Rocks of different mineralogy show different <u>temperature characteristics</u>: implications for biodiversity on rocky seashores

Nathan Janetzki 1*, Kirsten Benkendorff 2, Peter G. Fairweather 1

¹ College of Science and Engineering, Flinders University, Adelaide, South Australia 5001, Australia

² Marine Ecology Research Centre, School of Environment, Science and Engineering, Southern Cross University, Lismore, New South Wales 2480, Australia

* Corresponding author

 $Postal\ address:\ College\ of\ Science\ and\ Engineering,\ Flinders\ University,\ GPO\ Box\ 2100,$

Adelaide, South Australia 5001, Australia.

Nathan Janetzki email address: nathan.janetzki@outlook.com

Kirsten Benkendorff email address: <u>kirsten.benkendorff@scu.edu.au</u>

1 Abstract

- 2 As some intertidal biota presently live near their upper tolerable thermal limits when
- 3 emersed, predicted hotter temperatures and an increased frequency of extreme-heat
- 4 events associated with global climate change may challenge the survival and persistence of
- 5 such species. <u>To predict the biological ramifications of climate change on rocky seashores</u>,
- 6 <u>ecologists have collected baseline rock temperature data, which has shown substrate</u>
- 7 temperature is heterogenous in the rocky intertidal zone. A multitude of factors may affect
- 8 rock temperature, although the potential roles of boulder surface (upper versus lower),

lithology (rock type) and minerology have been largely neglected to date. Consequently, a 9 common-garden experiment using intertidal boulders of six rock types tested whether 10 temperature characteristics differed among rock types, boulder surfaces, and whether 11 temperature characteristics were associated with rock mineralogy. The temperature of the 12 upper and lower surfaces of all six rock types was heterogeneous at the millimetre to 13 14 centimetre scale. Three <u>qualitative</u> patterns of temperature difference were identified on boulder surfaces: gradients; mosaics; and limited heterogeneity. The frequency of 15 occurrence of these temperature patterns was heavily influenced by cloud cover. Maximum 16 17 temperature differed consistently between rock types and surfaces, with the hottest boulder temperatures measured on the hottest sunny days. Upper surfaces were generally 18 hotter than lower surfaces, plus purple siltstone and grey siltstone consistently had the 19 20 hottest temperatures and white limestone and quartzite the coolest. Each rock type had 21 unique mineralogy, with maximum temperatures correlated with the highest metallic oxide 22 and trace metal content of rocks. These baseline data show that rock type, boulder surface and mineralogy all contribute to patterns of heterogenous substrate temperature, and 23 24 should therefore be considered when taking substrate temperature measurements to make 25 predictions of the future fate of species and populations under various climate change

Commented [BH1]: As you indicated in your response, these are qualitative categories that you identified. Especially since these fall along a continuum you just need to be clear that these are qualitative categories. A gradient has a specific physical meaning that is very different from a trend.

Commented [BH2]: I'm not sure this is the take-home message- if researchers are measuring temperatures it almost doesn't matter what drives differences. I think the real relevance of this study is that the geological history of a site (which determines what rocks are there) can influence risk of mortality.

28 1.0 Introduction

scenarios.

26

27

30

31

- 29 Rocky seashores are one of the most thermally-variable and stressful habitats on Earth.
 - Rocky seashore substrata exposed to insolation can warm by as much as 10 20 °C while
 - emersed during low tide (Bertness 1999; Helmuth and Hofmann 2001; Harley 2008). This
- 32 extreme heat and temperature variability presents risks of desiccation and heat stress to

intertidal ectotherms (i.e. animals) that use rocky seashores as habitat (Connell 1972; Bertness 1999), which may challenge the survival and ultimately the persistence of some 34 intertidal species. Examples of the impacts of heat stress on intertidal species include mass-35 mortality events during heatwaves (Helmuth et al. 2002; Harley 2008; Seuront et al. 2019), 36 lower survival rates in thermally less-favourable habitats (Jones and Boulding 1999; Harley 37 38 2008; Gedan et al. 2011; Lathlean et al. 2013; Leal et al. 2020), and restricted vertical seashore distributions of some species (Raimondi 1988; Somero 2002; Harley 2003). 39 40 41 In response to these deleterious impacts from exposure to extreme heat, mobile intertidal ectotherms can employ behavioural thermoregulation and/or morphological adaptations to 42 minimise the risks posed by desiccation and heat stress (Pörtner and Farrell 2008). One 43 44 mode of behavioural thermoregulation involves retreating to the underside of boulders at 45 low tide (Chapman 2003; Chapperon and Seuront 2011a). Boulder lower surfaces are 46 sheltered from insolation and thus are purported to provide a cooler and more thermallystable habitat, relative to their thickness (Huey et al. 1989), in comparison to sun-exposed 47 boulder upper surfaces (Chapman 2003; Chapperon and Seuront 2011a; Aguilera et al. 48 49 2019). In the rocky intertidal zone, surprisingly few studies have quantified the temperature characteristics of upper versus lower boulder surfaces, with most studies instead 50 quantifying the temperature characteristics of various sun-exposed versus sun-protected 51 52 habitats (e.g. Garrity 1984; Denny et al. 2011; Chapperon et al. 2017). It is therefore difficult to ascertain from the published literature the actual magnitude of temperature difference 53

33

54

55

Commented [BH3]: Dampness has little to do with the temperature since there is no opportunity for cooling through evaporation. Presence of water reduces desiccation, but probably has less impact on temperature.

Deleted: and can remain damp when emersed

Deleted: . T

Deleted: they

that may exist between the tops and bottoms of boulders.

With predictions of hotter air temperatures and an increased frequency of extreme-heat events associated with global climate change (IPCC 2013), the survival and persistence of 60 some intertidal species is likely to be challenged further. To predict the future fate of 61 62 species and populations, ecologists have collected baseline rock temperature data (Helmuth 1999; Denny et al. 2011; Judge et al. 2011; Gunderson et al. 2019), created heat budget 63 64 models (Helmuth 1999; Choi et al. 2019), investigated how x species is affected by y substrate temperature (Raimondi 1988; Lathlean et al. 2012; 2013; Lamb et al. 2014), or 65 66 used biomimetic loggers to investigate how internal body temperatures can be variously 67 affected by environmental temperature (Helmuth & Hofmann 2001; Seabra 2011; Lathlean et al. 2015; Seuront et al. 2019. All of these studies confirm that temperature is an 68 important driving force that can influence the distribution of species on rocky seashores. 69 70 71 Comparing across studies that investigate substratum temperature, a number of rock 72 temperature observations have been made. Rock temperature is affected by its colour (Raimondi 1988; Judge et al. 2011; Gunderson et al. 2019), size and orientation relative to 73 74 the sun (Bertness 1999; Chapperon et al. 2016; Chapperon et al. 2017). The temperature 75 characteristics of rocks are also influenced by their lithology (rock type). For example, 76 Raimondi (1988) showed that basalt was hotter than granite. However, the role lithology is often conflated with the role of surface colour. Marshall et al. (2010) reported lighter-77 78 coloured sandstone was cooler than darker-coloured ferruginous sandstone. Furthermore, while Judge et al. (2011) failed to identify their rock lithology, they reported that black rock 79 was hotter than white rock. These studies aside, it appears that the role of rock type in 80 affecting substrate temperature has been largely neglected to date. It is possible that the 81 specific mineral constituents of different rock types influence their temperature 82

59

Moved down [1]: The temperature characteristics of rocks are also influenced by their lithology (rock type).

