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New knowledge on soil structure highlights its importance for hydrology and soil organic
matter (SOM) stabilization, which however remains neglected in many wide used models.
We present here a new model, KEYLINK, in which soil structure is integrated with the
existing concepts on SOM pools, and elements from food web models, i.e. those from
direct trophic interactions among soil organisms. KEYLINK is, therefore, an attempt to
integrate soil functional diversity and food webs in predictions of soil carbon (C) and soil
water balances. We present a selection of equations that can be used for most models as
well as basic parameter intervals for, e.g., key pools, functional groups' biomasses and
growth rates. Parameter distributions can be determined with Bayesian calibration, and
here an example is presented for food web growth rate parameters for a pine forest in
Belgium. We show how these added equations can improve the functioning of the model in
describing known phenomena. For this, five test cases are given as simulation examples:
changing the input litter quality (recalcitrance and carbon to nitrogen ratio), excluding
predators, increasing pH and changing initial soil porosity. These results overall show how
KEYLINK is able to simulate the known effects of these parameters and can simulate the
linked effects of biopore formation, hydrology and aggregation on soil functioning.
Furthermore, the results show an important trophic cascade effect of predation on the
complete C cycle with repercussions on the soil structure as ecosystem engineers are
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predated, and on SOM turnover when predation on fungivore and bacterivore populations
are reduced. In summary, KEYLINK shows how soil functional diversity and trophic
organization and their role in C and water cycling in soils should be considered in order to
improve our predictions on C sequestration and C emissions from soils.
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30 Abstract

31 New knowledge on soil structure highlights its importance for hydrology and soil organic matter 

32 (SOM) stabilization, which however remains neglected in many wide used models. We present 

33 here a new model, KEYLINK, in which soil structure is integrated with the existing concepts on 
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34 SOM pools, and elements from food web models, i.e. those from direct trophic interactions 

35 among soil organisms. KEYLINK is, therefore, an attempt to integrate soil functional diversity 

36 and food webs in predictions of soil carbon (C) and soil water balances. We present a selection 

37 of equations that can be used for most models as well as basic parameter intervals for, e.g., key 

38 pools, functional groups' biomasses and growth rates. Parameter distributions can be determined 

39 with Bayesian calibration, and here an example is presented for food web growth rate parameters 

40 for a pine forest in Belgium. We show how these added equations can improve the functioning of 

41 the model in describing known phenomena. For this, five test cases are given as simulation 

42 examples: changing the input litter quality (recalcitrance and carbon to nitrogen ratio), excluding 

43 predators, increasing pH and changing initial soil porosity. These results overall show how 

44 KEYLINK is able to simulate the known effects of these parameters and can simulate the linked 

45 effects of biopore formation, hydrology and aggregation on soil functioning. Furthermore, the 

46 results show an important trophic cascade effect of predation on the complete C cycle with 

47 repercussions on the soil structure as ecosystem engineers are predated, and on SOM turnover 

48 when predation on fungivore and bacterivore populations are reduced. In summary, KEYLINK 

49 shows how soil functional diversity and trophic organization and their role in C and water 

50 cycling in soils should be considered in order to improve our predictions on C sequestration and 

51 C emissions from soils.

52

53 Introduction

54 Soil models used in ecosystem-scale modelling need to be relatively simple and fast at 

55 performing calculations. Nonetheless, carbon (C) and nutrient turnover and hydrology are 

56 extremely important for determining ecosystem productivity and C sequestration in the 

57 ecosystem. The most widely used soil models (Century, RothC) emphasize the C flow from 

58 easily degradable to stable organic compounds using first-order kinetics to describe their decay 

59 rates (Campbell and Paustian, 2015). The relevance of chemical recalcitrance, used in those 

60 models, is accepted in the early stages of litter decomposition, but that approach has been 

61 questioned on the long term soil organic matter (SOM) stabilization (Schmidt et al., 2011), 

62 highlighting the relevance of other processes in the physical protection of SOM within soil 

63 matrix (Deckmyn et al., 2020). This has led to the development of models including an explicit 

64 representation of structural effects on SOM (Kuka et al., 2007). Furthermore, recent studies have 

65 shown that microbial products from the transformation of plant litter are the largest contributors 

66 to stable SOM (Mambelli et al., 2011; Cotrufo et al., 2013).

67 The insights concerning the role of the microbial biomass in C turnover has been introduced in 

68 models such as MIcrobial-MIneral Carbon Stabilization (MIMICS) model (Wieder et al., 2014; 

69 Wieder et al., 2015) and Litter Decomposition and Leaching (LIDEL) model (Campbell et al., 

70 2016). However, soil fauna and especially ecosystem engineers, i.e. organisms that create, 

71 modify or maintain habitats by changing the physical structure of the ecosystem (Jones et al., 

72 1994), have also been shown to play a key role in determining C and nutrient turnover and 

73 hydrology of soils through their impact on aggregation, pore formation and bioturbation as well 

74 as their direct contribution to litter and SOM turnover (Filser et al., 2016; Lavelle et al., 2016). 

75 Several authors have highlighted the need to include soil fauna contributions to SOM dynamics 

76 into soil modelling (see review by Vereecken et al., 2016). This information has been used in 

77 detailed and small-scale soil models (Chertov et al., 2017a; Geisen et al., 2019), but is not 
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78 incorporated into larger-scale ecosystem models. The main difficulty is the lack of data 

79 concerning the soil, either physical, chemical or biological, and the different methods used, 

80 making parameterization of any model unsure. The goal of the KEYLINK model is to consider 

81 the soil including the main mechanisms concerning the effects of soil biota on litter and SOM 

82 transformations and hydrology through structural modifications, without increasing the number 

83 of parameters beyond what is currently available on most well-measured ecosystems (Deckmyn 

84 et al., 2020). We show how this model has been parameterized for a forest stand where soil fauna 

85 was never studied in detail, but many other soil and stand characteristics are well established.

