., 2018).

Since the mid-1990s, the temperature in Central Asia has been rising rapidly and is
currently the highest on record (Davi et al., 2015). Rising temperatures accelerate the
melting of glaciers and replenish water sources. Kyrgyzstan has begun to implement
afforestation policy, mainly including the Batken area, the Djalal-abad area, and the Naryn
area, where the afforestation area is also increasing with an annual growth rate of 8%.
These data indicate that national policy decisions and production inputs in the past
twenty years may also affect vegetation coverage. Population dynamics, industrial
structure, and other factors may also play an important role in vegetation dynamics, and
further research on the spatial pattern of vegetation dynamics is needed. At the same time,

Figure 10 Comparative Results. (A) MCD12Q1 feature classification product data; (B) natural vegetation coverage calculated by LSMM. Images 1,
2, 3 and 4 are satellite image (Obtained from Google Earth) of corresponding positions, which are used for accuracy verification.

Full-size DOI: 10.7717/peerj.10747/fig-10
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abandoned arable land is gradually restored to vegetation (Hauck et al., 2016).
The increased precipitation and glacial melt water cannot compensate for the water loss of
the Aral Sea (Yang et al., 2020), and the increase in natural vegetation coverage and
decrease in desert area do not mean that the ecological crisis in the region is alleviated.
The environmental problems of the Aral Sea Basin need to be studied further.

Comparative results
MCD12Q1 is a land cover type product of the MODIS tertiary data. The land cover
dataset contains seventeen major land cover types, including vegetation and arable land
(Zhang & Roy, 2017). However, during the application process, we found that the
update time of the data product lags the original data of MODIS, and there is a
phenomenon of inaccurate classification of individual features. We compared the natural
vegetation cover abundance map calculated by LSMM with the product data of
MCD12Q1. The areas with inconsistent classifications were verified using Google Earth
data. As shown in Fig. 10, there are forests in the 1, 2, 3 and 4 point area, and the same area
in the MCD12Q1 is shown as grass or other features. The results show that the natural
vegetation cover abundance map calculated by the LSMM is reliable.

CONCLUSIONS
Based on the remote sensing image data of the GEE platform and strong storage
calculation ability, this study uses MOD13A1 as the data source and Landsat 7 Collection 1
data as the verification data. LSMM was used to calculate the vegetation coverage of the
Aral Sea Basin and the analysis reached the following conclusions:

1. Correlation analysis of changes in the area covered by local objects showed that the
increase in cultivated land area has a significant relationship with the decrease in
desert area. The area where the spatial distribution of cultivated land area increases is
similar to the area where the desert is significantly reduced. It also shows that the main
reason for the decrease of downstream water is the draw of water to cultivated land.

2. With the reduction of water, the natural vegetation coverage in the Aral Sea Basin has
shown an upward trend from 2000 to 2018, and the vegetation coverage increased by
17.77% during this period. The improvement areas of natural vegetation are mainly
distributed in the eastern mountain areas (Tianshan and Pamir) and delta coasts.

3. Human activity has been a major factor in the vegetation cover changes in the Aral Sea
Basin in the past nineteen years, and the migration of cultivated land is the dominant
factor. Among the climatic factors, the main factor affecting the change in vegetation
coverage in the Aral Sea Basin is precipitation, followed by temperature.
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