Deleted: For example, Raimondi (1988) showed that basalt was hotter than granite, while

Commented [BH4]: This doesn't really logically followthese differences may have been influenced by lithology, but they also could have been driven largely by surface color. I tried to reorganize so that it makes more sense.

Moved (insertion) [1]

Deleted: The temperature characteristics of rocks are also influenced by their lithology (rock type).

89 characteristics, although this does not appear to have been investigated for rocky seashore 90 substrata. Investigations of small granitic test cubes have shown that their different mineral constituents can have a temperature range of up to 4 °C (Gómez-Heras et al. 2006). 91 92 Therefore, if ecologists are to accurately predict the future fate of species and populations 93 under various climate change scenarios, how rock types and their specific mineralogies may Deleted: y's 94 affect temperature characteristics needs to be better understood. Deleted: -95 96 Studies investigating intertidal rock temperature have also shown that observed substratum 97 temperature is not homogenous (e.g. Huey et al. 1989; Gómez-Heras et al. 2006; Helmuth et al. 2006; Lathlean et al. 2012; Gunderson et al. 2019; Leal et al. 2020). Instead, substratum 98 temperature is heterogeneous, with temperature differences up to 25.5 °C identified 99 100 between the hottest and coolest locations (e.g. Huey et al. 1989; Denny et al. 2011; Lathlean 101 et al. 2012; Gunderson et al. 2019; Leal et al. 2020). The scale of these patterns of 102 temperature difference can vary enormously, from many kilometres down to millimetres (Helmuth et al. 2006; Denny et al. 2011; Judge et al. 2011; Lathlean et al. 2012; Lathlean et 103 104 al. 2013). Identifying the sources of this temperature heterogeneity can be difficult, with 105 rocky seashores not being equal in terms of their physical attributes, with variations in 106 latitude (Helmuth et al. 2006; Lathlean et al. 2014), shore slope (Helmuth & Hofmann 2001; 107 Harley 2008), azimuth (Helmuth & Hofmann 2001; Harley 2008; Chapperon et al. 2017), 108 microhabitat features (Chapperon & Seuront 2011a; Judge et al. 2011; Lathlean et al. 2015), 109 rock type (Raimondi 1988; Marshall et al. 2010; Judge et al. 2010); relative humidity 110 (Lathlean et al. 2014), wave splash (Helmuth et al. 2006), the timing of low tide (Helmuth et al. 2002; 2006) and microtopography (Lathlean et al. 2012; Choi et al. 2019) all contributing

Deleted:

111

112

to temperature heterogeneity.

116 To investigate how rock temperature characteristics may be affected by rock type, 117 118 mineralogy, and boulder surface (upper versus lower), a common-garden experiment using 119 boulders of six seashore rock types was established. Three rock temperature characteristics 120 were investigated on the upper and lower surfaces of boulders, which were: the spatial 121 arrangement (i.e. patterns) of temperature on boulder surfaces; the maximum surface temperature; and the surface temperature range (i.e. maxima – minima). We focused on 122 maxima due to extreme temperatures having a greater impact on organism survival and 123 124 fitness (e.g. Jones and Boulding 1999; Harley 2008; Gedan et al. 2011). Sampling was conducted over an 18-month timeframe to investigate whether daily weather conditions 125 and seasonality affected rock temperature. We also quantified the mineralogy of each rock 126 type and investigated which minerals were correlated with rocks showing different 127 128 temperature <u>characteristic</u>s. Consequently, <u>this experimental approach allowed us to test</u> 129 the following four hypotheses: **Deleted:** five 1) boulders of different rock types have different patterns of temperature <u>heterogeneity</u> 130 131 across their surfaces; 2) the maximum temperature reflected from the rock surface differs between rock types 132 133 and between the sun-exposed top and shaded bottom-surface of boulders; 134 3) the magnitude of the range in temperature differs between rock types or surfaces; 135 4) mineralogy differs between rock types; and Commented [BH5]: This isn't an hypothesis- it is a tautology. Mineralogy and rock type are the same thing, right? In other words they are different "rock types" 136 4) rock-related differences in <u>temperature</u> maxima are correlated with their mineral because they have different mineralogy. Deleted: 5 137 composition. 138

2.0 Materials & methods

139

2.1 Boulder selection The geologically-diverse Fleurieu Peninsula of South Australia is comprised of a variety of rock types. Six of these, in the form of small boulders (n = 6 boulders per rock type, maximum dimension ≤30 cm), were collected from four seashores (Appendix Figure A1). From Southport (35°10′ S, 138°27′ E) boulders of either white fossiliferous limestone or orange fossiliferous limestone were collected, while fossiliferous sandstone that was yellowish brown in colour was collected from Seaford (35°11' S, 138°28' E) (Appendix Figures A1 & A2). The two limestones and the fossiliferous sandstone had coarse surface textures and complex surfaces that were interspersed by cracks and depressions. From Marino Rocks (35°02′ S, 138°30′E) boulders of both purple siltstone and grey siltstone were collected, while quartzite that was greyish to yellow-brown in colour, was collected from O'Sullivan Beach (35°07' S, 138°28'E) (Appendix Figures A1 & A2). The two siltstones had smooth surface textures and featureless surfaces that generally lacked cracks or depressions, while quartzite had coarse, angular surfaces that also lacked cracks and depressions. Six boulders of each rock type were collected (total N = 36), with <u>boulders specifically</u> selected to span the range of shapes and thicknesses that occurred for each type on each seashore (Appendix Figure A2). Measurements of thickness were collected for each boulder to be used as a co-variate in statistical analyses. However, as the boulders investigated had only a naturally narrow range of thicknesses (6-14 cm), boulder thickness was never a significant co-variate, and was hence removed from all analyses to improve their statistical power.

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

2.2 Experimental location

Boulders were transplanted into a paddock on a farm at Kangarilla, which was located approximately 20 km inland from the coast (Appendix Figure A1). This secure setting was selected to be independent of any confounding variables. For example, had experimentation been conducted at one of the seashores where boulders were sourced, variables such as wave splash, tidal movement, sediment or wrack deposition, shading by cliffs, under-boulder substratum or angle of repose may have affected the temperature of some boulders and not others. Setting boulders into a sandy beach was not attempted due to the boulder losses sustained during a translocation experiment in the same region (Liversage et al. 2014; Janetzki et al. 2018). Issues with sand scour or burial of boulders by sand were also likely on a sandy beach. Moreover, given the large population of the Adelaide region (1.3 million people in 2016), interference with boulders left lying on a beach was considered likely.

2.3 Design of the common-garden experiment

A square plot measuring 3 x 3 metres was excavated to a depth of approximately 10 centimetres (Appendix Figure A2). The ironstone and soil matrix unearthed was replaced by washed yellow beach sand to simulate substrate matrices where experimental boulders were sourced (Appendix Figure A2). The location of this plot was selected to ensure it had an east-west orientation (i.e. to follow the movement of the sun) free from any physical obstructions (e.g. buildings, trees) that might shade the plot. Boulders were arranged on the sand matrix in four groups that each contained nine boulders (Appendix Figure A2). Boulders were arranged such that each group could be sampled without accidently disturbing or shading other groups (Appendix Figure A2). Boulders were randomly assigned

to each group and their location was re-randomised on four occasions. The boulder plot was covered with a tarpaulin to shelter boulders from insolation prior to sampling, although small differences in surface temperature among rock types were identified at time zero on

several days sampled (Appendix Figures A3 & A4).