86 The core model concept is the strong link between soil biota, soil structure and turnover (Fig. 1). 

87 The decay of fresh litter is dependent on the recalcitrance and carbon to nitrogen (N) ratio (C:N) 

88 of the litter, although different soil biota groups have specific sensibilities to recalcitrance and 

89 C:N ratio. For SOM, the turnover depends on the accessibility, linked to the pore size 

90 distribution, the aeration and H2O in the pores and the aggregation (based on the model by Kuka, 

91 Franko and Rühlmann, 2007). Both SOM and litter turnover depend on temperature and 

92 humidity. Soil fauna, specifically ecosystem engineers, directly affect pore distribution besides 

93 an important effect on bioturbation. Pore distribution affects hydrology which again affects all 

94 soil processes.

95 The scientific background for the model is fully described in Deckmyn et al. (2020). Here, the 

96 related processes are formulated mathematically. Finally, we show how the model can simulate 

97 several known mechanisms of soil faunal effects such as changes in litter recalcitrance affecting 

98 fungal/bacterial ratio, changes in pH affecting earthworm populations, effects of ecosystem 

99 engineers on bioturbation and hydrology, and importance of microbivores and predators in the 

100 soil fauna food web.

101 Methodology

102 The KEYLINK model has been conceptually designed integrating the structure of the soil by its 

103 porosity, the hydrology and the C cycle through the soil food web. Those key parts of the soil 

104 interact (Fig. 1) determining the rates of SOM stabilization and CO2 emissions from soil. The 

105 functions developed to represent and simulate those processes are presented here.

106

107 Structural effects

108 Pore size distribution determines accessibility for trophic interactions of soil fauna and soil 

109 microorganisms (Fig. 2), both by size and by aeration and H2O; soil fauna changes pore size 

110 distribution and produces cracks and fissures in the soil. In the model, pore size distribution is 

111 divided into the following five categories:

112  Inaccessible pores (< 0.1 µm in diameter): pores around inaccessible C (within the 

113 micro-aggregate, organo-clay interaction). Water is held here but is not available to plants 

114 (measured from wilting point). The volume of inaccessible pores is related to the clay 

115 content and type. 

116  Bacterial pores (0.1 – 2 µm): the pores within macro-aggregates and pores in loam, 

117 accessible only to bacteria. Engineer saprotrophs (e.g. earthworms) can also use SOM in 

118 these pores (and in the following pore categories, all except inaccessible pores) because 

119 they eat directly all soil.
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120  Micropores (2 – 30 µm):  pores not accessible to macrofauna, mesofauna and most 

121 predators, but accessible to microfauna bacterivores and fungivores, fungi, mycorrhiza 

122 and bacteria. Water is held at field capacity but available to plants. In sandy soil and 

123 within macro-aggregates (> 250 µm), pores fall in this category.

124  Mesopores (30 µm – 1.5 mm): pores where most soil fauna can penetrate (not 

125 macrofauna) between large macro-aggregates (>1 mm) or formed by fine roots. 

126 Mesopore volume can be determined in the field from drained water capacity (but this 

127 includes macropores). These pores are well aerated also at field capacity, but can dry out 

128 below field capacity.

129  Macropores (> 1.5 mm): cracks or biopores formed by ecosystem engineers. They are of 

130 vital importance for soil hydrology as preferential flow through these pores has a major 

131 impact on infiltration rate. These are the first pores to have O2 when water level is above 

132 field capacity, but dry out quickly below field capacity.

133

134 The initial values of soil porosity in the model simulations can be calculated from measured soil 

135 water retention curves, or even using models such as Saxton et al. (1986) that yield field 

136 capacity, porosity and wilting point from the C, clay and sand contents, or using measured bulk 

137 density (Db). Following Malamoud et al. (2009), the percentage of total porosity (P%) can be 

138 computed from Db and soil particle density (DS) as shown in equation 2.  DS can be measured or 

139 is calculated from Dm = soil mineral particle density (2.65 g cm-3) and DSOM = organic particle 

140 density (1.35 g cm-3) as:

141

142 (1)Ds =  
100

% SOM 

DSOM
 +  

100 ‒  % SOM

Dm

143 (2)P% =  
Ds ‒ Db

Ds
100

144

145 Water flow

146 We advise using KEYLINK model in combination with a detailed water model including 

147 preferential flow through macropores as well as good representation for matrix flow (s.a. 

148 Richards’ equation). However, we show in this paper how it can be used with a simpler 

149 representation of water flow but still allowing the important dynamic interactions between pore 

150 sizes and hydrology that are fundamental to the model. A spilling bucket approach is used at a 

151 daily time-step, where water drains from a layer into the underlying layer when its water content 

152 is above field capacity in the soil matrix. However, in contrast to conventional spilling bucket 

153 models, we allow water to flow faster through macropores (before the soil matrix is saturated). 

154 Net precipitation (Pnet) is calculated as:

155 (3)Pnet =  P ‒  E

156 where P is precipitation (mm day-1) and E is evapotranspiration (mm day-1) from measured or 

157 modelled data (vegetation model). Infiltration (I) is assumed to be equal to the part of 

158 precipitation entering the soil. Infiltration and runoff (Prunoff, mm day-1) must equal Pnet .
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159 (4)I +  Prunoff =  Pnet

160 Infiltration is composed of water entering the soil matrix, water filling the macropores and water 

161 draining from macropores. Water that enters macropores remains in the macropore domain or 

162 enters the layers below. The fraction of infiltration entering macropores depends on the surface 

163 area of the macropores (SAmacro), assumed cylindrical. Assume measured or derived maximal 

164 infiltration rate (ImaxMat, mm day-1) of the soil matrix. Maximal infiltration rate through 

165 macropores (ImaxPor, mm day-1) is calculated from the volume of the pores (PVmacro), assumed not 

166 limiting at daily scale, plus infiltration capacity of the layer (n+1) in which the macropores end.

167 (5)ImaxPor =  PVmacro +  ImaxMat(n + 1)

168 If Pnet > (ImaxPor  + ImaxMat) runoff is calculated as: 

169 (6)Prunoff =  Pnet ‒  (ImaxPor +  ImaxMat)

170 after which calculations continue using Pnet - Prunoff as net precipitation.

171 If ImaxMat < Pnet < (ImaxPor + ImaxMat) the soil matrix is filled at a rate equal to the maximum 

172 infiltration rate, all other water is lost either through the macropores to the next layer or by filling 

173 macropores. If ImaxMat > Pnet the soil matrix is filled with water, traditional spilling bucket, but an 

174 equivalent volume is lost through macropores to the bottom layer depending on the surface area 

175 of the macropores. The total soil water volume of soil layer n, SWn, is then limited by the total 

176 pore volume of the layer and the water already filling the pores, and is calculated as:

177  (7)SWn =  SWn +  min (PVn ‒  SWn, Imaxmat(1 ‒ SAmacro), Pnet(1 ‒ SAmacro))

178 For drainage (D) to the bottom layer, the spilling bucket approach is used plus a portion of water 

179 that goes straight through the macropores, calculated from the surface area of the macropores.

180 Dn =  Pnet SAmacro +  Pnet  – 

181 (8)min (PVn ‒  SWn,  Imaxmat(1 ‒ SAmacro),  Pnet(1 ‒  SAmacro))

182 For each pore size class the fraction water filled is calculated from the water content: so always 

183 one pore size is partially saturated and all others are either saturated or dry within one layer.

184

185 C flow

186 The KEYLINK model combines soil organic matter modelling with soil food web modelling. 

187 The model conceptualized in Figure 2 has 13 carbon pools (Table S1.2 in Supplemental File 

188 S1), visualised by boxes. Above and belowground litter is assumed to be provided from an 

189 external source (tree shoot in Figure 2) not covered by this model. It could be given through 

190 experimental data or an external model, e.g., a tree growth model that delivers the input of litter 

191 into the litter pool. All simulations presented here were made with constant C inputs (Table S2.6 

192 in Supplemental File S2). Exudation is an input of organic carbon released from roots into the 

193 soil organic matter pool. Every live pool has a respiration rate (r) and a turnover or death rate (d). 

194 On consuming a C pool, a fraction of this pool always becomes faeces and enters the SOM pool 

195 except for the microbial pools, i.e. microbes and microbivores. SOM can be distributed in 
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196 different fractions, particulate organic matter (POM) and dissolved organic matter (DOM), 

197 which can gain relevance in the addition and simulation of other nutrient cycles and processes as 

198 leaching. However, here, as a first version of the model, we present a simplification using SOM 

199 as a uniform pool. The growth (G, g C m-3 day-1) of a biomass pool (B, g C m-3) is described 

200 according to Monod kinetic,  

201 (9)G =∑𝑁
𝑛= 1

(gmax(
Sfa

Ks + S)n)B

202 where gmax (g C g C-1 day-1) is the maximal rate of growth, to which several modifiers are applied 

203 (see descriptions below). Substrate (S, g C m-3) is the consumable pool, litter, SOM or biomass 

204 of soil organism (n), that consumer pool (B) can use but corrected by its available fraction (fa). 

205 All fluxes (N) of consumed C from each S are summed. Ks (g C m-3) is related to substrate 

206 quality, it gives the content required to get half the maximal growth. This is not related to the 

207 amount that will be consumed, because consumed C equals growth + faeces, but shows how 

208 dense the material needs to be ‘found’ by the consumer. Available fraction of a S to a consumer 

209 (as fa) is calculated using the fraction from total porosity volume that is accessible for the 

210 consumer, by size, minus its fraction that is completely flooded or dry (see equations 14-16). 

211 This availability introduces the concept of physical recalcitrance, highlighting the role that soil 

212 structure plays affecting C fluxes in the soil, because SOM decomposition rates modelling use to 

213 rely on its chemical recalcitrance, from now on referred just as 'recalcitrance'. But physical 

214 recalcitrance has proven to be also relevant for the calculation of SOM decomposition rates (von 

215 Lützow et al., 2008), and soil matrix also affect other biotic interactions through the food web by 

216 this availability concept.

217 Rate of increase of a population of meso- or macrofauna depends on generation time (r, K 

218 strategies), age distribution of the population, different life stages. Models exist for only some 

219 soil fauna species (Osler and Sommerkorn, 2007; Chertov et al. 2017a). To offer a solution that 

220 can work for both the microbial biomass and the meso- and macrofauna, we use gmax as equal to 

221 the maximal rate of increase in biomass of any population, dB/dt = gmax when resources are non-

222 limiting and assuming the population structure is stable and optimal, equal to what is often stated 

223 as the intrinsic growth rate of a species (Birch, 1948).

224 The net rate of change of a biomass pool is the sum of growth (G), respiration (R) and turnover 

225 (death, Dt), and possibly predation (Pd), all in g C m-3 day-1:

226  (10)
dB

dt
= G – R – Dt – Pd

227 R is a function of temperature, through respiration rate (r, g C g C-1 day-1), and biomass, 

228 assuming the same temperature sensitivity as growth; this is somewhat different to how it is seen 

229 in many models where a food source is turned over with a specific efficiency. From a more 

230 faunal point of view, this makes sense: a food source is ‘consumed’; the consumed material is 

231 partly excreted and partly assimilated and spent on respiration and growth (i.e. biomass 

232 formation).