Deleted:

Rock temperatures were measured on 17 days spread over an 18 month period (Table 1). Each day was targeted for its forecast cloud cover and air temperature to investigate generally how rock temperature may be influenced by seasonality and daily weather conditions. Sampling was completed on days where no rainfall was forecast, as wet surfaces were likely to confound our ability to accurately measure rock temperature (Lathlean and Seuront 2014; Seuront et al. 2018). Approximately 20 minutes before the commencement of sampling, the tarpaulin was removed from the boulder plot and each boulder was submersed (<1 minute) in a tub filled with seawater. Submersion wetted the boulder surfaces to simulate conditions on the seashore, where boulder surfaces are wet when first emersed by the receding tide. Each boulder was returned to its specific spot in the plot where it was allowed to drain and dry (this took no longer than 5 – 10 minutes as water rarely permeated boulder surfaces). There was no evidence of differential patterns of drying over this 5 - 10 minute timeframe among the six rock types investigated.

The surface temperature of each boulder was measured at one hour intervals, commencing at 0900 hours and concluding at 1400 hours daily. This five-hour time course was selected to simulate the average length of time boulders on local mid-lower seashores are emersed during a single low tide (NJ unpublished data). The 0900 – 1400 start and finish times were selected to simulate the timing of summer daytime low tides for seashores on the Fleurieu

Peninsula. Sunrise occurred between 0555 hours during the height of summer and 0724 hours during the depths of winter.

Surface temperature was measured with a Fluke Ti20 thermal imaging camera (Fluke Corporation, Everett). The thermal resolution of this camera was ≤0.2 °C at 30 °C, with accuracy to 2 % or 2 °C, whichever was greater. Default camera settings were employed, including emissivity, which was set at 0.95. This default emissivity was deemed appropriate (see Appendix for more information regarding emissivity), as previous studies have shown that the emissivity of dry rock generally ranges between 0.95 and 1 (Rivard et al. 1995; Cox and Smith 2011; Lathlean et al. 2012). Surface temperature was captured *in situ*, with archived thermal images processed later. Upper and lower boulder surfaces were imaged separately. In this study, lower surfaces are defined as the underside of the boulder that was in contact with the substratum and thus sheltered from insolation. Upper surfaces are defined as all remaining surfaces that were not in contact with the substratum and were potentially exposed to insolation.

Thermal images were recorded for all upper surfaces first without touching boulders. For lower surfaces, each boulder was briefly flipped upside down, and a thermal image recorded, before the boulder was returned to its original position. Overall, a total 7344 thermal images were collected. Air temperature and cloud cover were also recorded at one-hour intervals when taking images. Air temperature was measured in the shade to the nearest degree Celsius with a glass thermometer. Cloud cover (i.e. sky condition) was estimated by how many eighths of sky were covered by cloud, which ranged from zero oktas (sunny, no clouds) to eight oktas (sky completely cloudy, no sunshine) (Li and Lam 2001).

Commented [BH6]: If you calibrated this using tape, then say so here. Especially since you go into such fine detail about the chemical composition of each rock type, it really stands out here that you use a generic emissivity value. If you have a range of emissivities for each rock type, a simple way out would be to calculate what the range of temperatures reported would be on your camera by taking multiple measurements of the same spot but then changing the value for emissivity. This will give you a quantifiable error caused by using a generic emissivity for all of your rock types. If you didn't do this, just be upfront that you chose a generic value even though these likely differed. The one I do worry about it quartzite so it would be worth digging through the geology or engineering literature to see what others have reported.

Each day sampled was assigned to one of two weather condition categories based on their cloud cover. Days where the cloud cover never exceeded 3 oktas were assigned the 'sunny' category, while days where the cloud cover exceeded 3 oktas during sampling were assigned the 'cloudy' category (Table 1).

Archived thermal images were subsequently processed using the InsideIR version 4.0 software (Fluke Corporation, see Appendix for more information). The maximum and minimum temperature of substrata were determined for each replicate surface, and a temperature range (maximum - minimum) for each surface was calculated. The orientation, relative to the sun, for the maximum temperature, was categorised as either occurring on the boulder side nearest the sun, or on any other boulder side. Transects were drawn on images of boulder surfaces from the centre of the boulder side nearest the sun to the centre of the side opposite to quantify millimetre-to-centimetre scale patterns of temperature difference. Analysis of the temperature patterns along transects was undertaken on three sunny and three cloudy days, spanning the range of maximum daily air temperatures sampled. Images for the zero-hour and four-hour exposure times were investigated to look at changes across the day.

2.4 XRF analyses

The mineralogy of each rock type was determined through X-Ray fluorescence (XRF) dispersion analysis, with separate tests completed for major mineral and trace elemental composition for three samples of each rock type. XRF analysis of each rock sample tested for 11 major minerals and 40 trace elements, with concentrations returned as % and parts per thousand, respectively. For major minerals, approximately one gram of each oven-dried

sample (at 105 °C) was accurately weighed with four grams of 12-22 lithium borate flux (Norrish and Hutton 1969). The mixtures were heated to 1050 °C in a platinum/gold crucible for 20 minutes to completely dissolve the sample, and then poured into a 32 mm platinum/gold mould heated to a similar temperature (Norrish and Hutton 1969). The melt was cooled rapidly over a compressed air stream and the resulting glass disks were analysed on a PANalyticalAxios Advanced wavelength dispersive XRF system using the CSIRO in-house silicates calibration program. For trace elements, approximately four grams of each ovendried sample (at 105 °C) was accurately weighed with one gram of Licowax binder and mixed well (Norrish and Hutton 1969). The mixtures were pressed in a 32 mm die at 12 tons pressure and the resulting pellets were analysed on a PANalyticalAxios Advanced wavelength dispersive XRF system using the CSIRO in-house powders program (Norrish and Hutton 1969).

2.5 Statistical analyses and data presentation

Frequencies of occurrence (%) for three patterns of temperature difference were tallied for the upper and lower surfaces of boulders for all six rock types after four hours exposure to insolation. Only data for three cloudy versus sunny days are presented, because each day is not strictly independent of each other.

Line charts plotting temperature dependent variables (maxima, range) versus exposure time were used to rank rock types in descending order from 6 (largest) to 1 (smallest) for their mean temperature range and maxima, for each surface on each day after four hours. The sum of ranks allocated to each rock type was then used to assign an overall rank to each rock type from 6 (largest) to 1 (smallest) for their temperature range and maxima, with the

highest ranked rock types having the highest sum of ranks. Upper and lower surfaces were ranked separately. To quantify changes over time exposed, dependent variables for the upper and lower surface of each replicate boulder after four hours were subtracted from the same dependent variables for the same replicate surface at zero hours. This gave values for the change in maxima and temperature range over four hours, for the upper and lower surfaces of each boulder, on each day sampled. Comparing the magnitude of change over four hours was used in place of formal statistical tests, as measurements were made continuously for the same boulders and thus were not independent. To establish whether dependent variables differed between surfaces, upper-surface dependent variables were subtracted from lower-surface dependent variables, for each replicate boulder, for each exposure time on each day sampled. The resulting difference data were plotted as line charts to visually investigate surface differences over the exposure period.