233 (11)R =  rB

234 While the death rate d (g C g C-1 day-1) is constant.
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235 (12)Dt =  dB

236 Predation depends on biomass of predator or microbivore and is calculated from the growth of 

237 the predator (Gpred, from equation 9) plus the fraction of the prey allocated to faeces (ffaec).

238 (13)Pd
prey

 =  Gpred (1 + ffaec)

239

240 Effect of H2O

241 Drought or saturation of a pore leads to reduced availability of the C in the pore for its food web 

242 consumers. First, the overall effect of hydration is calculated as a modifier (mH2Otot) in function 

243 of volumetric soil moisture (V) and pore volume (Pvol) (after Freytag and Luttich, 1985).

244  (14)mH2Otot =  { 4
V

Pvol
�(1 ‒ V

Pvol
)      for 

V

Pvol
< 0.5 �

1                                 for 
V

Pvol
> 0.5 �

245 The activity is always in the pores that are not water-logged, therefore the pore size class that is 

246 partially filled with water, and the pore size above that is assumed not yet completely dry (after 

247 Kuka, Franko and Rühlmann, 2007).

248 for the pores partially filled, (15)mH2O =  
PvolA

PvolA + PvolW
mH2Otot

249 for the pores one class above, (16)mH2O =  
PvolW

PvolA + PvolW
 mH2Otot

250 where PvolW is the water filled pore volume and PvolA is the aerated pore volume. The availability 

251 (fa) of a substrate to a consumer is defined by the inherent availability of the pore size to the 

252 consumer, multiplied with mH2O. For surface litter these calculations are not possible since the 

253 surface litter is not in the soil matrix. However, on days without precipitation, litter humidity is 

254 assumed to be related to the soil humidity below, therefore the mH2O calculated for the microbial 

255 biomass is used.

256

257 Simulating the variability in gmax

258 The maximum growth of biota is influenced by different environmental factors. Each one can 

259 lead to a modifier (m ∈ [0, 1]) on gmax. It is easy to change, add or turn off specific modifiers 

260 according to the soil studied. Here we present a modelling framework focused on abiotic controls 

261 of growth rates, but there is room for new add-ons as for example death rate modifiers as a 

262 density-dependent microbial turnover. While interaction processes affected by the demographic 

263 density of microbial communities (e.g. competition, space constraints) can play also a significant 

264 role controlling growth and decomposition rates and improve its modelling (Georgiou et al., 

265 2017), our aim in this work is to link the key roles of fauna and soil structure in C cycle 

266 modelling, and together with the hydrology can simulate constraints in biotic interactions, which 

267 are also relevant controls in microbial growth and activity.
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268

269 Simulating the effect of temperature (T)

270 To simulate the effect of T on growth rate through a temperature modifier (mT), we use a Q10-

271 shaped curve between maximum tolerable temperature (Tmax) and minimum temperature for 

272 consumers activity (Tmin), set as a default at 0°C (Franko, 1989), but unlike many models, we 

273 assume a plateau above the optimal temperature (Topt).

274 (17)mT = {
0,                               T < Tmin or T≥ Tmax

Q
(T ‒ T

opt
)/10

,Tmin≤  T < Topt 

1,                 Topt≤  T < Tmax 

 
�

275 However, temperature also increases respiration (R). To simulate this temperature effect, we 

276 assume the same Q10 function but without the plateau; in this way, when T is above the 

277 optimum, R increases while growth does not. At some point these lines will cross and cause a net 

278 reduction in biomass.

279

280 Effect of pH on growth

281 A good example of an optional effect is the effect of pH: for a system close to a threshold, 

282 simulating pH can be very important, assuming a good knowledge of the system. But for well-

283 buffered systems, it is an unnecessary increase in complexity. gmax decreases at low pH for 

284 bacteria but increases for fungi (Rousk, Brookes and Bååth, 2009; Rousk et al., 2010; Rousk, 

285 Brookes and Bååth, 2010). For this example, we put the thresholds at 8 for fungi and 3 for 

286 bacteria, with precision of one decimal, inducing a 10 fold reduction in gmax for a change in pH 

287 of 1.

288 for fungi if pH ≥ 8.1 (18)mpH =  1 /((pH – 8)10) 

289 for bacteria if pH ≤ 2.9 (19)mpH =  1/((3 ‒ pH)10)

290 In any other case for bacteria or fungi, mpH = 1, and if mpH goes above 1, it is replaced by 1. For 

291 engineer saprotrophs, their optimal gmax changes (becoming gmaxEng) with pH (Lavelle, Chauvel 

292 and Fragoso, 1995; Chertov et al., 2017b) according to the following equation:

293 (20)gmaxEng = {
0,                           if  pH <  3

(
gmax

2 )(pH – 3),  if 3 ≤  pH <  5 

gmax,                    if pH ≥  5 

 
�

294

295 Effect of recalcitrance and C:N on gmax

296 Overall consumption of an organism that can consume different pools is computed by simply 

297 adding them up. However, litter is not necessarily as ‘palatable’, depending on its C:N ratio if 
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298 not enough N,  and on recalcitrance if low in energy, then it is needed to consume more litter, 

299 which is calculated through modifiers mC:N and mrec, respectively. This is simulated by changing 

300 gmax. The equation for mrec is not necessary and only important if enough data on litter quality is 

301 available or the users are interested into looking into the effects of changes in litter quality. The 

302 litter pool can be consumed by both bacteria and fungi, and of course also detritivores. 