Analyses were completed using PRIMER v7/PERMANOVA+ (PRIMER-e, Plymouth, UK), with significance set at α = 0.05. To test for mineralogical differences between rock types, separate multivariate analyses were completed for major mineral composition and trace element composition, with separate univariate analyses completed for the total content of each major mineral. Untransformed major-mineral data (measured as % composition) were used, while fourth-root-transformed (necessary to down-weight several dominant elements) trace-element data (measured as parts per million) were used. Euclidean-distance resemblance matrices were prepared, and PERMutational Analyses Of VAriance (PERMANOVAs) were run to test for mineralogical differences between rock types. For multivariate data, constrained ordination Canonical Analysis of Principal coordinate (CAP) plots (Anderson et al. 2008) were used to visualise rock-related mineralogical differences. A

leave-one-out procedure was used to test the allocation success of the discriminant function for rock groupings in CAP, with permutation tests used to test the significance of the trace test statistic and first canonical eigenvalue. Vector overlays of Spearman Rank correlations (for Rho values >0.8) were used to identify the major minerals and trace elements that best characterised the mineralogy of each rock type.

3.0 Results

Boulder upper and lower surfaces, for all six rock types, had generally a heterogeneous surface temperature differing in maxima and minima after four hours exposure to insolation on all days sampled (Figure 1). Moving in any direction across boulder surfaces (a representative thermal image showing each rock type's surface temperature is provided in Figure 2), temperature consisted of warmer and cooler areas with patch sizes <10 cm. When transects were drawn on thermal images, three qualitative patterns of temperature difference were identified. The first pattern was a temperature mosaic, which consisted of heterogeneous temperatures across the entire boulder surface (Figure 3a). The temperature difference between the warmest and coolest mosaic areas was ≥5 °C. The second pattern was a temperature gradient, where temperature appeared to gradually decrease from the side nearest the sun to the side opposite (Figure 3b). The temperature difference between the warmest and coolest gradient areas was ≥5 °C. The third pattern was limited temperature heterogeneity, which consisted of only small temperature differences <5 °C

Commented [BH7]: Need to be clear that this was a judgement call, not the results of any kind of objective analysis, especially if there was a continuum

Deleted: d

between the warmest and coolest areas (Figure 3c).

The frequency of occurrence for these three patterns of temperature difference was strongly influenced by daily weather conditions (Table 2). On cloudy days, almost all (>94 %) boulder surfaces for all six rock types were categorised as having limited temperature heterogeneity (Table 2). Temperature mosaics and gradients were seldom, if ever, observed on cloudy days (Table 2). On the two cooler sunny days, almost all (>94 %) boulder surfaces for all six rock types were categorised as having either temperature gradients or mosaics (Table 2). Temperature gradients were more common than temperature mosaics, in a ratio of 3:1, on these sunny days (Table 2). On the hottest sunny day, all three patterns of temperature difference were observed (Table 2); however, boulder surfaces became generally hot, with temperature differences between the warmest and coolest areas mostly <5 °C (Table 2, Figure 1). As a result, limited temperature heterogeneity was the most common (≥78 %) temperature pattern identified on the hottest sunny day (Table 2), with gradients and mosaics observed at much lower frequencies than on the other sunny days. On sunny days patterns of temperature difference differed among rock types. The coarse, angular surfaces of quartzite had a mosaic of fine millimetre to centimetre scale patches of heterogeneous temperature (Figure 2c, Appendix Table A1). The five remaining rock types all generally had temperature gradients, although the spatial arrangement of these gradients differed. The generally smooth and featureless surfaces of siltstone had simple gradients of warmer through cooler areas (Figure 2a-b, Appendix Table A1). In contrast, the two limestones and fossiliferous sandstone had complex surfaces intersected by shallow depressions and pits (<1 cm depth). Consequently, their temperature gradients were interrupted intermittently by these depressions and pits, which could be either warmer or

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

Commented [BH8]: Still not 100% convinced this is necessarily real. Quartzite can have a highly reflective, low emissivity surface. Did you measure emissivity using the tape measure approach you described in your response? If so, that needs to be included here. As an experiment, take a picture of someone wearing glasses using your IR camera and look at what the "apparent" temperature is of their glasses, which isn't real but is driven by the reflective surface. At this point, I think all you need is a sentence above recognizing that this is a potential source of error.

Commented [BH9]: If this is the case, then it isn't necessarily a gradient. Whether or not a surface is an actual gradient or a mosaic has very real biological consequences for animals seeking shelter. Again, just be clear throughout that you are using these terms in a very loose, qualitative

cooler (by up to 2-3 °C) than the flatter surfaces immediately around them (Figure 2d-f). All

three patterns of temperature difference were related to boulder orientation, with the hottest temperatures generally recorded for the side of boulders nearest the sun (>92 %, Table 2). Each rock type generally had the same pattern of temperature difference on its upper and lower surfaces.

3.2 Maximum temperature differs between rock types and surfaces

After four hours exposure the mean maximum temperature was hotter than the air temperature for all six rock types on both surfaces, especially on sunny days (Figure 4a-b). The maximum temperature of upper and lower surfaces generally increased with time, with maxima often peaking around four hours and plateauing thereafter (Figure 5a). The largest increases in maxima were generally recorded during the first two hours exposure to insolation, with smaller increases (and sometimes decreases) recorded thereafter (Appendix Figures A3 & A4). After four hours, the hottest maximum recorded was 57.8 °C (sunny day, air temperature = 39 °C) for the upper surface of grey siltstone while the coolest maximum was 14.4 °C (sunny day, air temperature = 12 °C) for the lower surface of quartzite. Over four hours, increases in mean maximum surface temperature >20 °C were recorded for some rock types on several days, with the greatest increases recorded for upper surfaces on sunny days (Appendix Figure A5).

When rock types were ranked from hottest to coolest mean maximum temperature after four hours, a consistent rank order across replicate days was identified, irrespective of weather conditions (Table 3). For both surfaces, the two siltstones consistently recorded the hottest maxima, followed by fossiliferous sandstone and orange limestone in descending rank order (Table 3, Figure 5a). On upper surfaces, white limestone consistently recorded

the second coolest maxima and quartzite the coolest, while on lower surfaces both rock types were equally ranked in terms of the coolest maxima (Table 3). After four hours exposure for the 17 replicate days, the smallest difference for mean maxima across the six rock types was 2.5 °C, while the largest difference was 10.2 °C. A similar rank order was identified for the change in maxima over four hours for both surfaces (Table 3, Appendix Figure A5). The two siltstones generally had the largest increase in maximum temperature, while white limestone and quartzite had the smallest (Table 3, Appendix Figure A5).

Generally, maxima behaved similarly on upper and lower surfaces (Figure 4c). At the commencement of sampling on most days, small negative differences were detected between upper and lower surface maxima for all rock types, with lower surfaces having mean maxima that were slightly hotter (<2 °C) than upper surfaces (Appendix Figure A6). Thereafter, small positive differences were detected between upper and lower surfaces for most rock types, with upper surfaces having hotter mean maxima than lower surfaces, although these differences never exceeded 5 °C (Figure 5b, Appendix Figure A6). The only notable exception to this trend was quartzite, which generally had small negative differences throughout, with lower surfaces sometimes having hotter mean maxima than upper surfaces (Figure 5b). The difference in maxima between upper and lower surfaces was always smallest on cloudy days, with larger differences detected on sunny days (Appendix Figure A6). Minima behaved similarly to maxima over four hours exposure to insolation with the same trends identified for rock type, surface and time exposed (refer to minima subsection in Appendix for more details).