303 Depending on the C:N ratio, the competition between these two is different; this is simulated by 

304 the gmax of the bacteria being more variable with C:N ratio. The sensitivity is described by the 

305 parameter pmC:N, between 0 and 1.

306 fungi: (21)mC:N
fung

 =  min(1,  (
C:Nfung

C:Nlit
)

p
mC:Nfung

)

307 bacteria: (22)mC:N
bact

 =  min(1,  (
C:Nbact

C:Nlit
)

p
mC:Nbact

)

308

309 For litter recalcitrance (Reclit), a linear equation instead of a power is chosen so that decay of the 

310 recalcitrant litter is 0 if pmRec = 1 and is unaffected if pmRec = 0. The reason for choosing a 

311 different equation than above is that constrain of labile litter decomposition by C:N ratio should 

312 not completely stop decomposition but adjust the decomposition rate, while recalcitrant fraction 

313 of litter could remain almost constant for long periods. The following equations determine if the 

314 recalcitrant fraction of litter remains stable or if it is affected by decomposers partially or even 

315 totally.

316 fungi: (23)mrec
fung

 =  min(1, 1 ‒  pmRec
fung

Reclit)

317 bacteria: (24)mrec
bact

=  min(1, 1 – pmRec
bact

Reclit)

318

319 Adding up all these modifying effects on gmax

320 We assume a complete additivity of the effects, so the different modifiers on gmax are multiplied 

321 to get the overall effect, mtot in equation 25. Another optional approach could be to use only the 

322 most limiting effect, setting mtot equal to the lowest modifier and ignoring the rest.

323 (25)mtot =  mT mC:N mrec mpH mH2O

324

325 Not assimilated C

326 The reduction in a substrate equals the growth of the consumer plus the C that goes to faeces 

327 (excrements) and to respiration. Fraction to excrement (ffaec) is a parameter of the consumer and 

328 assumed constant. However, one consumes more and a larger fraction becomes faeces at a lower 

329 substrate quality, for the meso- and macro fauna, because microbes do not produce excrements; 

330 the sensitivity of ffaec to C:N ratio is expressed by the modifier mfaec. This is however only 

331 relevant for the detritivores and engineers (equation 26) that eat SOM and litter which can 

332 contain extremely variable amounts of nutrients; for the predators and herbivores we assume the 

333 variability is minimal. For the microbes, it was calculated as an effect on gmax.
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334 (26)ffaecEff = ffaec + mfaec

 C:NSOM ‒ C:Neng

C:NSOM 
 ffaec

335

336  

337 Calculations regarding engineers

338 Soil changes made by engineer species depend on their body width, but in the model this is 

339 simplified using initial parameters for engineers' effects that must be chosen based on an average 

340 width (see Table S2.5 in Supplemental File S2); the model then simulates their daily effects 

341 using their biomasses. Bioturbation is a function of engineer biomass (Beng, g C m-3), which 

342 calculates organic matter moving to deeper layers: litter moving (g Clit g Ceng
-1 day-1) from litter 

343 layer to end of burrow, and SOM moving by mixing of soil between layers (g CSOM g Ceng
-1 day-

344
1). In this first version of the model, with only one soil layer, bioturbation works as a C output 

345 flow, but in future versions with more layers it could be upgraded to C flows between them.

346 Burrow volume (PVB, l m-3) is a function of engineer biomass (g Ceng m-3) and the ratio of pore 

347 volume to engineer biomass (VEratio, l g Ceng
-1) but towards a maximum (PVBmax, l m-3). On the 

348 other hand, burrow turnover (tPVB) happens at a constant rate, with average burrow lifespan of 

349 10 years; porosity decreases and burrows become mesopores.

350 (27)PVB =  max (min (PVBmax,  VEratioBeng), (PVmacro ‒ PVtextmacro)(1 ‒ tPVB))

351 where PVmacro is the current pore volume of the macropores and PVtextmacro is the textural porosity 

352 of the macropores (see in next section). This could be improved in future versions including 

353 perturbations as the possible effect of heavy rain.

354

355 Porosity calculations

356 The pore volume is distributed in five classes by pore size. Initial pore size distribution is given 

357 or measured as the total pore volume (PV, l m-3) in each class. The link between aggregation and 

358 porosity is hard to quantify. Regelink et al. (2015a) showed for different soils that overall soil 

359 porosity is the sum of the textural porosity determined by the proportion of clay, sand and silt 

360 fractions and aggregation porosity. They conclude that micropores, which they define <9 µm, are 

361 mainly situated within the aggregates, while mesopores are situated between dry-sieved 

362 aggregates. While Regelink et al. (2015a) have shown that total micro and mesoporosity (<1000 

363 µm) increases with total aggregate content, Grosbellet et al. (2011) have provided evidence that 

364 pores in the range 30 – 300 µm decrease with aggregation. Despite of the generally lower ranges 

365 for mesopores (9 – 1000 µm) described for soil physics (Lal and Shukla, 2004; Regelink et al., 

366 2015a), here mesopores are assumed to be physically accessible to mesofauna body size (ca. 100 

367 – 2000 µm), so we consider that mesopores ranging 30 – 1500 µm are a reasonable compromise. 