3.3 Temperature range does not consistently differ between rock types or surfaces

Generally, temperature range behaved similarly on upper and lower surfaces (Appendix Figures A7 & A8). Temperature range was influenced by weather conditions (Figure 1). A larger temperature range (5 – 15 °C) that was more variable between rock types and exposure times was recorded on sunny days for both surfaces (Figure 5c, Appendix Figures A7 & A8). In contrast, a smaller temperature range (generally <5 °C) that was less variable between rock types and exposure times was recorded on each cloudy day for both surfaces (Appendix Figures A7 & A8). After four hours, the largest temperature range recorded was 16.3 °C (sunny day, air temperature = 15 °C) on the upper surface of grey siltstone while the smallest temperature range was 1.6 °C (cloudy day, air temperature = 38 °C) on the upper surface of purple siltstone.

When rock types were ranked from largest to smallest for the mean temperature range after four hours, there was little evidence of a consistent ranking across replicate days for both upper and lower surfaces (Table 4, Appendix Figures A7 & A8). Rankings were similarly variable after both shorter and longer exposure times, with rank order often changing from one exposure time to the next (Appendix Figures A7 & A8). No consistent ranking was identified either for the change in mean temperature range over four hours for either surface (Table 4, Appendix Figure A9).

The temperature range difference between upper and lower surfaces (i.e. upper range – lower range) was always smallest on cloudy days, with larger differences detected on sunny days (Appendix Figure A10). On cooler days with a maximum daily air temperature <30 °C, regardless of the day condition, small positive differences were generally detected, with the upper surfaces of most boulders having a larger temperature range than lower surfaces

(Appendix Figure A10). In contrast, on hotter days with a maximum daily air temperature ≥30 °C, small positive differences were detected only for the two siltstones. Small negative differences were often measured for the two limestones and quartzite, with lower surfaces having a larger temperature range than upper surfaces (Appendix Figure A10). Overall, the two siltstones generally had the largest range difference between upper and lower surfaces, while white limestone and quartzite often had the smallest (Appendix Figure A10). 3.4 Major mineral and trace elemental composition differs between rock types Silicon dioxide (SiO₂) and calcium oxide (CaO) were the dominant major minerals detected, with orange limestone having a CaO-dominated mineralogy and all other rock types a SiO₂dominated mineralogy (Appendix Table A3). Major mineral composition significantly differed among rock types (PERMANOVA permuted p-value = 0.0001). For rock type differences, a CAP constrained-ordination plot used five axes to discriminate major-mineral differences, with the first two axes accounting for 99.54 % (prop. G) of the total mineralogical variability (Figure 6a). All samples were correctly classified using a leave-oneout procedure, and permutation tests for both the trace test statistic (p = 0.0001) and first canonical eigenvalue (p = 0.0001) were highly significant. The vector overlay of Spearman rank correlations (for rho values>0.8) for major minerals associated with rock differences showed that each rock type had a specific major-mineral composition (Figure 6a). Grey siltstone was characterised by higher aluminium oxide and potassium oxide contents, quartzite by the highest SiO₂ content, and orange limestone and fossiliferous sandstone by higher CaO contents (Figure 6a). Rock type differences in the content of specific major

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

minerals were also detected for 10 from 11 major minerals (largest significant permuted

PERMANOVA p-value = 0.0330 for magnesium oxide), with only sulfur trioxide not differing between rock types (PERMANOVA permuted p-value = 0.1244).

Trace-element composition significantly differed among rock types (PERMANOVA permuted p-value = 0.0001). For rock type differences, a CAP constrained-ordination plot used two axes to discriminate trace-element differences, with these two axes accounting for 79.8 % (prop. G) of the total mineralogical variability (Figure 6b). Some 88.9 % of samples were correctly classified using a leave-one-out procedure, and permutation tests for both the trace test statistic (p = 0.0001) and first canonical eigenvalue (p = 0.0001) were highly significant. The vector overlay of Spearman rank correlations (for rho values >0.8) for trace elements associated with rock type differences suggested that each rock type had a specific trace-element composition (Figure 6b). The two siltstones were characterised by a higher trace-metal content (manganese and zirconium especially), quartzite by generally low trace-element quantities (although it had the highest ytterbium content), and the two limestones and fossiliferous sandstone by a higher chlorine content (Figure 6b, Appendix Table A4).

3.5 Rock-related differences in maximum temperature are correlated with their mineral composition

The vector overlay of Spearman rank correlations (for rho values >0.8) in CAP plots (Figure 6) showed that the two siltstones, which consistently had the hottest maxima, had mineralogies that were characterised by a higher content of metallic oxides and trace metals versus all other rock types (Figure 6, Appendix Tables A3 & A4). White limestone and quartzite, which consistently had the coolest maxima, were characterised by the highest content of SiO₂ and the lowest content of most metallic oxides and trace metals versus all

other rock types (Figure 6, Appendix Tables A3 & A4). Meanwhile, orange limestone and fossiliferous sandstone, which had intermediate maximum temperatures, were characterised by higher contents of CaO and chlorine, and metallic oxide and trace metal quantities that were generally lower than the two siltstones but greater than white limestone and quartzite (Figure 6, Appendix Tables A3 & A4).

483 484

499

500

478

479

480

481

482

4.0 Discussion

Under common-garden conditions that simulated low tide, we were able to isolate 485 486 temperature behaviour that was a function of the rocks themselves, not their setting. Weather condition was the largest determinant of boulder temperature, with cloud cover 487 moderating all temperature dependent variables. Air temperature was strongly associated 488 489 with boulder temperature, with the hottest boulder temperatures measured on the hottest 490 sunny days. Upper and lower surfaces had patterns of temperature difference, with three 491 patterns identified: gradients; mosaics; and limited heterogeneity. On cloudy days, limited heterogeneity was identified on most surfaces for all rock types. On the hottest sunny day 492 493 sampled, and with rocks greatly heated, limited heterogeneity was again the dominant 494 pattern identified, although some temperature gradients and mosaics were observed. On the remaining sunny days, most quartzite surfaces developed temperature mosaics, while 495 the surfaces of all other rock types generally developed temperature gradients. The 496 497 maximum (and minimum) temperature differed consistently between rock types and surfaces. Upper surface maxima were generally hotter (<5 °C) than lower surface maxima, 498

Commented [BH10]: What is "temperature behaviour"?

Deleted: characteristics

with the two siltstones consistently being the hottest and quartzite and white limestone the

coolest. Each rock type had a unique mineralogy. The maximum temperature correlated

with the metallic oxide and trace metal content of rocks, with the hottest rocks having the highest metallic oxide and trace metal contents.

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

502

503

These results provide evidence that rock type is likely to contribute to the heterogenous patterns of temperature observed across rocky seashores. Under common-garden conditions, differences in maximum surface temperature of up to 10.2 °C were identified among the six rock types. This experimental observation supports field data previously collected on rocky seashores, which show different rock types can have different surface temperatures (Raimondi 1988; Marshall et al. 2010; Judge et al. 2011). Besides differences $\underline{\text{in temperature, the six rock types investigated also support different patterns of}}$ temperature variation across the boulder surface. For example, temperature mosaics were generally observed on quartzite boulders only. These temperature mosaics may have developed because of the specific microtopographic features of quartzite (i.e. coarse, angular surfaces), with microtopography associated with temperature heterogeneity on rocky seashores elsewhere (Lathlean et al. 2012; Choi et al. 2019). However, they also could have reflected differences in long-wave emissivity not accounted for with our use of a generic emissivity value, and future studies should investigate variation in emissivity across the surface of quartzite to provide a more detailed understanding of how microtopography and emissivity interact to create impressions of temperature mosaics. Microhabitat features like cracks and depressions were unique to limestone and sandstone boulders here. These microhabitat features were always a different temperature to the flat surfaces immediately around them, with microhabitat features associated with temperature heterogeneity on

Commented [BH11]: ??

Extrapolating these results to the larger spatial scale of natural rocky seashores, our

other rocky substrates (Chapperon & Seuront 2011a; Judge et al. 2011; Lathlean et al. 2015).

experimental results indicate that rock type contributes to the temperature heterogeneity
 observed within and among rocky seashores.

Patterns of temperature difference were related to boulder orientation, with the hottest locations on all rocks generally observed on the side of boulders nearest the sun. Substrate orientation appears to affect the spatial arrangement of temperatures on rocky seashores generally, with rock faces orientated towards the sun (Harley 2008; Seabra et al. 2011; Chapperon et al. 2016; Chapperon et al. 2017; Aguilera et al. 2019) having the hottest surface temperatures. The potential biological relevance of the temperature patterns on boulder surfaces identified in this study have not yet been quantified. However, given that periwinkles will select cooler locations when offered centimetre-scale temperature gradients (Soto and Bozinovic 1998), and intertidal ectotherms generally can respond to habitat-scale temperature mosaics (e.g. Garrity 1984; Chapperon and Seuront 2011a; Judge et al. 2011; Chapperon et al. 2013), it is possible that mobile intertidal ectotherms may respond to the temperature patterns on boulder surfaces described here.

On the hottest sunny day sampled, boulder surfaces became generally uniformly hot with limited temperature heterogeneity. These uniformly hot boulder surfaces may represent the upper threshold of extreme thermal habitats for intertidal biota on boulders with a maximum dimension <30 cm, as the boulders sampled here were relatively thin (thickness ranged between 6-14 cm). Given the risks that desiccation and heat stress pose to organism survival and fitness (e.g. Jones and Boulding 1999; Harley 2008; Gedan et al. 2011; Monaco et al. 2015), and the exacerbation of these risks at the hottest environmental temperatures (Harley 2008; Seuront et al. (2019)), the disappearance of temperature mosaics and

gradients on hot, sunny days may be problematic for intertidal biota. If the cooler areas of mosaics or gradients are found to function as thermal refuges for intertidal biota, but these refuges disappear on the hottest days when they are needed most, then the thermal quality of these boulder habitats may be diminished on hot, sunny days. Consequently, organism survival and fitness may be challenged.

Maximum temperatures differed consistently among rock types, with the two siltstones always hottest and white limestone and quartzite the coolest. Rock types with the coolest temperatures were also the most thermally stable, as they had the smallest temperature increases while exposed to insolation over four hours. Thus some rock types possibly minimise thermal stress to biota more than others. The mechanisms that resulted in some rock types warming more slowly than others were not investigated here, but may be related to rock type differences in the amount infrared energy absorbed/reflected or the thermal conductance of specific mineral constituents (Seuront et al. 2018). Variations in thickness also affect the thermal stability of boulders (Huey et al. 1989), but as the boulders sampled here were standardised for size and were relatively thin, variations in thickness are unlikely to account for the different warming rates of these six rock types.

The thermal benefits of cooler rock types may be observed across the entire vertical gradient of the rocky intertidal zone. Lower on the shore, where some biota have only low thermal tolerances (McMahon 1990; Madeira et al. 2012), cooler rock types that only warm small amounts when emersed may offer thermal refuges to thermally-sensitive species.

Higher up the shore, where biota generally have greater thermal tolerances (McMahon 1990; Madeira et al. 2012), cooler rock types may not warm to potentially deleterious

temperatures during extended periods of emersion. These characteristics have not been recognised to date but could allow some predictions of the future fate of populations and assemblages on rocky seashores.

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

574

575

576

Cooler rock temperatures have been positively associated with intertidal biota on seashores globally. In Mexico, the higher vertical distribution of barnacles on granite than basalt shores was attributed to granite's cooler surface temperatures (Raimondi 1988), while in Brunei Darussalam snail mimics had cooler body temperatures on lighter-coloured sandstone than darker-coloured ferruginous sandstone (Marshall et al. 2010). In Australia, barnacle recruitment and growth rate was higher on cooler than hotter areas of grey siltstone platform (Lathlean et al. 2013), while in Brazil and Panama, post-settlement mortality of barnacles was higher on hotter black plates than cooler white plates (Leal et al. 2020). Moreover, invertebrate and algal abundance and richness was negatively related with peaks in substrate temperature in Chile (Aguilera et al. 2019), while on igneous seashores in Panama, gastropod body temperatures and mortality were highest in areas with the hottest temperature (Garrity 1984). Therefore, the cooler and more thermallystable rock types identified here such as white limestone and quartzite may function as thermal refuges for some intertidal biota. If boulders comprised of cooler rock types are available to biota seeking refuge, then the thermal benefits that cooler rocks potentially confer may improve the chances of biota surviving while emersed, and thus persisting, compared to hotter rock types such as siltstone.

595

596

597

In this study, the metallic oxide and trace metal content of rocks correlated positively with higher maximum temperatures. On the basis of these results, metallic minerals may

increase the thermal conductance of some rock types and increase the amount of infrared radiation they absorb (Seuront et al. 2018). However, mineralogy is just one potential driver of the temperature differences identified here. Differences in colour (Raimondi 1988; 600 Marshall et al. 2010; Judge et al. 2011) and microtopography (Lathlean et al. 2012; Choi et 602 al. 2019) have been shown previously to affect rock temperature, with the six rock types investigated here also differing in these attributes. It is possible that the smooth, featureless surfaces of siltstone were able to reach hotter surface temperatures versus the coarse, textured surfaces of limestone and quartzite. Moreover, darker rocks of the same type (i.e. purple versus grey siltstone and orange versus white limestone, Appendix Figure A2) attained hotter surface temperatures. However, as colour and microtopography differences between rock types were not quantitatively measured it is difficult to reliably associate either variable with any rock-related temperature differences. 610 Lower surfaces generally had cooler maximum temperatures (<5 °C) than upper surfaces. Over four hours exposure to insolation, a greater increase in maxima was measured on boulder upper than lower surfaces. Therefore, lower surfaces have some temperature benefits over upper surfaces due to their shaded surfaces generally providing cooler maxima and slower temperature increases. The thermal benefits of living underneath boulders are often cited (Evans 1948; Chapperon and Seuront 2011a; Chapperon et al. 616 2013). However, our results, in conjunction with those published previously for the same siltstone boulders (Chapperon and Seuront 2011a; Chapperon et al. 2013), suggest that the magnitude of temperature relief that biota experience under boulders on the mid-lower 620 seashore at this site may be quite small (<5 °C) when compared to temperature differences of up to 25.5 °C between sun-exposed and sun-protected microhabitats elsewhere on rocky