368 Based on that, we decided to hypothesize that aggregation increases bacterial and micro- porosity 

369 while decreasing mesoporosity. However, we want to emphasize that further experimental 

370 studies are needed to establish robust relationships between aggregation and pore size 

371 distribution.
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372 Aggregates are not calculated as a pool, but the effect of aggregation is included in the 

373 calculation of porosity as described below. The following three porosities contribute to total 

374 porosity:

375  Textural  porosity (PVtext): measured or calculated from % clay and sand. 

376  Additional aggregation porosity (PVAg): all porosity in surplus of textural, can be 

377 estimated, for example from PTF (PedoTransfer Function) or calculated empirically from 

378 SOM and fungal biomass, i.e. mycorrhiza and other fungi, max 2% porosity extra 

379 (equation 29). Aggregation (Ag) is the fraction (0–1) of the SOM aggregated calculated 

380 as (based on the data from Malamoud et al., 2009):

381  (28)Ag =  min(1,
c(Bfung + Bmyc)

BSOM
)

382 with an empirical parameter c = 10. The aggregation porosity is then calculated as:

383 (29)PVAg =  k Ag BSOM

384 with k = coefficient (2 l g C-1 m-3) based on empirical data (Regelink et al., 2015a; 

385 Regelink et al., 2015b).

386  Bioporosity (PVB): biopores created by engineers. Pore formation by engineers increases 

387 macroporosity, increasing soil layer density, but at the same time reduces mesoporosity 

388 as engineers push soil aside and produce casts that are denser than average soil. The 

389 relative importance of these two effects depends on the engineers’ activity patterns, and is 

390 reflected by the parameter fPV ∈ (0, 1), which gives the fraction of the change in biopore 

391 volume that increases macroporosity. Therefore, the counterpart of the biopore volume (1 

392 - fPV) PVB is ‘compensated’ by a decrease in mesoporosity.

393 Conceptually, the total soil porosity is then the sum of:

394  (30)PVtot =  PVtext +  PVAg +  fPVPVB

395 In the model, pore volume is calculated for each pore size separately.

396 The volume of micropores (PVmicro) and bacterial pores (PVbact) increases with increasing 

397 aggregation. Apart from creating additional porosity depending on the total amount of 

398 aggregated SOM (eq. 29), aggregation also increases the relative micro- and bacterial pore 

399 volume at the expense of (textural) mesoporosity (PVmeso), therefore not increasing total 

400 porosity. This effect is controlled by available pore space between mineral particles (i.e. textural 

401 mesoporosity) and we assume that half of this mesoporosity can be affected by aggregation. In 

402 both cases, we assume that the increase in porosity due to aggregation is divided equally among 

403 micropores and bacterial pores. The pore volume in different size classes is calculated as:

404 (31)PVmacro =  PVtextmacro  +  PVB

405 (32)PVmeso =  PVtextmeso – (1 –  fPV)PVB  – 
Ag

2
PVtextmeso

406 (33)PVmicro =  PVtextmicro +  k
Ag

2
 BSOM +

Ag

4
 PVtextmeso

407 (34)PVbact =  PVtextbact +  k
Ag

2
 BSOM +

Ag

4
 PVtextmeso
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408 Volume of inaccessible pores is assumed to be constant and equal to PVtextinac. 

409 These changes are calculated daily to give a dynamic feedback to the hydrology and to the 

410 distribution of each C source among pore classes, affecting its availability.

411

412 Leaching

413 Water leaving one soil layer (n) is moved to the layer below (n+1). Dissolved organic and 

414 inorganic compounds are a complex matter to simulate since they are strongly dependent on the 

415 pH and the mother-material, i.e. clay and Ca rich or not. Nonetheless, in many systems 

416 simulating leaching of N and DOM is highly relevant. Unless better data are available, we 

417 suggest the following, semi-empirical method:

418 DOM can be simulated in relation to the CO2 released as total respiration (Rtot, g C m-3 day-1) 

419 based on the consideration that high ‘activity’ in the soil is related to high Rtot. This is calculated 

420 as a fraction (fDOM) of Rtot entering the DOM pool, similar to the concepts used in the LIDEL 

421 model, in addition to the directly exuded DOM (CExud, g C m-3 day-1) which is an input (from 

422 data or a vegetation model). Assuming a short half-life of DOM and semi-empirically, because 

423 daily concentration is not ‘equal’ to daily production (DOMp, g C m-3 day-1) but is linearly 

424 related to the daily production, we consider:

425  (35)DOMp =  CExud +  fDOMRtot

426 DOM has a short half-life but the dissolution is even faster (hours). We assume the daily 

427 concentration is in equilibrium between dissolved and adsorbed (DOMad) depending on 

428 adsorption coefficient KD of the soil (m3 kg-1 soil). Similar to the modelling in Orchidee-SOM 

429 (Cammino-Serrano et al., 2018) we assume:

430 (36)DOMad =  KD DOM

431 with KD depending on the minerals and pH. More clay (fClay fraction) means less mobile DOM, 

432 and lower pH is also a cause of less mobile DOM.

433  (37)KD =  aKD ‒  bKDpH +  cKD fClay

434 with values 0.001226, 0.000212 and 0.00374 respectively for aKD, bKD and cKD, from Cammino-

435 Serrano et al. (2018).

436 DOM leaching is calculated as the volume of water leaching to a lower layer multiplied with the 

437 concentration of dissolved DOM.

438

439 Calculation order

440 The sequence of function sets used by the model to calculate all carbon fluxes and ecosystem 

441 changes is as follows:

442 a) Calculate the pore size fractions in 5 classes and the associated pore surface areas

443 b) Calculate the water volume of the relevant pore size

444 c) Use the precipitation leaching to calculate DOM leaching
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445 d) Calculate for each biota group the accessibility of each of the pools it consumes

446 e) Calculate the gmax depending on temperature, H2O, C:N, pH and recalcitrance

447 f) Solve the 12 differential equations for increase/decrease of all C pools

448 g) Update all C pools

449 h) Calculate the new C:N and recalcitrance of each pool

450 i) Calculate engineering effect

451 a. Update macropores

452 b. Update SOM from bioturbation

453 j) Calculate other changes in pore size distribution from weather or management

454 The KEYLINK core model consists of steps d to i; steps a, b, c and j are add-ons that could be 

455 replaced by other models (e.g. water flow model) coupled to KEYLINK. Steps a-c are used to 

456 calculate the distribution of porosity between the pore classes, the hydrology and daily soil water 

457 content (distributed among pore classes), and then step d calculates how that is affecting the 

458 availability of each C source to its consumers. That couples soil structure and hydrology with 

459 trophic interactions, allowing the resolution of differential equations for C fluxes.