598

599

601

603

604

605

606

607

608

609

611

612

613

614

615

617

618

619

621

seashores (e.g. Denny et al. 2011; Lathlean et al. 2012). These small temperature differences between upper and lower surfaces may be attributed to the relatively thin boulders that naturally occur on the Fleurieu Peninsula, with thicker or larger boulders on seashores elsewhere potentially having larger temperature differences between upper and lower surfaces. Nevertheless, from a physiological perspective, this 5 °C difference between the top and bottom of boulders may help to ensure organisms remain within their thermal tolerance limits (Helmuth et al. 2002). Moreover, the combined benefits of cooler surface temperatures plus under-boulder dampness and shading from insolation (Evans 1948; Chapman 2003; Chapperon et al. 2013) may interact to make lower surfaces a thermally favourable habitat for intertidal biota at low tide. Temperature range was highly variable among the six rock types, with no single rock type having a temperature range that was consistently distinct from the others. If these sorts of results extend to the seashore, then biota would have ample opportunity to respond to the range of temperatures on all rock types, as no single rock type had a temperature range larger or smaller than the others. In this study, a temperature range as large as 16.3 °C was recorded across an individual boulder surface. This temperature range is larger than the 5.0 °C (Leal et al. 2020) or 8.2 °C (Lathlean et al. 2012) maximum ranges recorded among replicate quadrats sampled on the same rock platforms, but considerably smaller than the 24.0 °C maximum range detected between the edge and centre of rocks (maximum length <2 m) sheltering garter snakes (Huey et al. 1989), the 25 °C maximum range detected replicate boulders sampled on the same seashore (Gunderson et al. 2019), or the 25.5 °C maximum range detected between different seashore microhabitats (Chapperon and

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

Seuront 2011a; Chapperon et al. 2017). Consequently, these new results for single boulder

646 surfaces indicate that temperature range is likely be specific to the type(s) of substrate, 647 habitat and region investigated. 648 5.0 Conclusions 649 Under common-garden conditions, the upper and lower surfaces of boulders had patterns 650 651 of temperature difference, with three patterns identified: gradients; mosaics; and limited heterogeneity. Maximum temperature differed consistently between rock types and 652 surfaces, with upper boulder surfaces generally <5 °C warmer than lower boulder surfaces. 653 654 Each rock type had a unique major mineral and trace elemental composition, with the 655 content of metallic oxides and trace metals in rock types correlating with their maximum temperature. The lower surface of rock types with the lowest metallic oxide and trace metal 656 657 content (quartzite and white limestone in this study) potentially offer the best thermal 658 refugia for intertidal biota on the mid-lower seashore during summer. Consequently, these 659 results show that rock type, mineralogy, and boulder surface, which have largely been neglected from investigations of substrate temperature until now, can play important roles 660 661 in contributing to the temperature heterogeneity observed on rocky seashores. 662 Acknowledgements 663 664 This work is dedicated to the memory of our mentor and co-author Peter G. Fairweather, 665 who sadly passed away prior to the publication of this work. He was an incredible marine 666 ecologist, and an even better friend. He had a profound and lasting impact on every scientist 667 he inspired, ourselves included. We are grateful to S. Hawkins, P. Raimondi, B. Helmuth and Deleted:

two anonymous referees for useful comments and suggestions on earlier versions of this

work. We are especially grateful to Dr G. Napier for providing access to her farm, thus

668

669

71	enabling us to construct the boulder plot where this common-garden experiment was run.
72	We are also grateful to C. Flaxman for identifying rock samples and to M. Raven (CSIRO Land
73	and Water, Adelaide) for completing and commenting upon XRF analyses of rock samples.
574	
575	Reference list
76	Anderson MJ, Gorley R, Clarke KR (2008) PERMANOVA+ for PRIMER: Guide to software and
577	statistical methods. PRIMER-E, Plymouth
578	Aguilera M, Arias R & Manzur T (2019) Mapping microhabitat thermal patterns in artificial
579	breakwaters: Alteration of intertidal biodiversity by higher rock temperature. Ecology
80	and Evolution 9: 12915-12927
81	Bertness MD (1989) Intraspecific competition and facilitation in a northern acorn barnacle
82	population. Ecology 70: 257-268
83	Bertness MD (1999) The Ecology of Atlantic Shorelines. Sinauer Associates Inc, Sunderland,
84	USA
85	Caddy-Retalic S, Benkendorff K, Fairweather PG (2011) Visualizing hotspots: applying
86	thermal imaging to monitor internal temperatures in intertidal gastropods. Molluscan
87	Research 31: 106-113
88	Chapman MG (2003) Paucity of mobile species on constructed seawalls: effects of
89	urbanization on biodiversity. Marine Ecology Progress Series 264: 21-29
90	Chapperon C, Le Bris C, Seuront L (2013) Thermally mediated body temperature, water
91	content and aggregation behaviour in the intertidal gastropod Nerita atramentosa.
92	Ecological Research 28: 407-416
93	Chapperon C, Seuront L (2011a) Space—time variability in environmental thermal properties
94	and snail thermoregulatory behaviour. Functional Ecology 25: 1040-1050

695	Chapperon C, Seuront L (2011b) Behavioral thermoregulation in a tropical gastropod: links
696	to climate change scenarios. Global Change Biology 17: 1740-1749
697	Chapperon C, Studerus K, Clavier J (2017) Mitigating thermal effect of behaviour and
698	microhabitat on the intertidal snail Littorina saxatilis (Olivi) over summer. Journal of
699	Thermal Biology 67: 40-48
700	Chapperon C, Volkenborn N, Clavier J, Séité S, Seabra R, Lima FP (2016) Exposure to solar
701	radiation drives organismal vulnerability to climate: Evidence from an intertidal limpet.
702	Journal of Thermal Biology 57: 92-100
703	Choi F, Gouhier T, Lima F, Rilov G, Seabra R, Helmuth B (2019). Mapping physiology:
704	biophysical mechanisms define scales of climate change impacts. Conservation
705	Physiology 7: coz028
706	Connell JH (1972) Community interactions on marine rocky intertidal shores. Annual Review
707	of Ecology and Systematics 3: 169-192
708	Cox TE, Smith CM (2011) Thermal ecology on an exposed algal reef: infrared imagery a rapid
709	tool to survey temperature at local spatial scales. Coral Reefs 30: 1109-1120
710	Denny MW, Dowd WW, Bilir L, Mach KJ (2011) Spreading the risk: small-scale body
711	temperature variation among intertidal organisms and its implications for species
712	persistence. Journal of Experimental Marine Biology and Ecology 400: 175-190
713	Evans RG (1948) The lethal temperatures of some common British littoral molluscs. The
714	Journal of Animal Ecology 17: 165-173
715	Garrity SD (1984) Some adaptations of gastropods to physical stress on a tropical rocky
716	shore. Ecology 65: 559-574
717	Gedan KB, Bernhardt J, Bertness MD, Leslie HM (2011) Substrate size mediates thermal
718	stress in the rocky intertidal. Ecology 92: 576-582

719	Gómez-Heras M, Smith BJ, Fort R (2006) Surface temperature differences between minerals
720	in crystalline rocks: Implications for granular disaggregation of granites through thermal
721	fatigue. Geomorphology 78: 236-249
722	Gunderson AR, Abegaz M, Ceja AY, Lam EK, Souther BF, Boyer K, King EE, You Mak KT,
723	Tsukimura B, Stillman JH (2019) Hot rocks and not-so-hot rocks on the seashore:
724	patterns and body-size dependent consequences of microclimatic variation in intertidal
725	zone boulder habitat. Integrative Organismal Biology 1: 1-15
726	Harley CDG (2003) Abiotic stress and herbivory interact to set range limits across a two-
727	dimensional stress gradient. Ecology 84: 1477-1488
728	Harley CDG (2008) Tidal dynamics, topographic orientation, and temperature-mediated
729	mass mortalities on rocky shores. Marine Ecology Progress Series 371: 37-46
730	Helmuth, B (1999) Thermal biology of rocky intertidal mussels: quantifying body
731	temperatures using climatological data. Ecology 80: 15-34
732	Helmuth B, Broitman BR, Blanchette CA, Gilman S, Halpin P, Harley CD, O'Donnell MJ,
733	Hofmann GE, Menge B, Strickland D (2006) Mosaic patterns of thermal stress in the
734	rocky intertidal zone: implications for climate change. Ecological Monographs 76: 461-
735	479
736	Helmuth B, Harley CD, Halpin PM, O'Donnell M, Hofmann GE, Blanchette CA (2002) Climate
737	change and latitudinal patterns of intertidal thermal stress. Science 298: 1015-1017
738	Helmuth BST, Hofmann GE (2001) Microhabitats, thermal heterogeneity, and patterns of
739	physiological stress in the rocky intertidal zone. The Biological Bulletin 201: 374-384
740	Huey RB, Peterson CR, Arnold SJ, Porter WP (1989) Hot rocks and not-so-hot rocks: retreat-
741	site selection by garter snakes and its thermal consequences. Ecology 70: 931-944

742	IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working
743	Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate
744	Change. In: Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Xia Y,
745	Bex V, Midgley P (eds) Climate Change 2013. Cambridge University Press, Cambridge,
746	United Kingdom and New York, NY, USA, pp 1-1535
747	Janetzki N, Fairweather PG, Benkendorff K (2018) Assemblages on limestone and siltstone
748	boulders diverge over six years in a primary-succession transplant experiment. Marine
749	Ecology Progress Series 604: 21-32
750	Jones KMM, Boulding EG (1999) State-dependent habitat selection by an intertidal snail: the
751	costs of selecting a physically stressful microhabitat. Journal of Experimental Marine
752	Biology and Ecology 242: 149-177
753	Judge ML, Botton ML, Hamilton MG (2011) Physiological consequences of the supralittoral
754	fringe: microhabitat temperature profiles and stress protein levels in the tropical
755	periwinkle Cenchritis muricatus (Linneaus, 1758). Hydrobiologia 675: 143
756	Lamb EA, Leslie HM, Shinen JL (2014) Both like it hot? Influence of temperature on two co-
757	occurring intertidal barnacles in central Chile. Journal of Experimental Marine Biology
758	and Ecology 453: 54-61
759	Lathlean JA, Ayre DJ, Coleman RA, Minchinton TE (2015) Using biomimetic loggers to
760	measure interspecific and microhabitat variation in body temperatures of rocky
761	intertidal invertebrates. Marine and Freshwater Research 66: 86-94
762	Lathlean JA, Ayre DJ, Minchinton TE (2012) Using infrared imagery to test for quadrat-level
763	temperature variation and effects on the early life history of a rocky-shore barnacle.
764	Limnology and Oceanography 57: 1279-1291

765	Lathlean JA, Ayre DJ, Minchinton TE (2013) Temperature variability at the larval scale affects
766	early survival and growth of an intertidal barnacle. Marine Ecology Progress Series 475:
767	155-166
768	Lathlean JA, Ayre DJ, Minchinton TE (2014) Estimating latitudinal variability in extreme heat
769	stress on rocky intertidal shores. Journal of Biogeography 14: 1478-1491
770	Lathlean J, Seuront L (2014) Infrared thermography in marine ecology: methods, previous
771	applications and future challenges. Marine Ecology Progress Series 514: 263-277
772	Leal I, Flores A, Archambault P, Collin R, Tremblay R (2020) Response of tropical and
773	subtropical chthamalid barnacles to increasing substrate temperatures. Journal of
774	Experimental Marine Biology and Ecology 524: 151281
775	Li DH, Lam JC (2001) An analysis of climatic parameters and sky condition classification.
776	Building and Environment 36: 435-445
777	Liversage K, Janetzki N, Benkendorff K (2014) Associations of benthic fauna with different
778	rock types, and evidence of changing effects during succession. Marine Ecology
779	Progress Series 505: 131-143
780	Madeira D, Narciso L, Cabral HN, Vinagre C (2012) Thermal tolerance and potential impacts
781	of climate change on coastal and estuarine organisms. Journal of Sea Research 70: 32-
782	41
783	McMahon RF (1990) Thermal tolerance, evaporative water loss, air-water oxygen
784	consumption and zonation of intertidal prosobranchs: a new synthesis. Hydrobiologia
785	193: 241-260
786	Marshall DJ, McQuaid CD, Williams GA (2010) Non-climatic thermal adaptation: implications
727	for species' responses to climate warming Riology Letters 6: 669-673

788	Monaco CJ, Wethey DS, Gulledge S, Helmuth B (2015) Shore-level size gradients and thermal
789	refuge use in the predatory sea star Pisaster ochraceus: the role of environmental
790	stressors. Marine Ecology Progress Series 539: 191-205
791	Norrish K, Hutton JT (1969) An accurate X-ray spectrographic method for the analysis of a
792	wide range of geological samples. Geochimica et Cosmochimica Acta 33: 431-453
793	Pörtner HO, Farrell AP (2008) Physiology and climate change. Science: 690-692
794	Raimondi PT (1988) Rock type affects settlement, recruitment, and zonation of the barnacle
795	Chthamalus anisopoma Pilsbury. Journal of Experimental Marine Biology and Ecology
796	123: 253-267
797	Rivard B, Thomas PJ, Giroux J (1995) Precise emissivity of rock samples. Remote Sensing of
798	Environment 54: 152-160
799	Evans R, Wethey DS, Santos AM, Lima FP (2011) Side matters: microhabitat influence on
300	intertidal heat stress over a large geographical scale. Journal of Experimental Marine
301	Biology and Ecology 400: 200-208
302	Seuront L, Ng TP, Lathlean JA (2018) A review of the thermal biology and ecology of
303	molluscs, and of the use of infrared thermography in molluscan research. Journal of
304	Molluscan Studies 84: 203-232
305	Seuront L, Nicastro K, Zardi G, Goberville E (2019) Decreased thermal tolerance under
306	recurrent heat stress conditions explains summer mass mortality of the blue mussel
307	Mytilus edulis (2019) Scientific Reports 9: 1-14.
308	Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima,
309	limits, and costs of living. Integrative and Comparative Biology 42: 780-789

810	Soto R, Bozinovic F (1998) Behavioral thermoregulation of the periwinkle <i>Nodilittorina</i>
811	peruviana inhabiting the rocky intertidal of central Chile: a laboratory and field study.
812	Revista Chilena de Historia Natural 71: 375-382
813	
814	