460

461 Model coding and output

462 KEYLINK consists of a relatively limited, freely downloadable Python code (available at: 

463 https://github.com/Plant-Root-Soil-Interactions-Modelling/KEYLINK). Each of the modifiers on 

464 growth, i.e. temperature, pH, H2O, recalcitrance and C:N, as well as the primal shape of the 

465 growth equations can be adapted towards specific questions or ecosystems. The inputs in the 

466 current version are read from data-files but are easy to link to a mechanistic model. The output of 

467 the current version consists of all daily C pools as well as the main C fluxes. KEYLINK is also 

468 available as a stand-alone executable model, allowing it to be called from models in other 

469 languages. A single run of ten years could take less than one minute (depending on computing 

470 power). In this version, the average results over one hundred runs are calculated but also all daily 

471 outputs of each run are saved.

472

473 Model parameterization

474 The first version of KEYLINK model has been parameterized for a Scots pine forest stand 

475 situated in Brasschaat, in the Campine region in Belgium (51°18’ N and 4°31’ E) but without 

476 modelling the complete forest ecosystem (to simplify the interpretation of the results from 

477 KEYLINK). The goal of this parameterization was a model verification, not a model application 

478 for which a complete integration with an aboveground model or detailed above ground data 

479 would be necessary.

480 The soil of the Brasschaat forest is sandy but with high ground water table, so trees are generally 

481 not water-limited, but the topsoil is often dry. The soil is acidic (pH 3.5). The trees were planted 

482 around 1930 and formed a rather sparse vegetation in 1999, with leaf area index (LAI) ranging 

483 from 2.1 to 2.4.

484 For this model run, we used the following input data from the stand (Table 1). In this case, we 

485 did not use measured or modelled growing trees but constant input of aboveground and 
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486 belowground litter (measured value). The top 90 cm of soil from the Brasschaat forest was 

487 analyzed in 1999 by Janssens et al. Earthworm biomass, used in this case as an example of 

488 ecosystem engineers, is extremely low due to the low pH, it was not measured since 1993 by 

489 Muys, but these data are used since there is no reason to expect there was a marked change.

490 Data availability on soil pools, biology and functioning is generally low, and it is currently not 

491 possible to find a dataset describing in detail, and with small error margins, the temporal 

492 evolution of all different soil biological compartments and SOM pools. Available data are often 

493 incomplete, or based on rough estimates, e.g. from semiquantitative DNA analysis for microbial 

494 abundance in soils. To deal with this issue, a quite pragmatic approach combining different 

495 estimates from different sources is appropriate for most datasets where the soil is not the key 

496 focus, but a means to improve the simulation of an ecosystem.

497 The daily loss of water by evapotranspiration was calculated using an equation for potential 

498 evapotranspiration based on Thornthwait (1948) in this study.

499 Model calibration

500 Once the model is parameterized for an ecosystem, the next step is to optimize that model, 

501 calibrating the fit of its simulations to the ecosystem data. The optimization included in the 

502 KEYLINK model follows a Bayesian procedure (Van Oijen, Rougier and Smith, 2005; Van 

503 Oijen, 2008). 

504 A pragmatic assumption is that the starting values of the C pools (including the soil fauna initial 

505 biomasses) are at steady state for a given date (most often spring or summer, it would be 

506 unrealistic to keep the values constant through the year as they fluctuate with climate). The 

507 simplest calibration of any ecosystem can be done by assuming these 11 carbon pools (litter, 

508 SOM and the 9 functional groups in food web) need to be stable over the simulated years, e.g. 

509 for 9 years that gives us 99 data points by taking the same value for each C pool every year 

510 (Table 2). Initial litter, SOM and biomasses of bacteria, fungi and engineers were taken from the 

511 references cited in Table 1. For other C pools, data were estimated using measured data for 

512 previous C pools and similar proportions between C pools as in the Swedish pine forest in 

513 Persson et al. (1980); predator biomass was assumed to be the 20% of all biomass in their 

514 consumed C pools. Errors were assumed as a percentage of biomass, 10% for predators, 12.5% 

515 for litter and SOM, and 20% for the rest C pools.

516 It is common to apply a correction (“burn-in”) deleting part of the posterior, e.g. the first half of 

517 the runs, to avoid the effect of the starting distribution (Gelman and Shirley, 2011). For this 

518 calibration, a sample of the last one hundred accepted parameter vectors was taken from the 

519 posterior distribution, and it was used for all further model runs, so every run was performed 

520 with 100 different parameter sets.

521

522 Input parameters of species

523 The KEYLINK model framework is conceptualized as an adaptable framework. Each user needs 

524 to determine for their specific site and questions the main drivers and pools required. Depending 

525 on the dataset, it is in general better to use less pools and equations if sparse data are available. 

526 Moreover, KEYLINK is not a soil fauna model and was not designed to simulate specific soil 
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527 fauna species in detail. The soil fauna groups used consist of a wide range of species, for which 

528 average data are used. For a description of the species categories, we refer to the review on the 

529 KEYLINK concepts (Deckmyn et al., 2020).

530 Microbes and meso-macro fauna have a temperature curve using an optimum, minimum and 

531 maximum temperature. Each soil biota group also has its own maximum growth rate, C:N ratio, 

532 respiration rate and size. Death rate (d) is the inverse of turnover, mostly given in days. In 

533 Supplemental File S1 we briefly review main input parameters. We propose setting Ks, the 

534 concentration of the food source at which growth rate is half the maximum, equal to the existing 

535 concentrations for all meso- and macro fauna, so assuming growth could double at unlimited 

536 food source. But for microbial biomass the difference between growth of bacteria on a petri-dish 

537 unlimited in nutrients compared to field data of soil microbes clearly indicates that gmax in the 

538 soil is not comparable to laboratory data; if such data of gmax are used, the Ks should be increased 

539 considerably.

540

541 Calibration for Brasschaat pine forest

542 We show here the results from a calibration towards data measured and assumed, using 

543 proportions between fauna groups in Persson et al. (1980), in the Brasschaat Scots pine stand in 

544 Belgium. This forest stand is relatively well described in many publications concerning the trees 

545 and the total ecosystem fluxes, but less concerning the soil and very little was measured on soil 

546 fauna. Therefore, the partially assumed data refers to a hypothetical ecosystem that does not fully 

547 fit with reality in Brasschaat forest. We use this forest as an example of how the KEYLINK 

548 model can be used to improve our understanding of the system even when detailed soil faunal 

549 data are limited.

550 The parameters gmax,  Ks and r are linked (increasing gmax has a similar effect to decreasing Ks or 

551 r). However, gmax or r ranges can be found in literature relatively easily. Therefore, we use fixed 

552 values for Ks (see Supplemental File S2) and parameterize gmax within the known limits. In this 

553 way, the number of parameters to be calibrated is 9, which is a reasonable number for most cases 

554 where limited data to calibrate towards are available. Of course, a user could decide to optimize 

555 more parameters if more data are available. A useful ‘rule of the thumb’ is limiting the number 

556 of parameters to the square root of the number of calibration data available (Jörgensen, 2009), 

557 which means we can get a reasonable result for nine parameters assuming 81 data points.

558 In our case, no measurements of growth rates were available and information in the literature 

559 was scant. Therefore, we deliberately defined wide ranges for the prior values of each parameter 

560 to cover all the possible values found in the literature (Chuine, 2000; Linkosalo, Lappalainen and 

561 Hari, 2008). For species for which no prior parameter information was available, we assumed 

562 parameter values equal to the mean value of the range. The initial uncertainty of each parameter 

563 is quantified in terms of a prior probability distribution with lower and upper bounds. Because of 

564 lack of detailed knowledge, we assumed the distribution as uniform and non-correlated.

565 The gmax values were optimized using the prior range for gmax (Table 3). The data used to 

566 calibrate against were chosen to give a ‘standard’ procedure, so limited to biomass of the 

567 different C pools. Including all available data s.a. soil respiration, soil humidity could improve 

568 the run for Brasschaat, but would not be a representative run for the model. Other parameter 
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569 settings, e.g. sensitivity to C:N and recalcitrance, were based on model runs of the Brasschaat 

570 site by Deckmyn et al. (2011).

571 We ran the model for the time period 1999-2008, because this was the period in which the forest 

572 was still clearly dominated by Scots pine; since then a transition to more deciduous trees has 

573 been taking place. We calibrated towards stable C pools over the ten years for all C pools, with 

574 an allowed error margin of 20% for all faunal pools, except 10% for predators, and 12.5% for 

575 litter and SOM. Daily climate data (temperature and precipitation) were used. The full range of 

576 input data can be found in Supplemental File S2, except climate data, which can be downloaded 

577 with the model. Choosing to calibrate towards one or more pools can yield different results, and 

578 it depends on the end-user's goal which calibration is preferred.

579

580 Model evaluation

581 Although coupling KEYLINK to real or simulated data of the aboveground ecosystem would 

582 yield more realistic results, in this exercise we used KEYLINK as a stand-alone model with quite 

583 constant input (e.g. litter, plant water uptake) to minimize the feedback effects and give a clear 

584 view on the model behaviour. This is a model evaluation, not a full model validation.

585 After calibration to the Brasschaat dataset, a set of scenarios was performed to evaluate the 

586 model: I. Basic results; II. Sensitivity to initial soil structure; III. Changing initial litter C:N ratio; 

587 IV. Changing initial litter recalcitrance; V. Changing soil pH; VI. Excluding predators.

588 Scenario I was done with the reference input parameters (Supplemental File S2), and used as a 

589 basal one to be compared with the other five alternative scenarios: scenario II with higher clay 

590 content in the soil (clay 15%); scenario III with lower litter C:N ratio (40); scenario IV with 

591 lower litter recalcitrance (20%); scenario V with higher pH (5.9); and scenario VI without 

592 predators by setting its initial biomass to 0 (Bpred = 0).

593 In each one of the five alternative scenarios, input parameters were the same than in the basal 

594 scenario, except for the parameter changed to generate the new scenario (see Supplemental File 

595 S2). All the six scenarios were run 100 times using a sample of 100 parameter vectors from the 

596 posterior distribution of the calibration, consisting each run in a simulation of 10 years at a daily 

597 time-step (3653 days). Then, averages of biomasses were calculated for each C pool among the 

598 100 simulations of 10 years, for each scenario, comparing the effects of disturbances on average 

599 values.

600

601 Results

602 Calibration

603 The model was run ca. 100000 times with different parameter settings sampled from the prior 

604 parameter distribution. A sample of the posterior distribution was taken with the last 100 

605 accepted parameter vectors for gmax (Table 4).

606 The optimization showed the link between the different groups of soil biota, e.g. a high gmax for 

607 bacteria was coupled to a high gmax for bacterivores. The alternative five scenarios compared to 
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608 the basal one can show very different results concerning specific C pools (Table 5). Running the 

609 model 100 times using the sample of the gmax values resulted in predictions with a quite wide 

610 range (Table 6). 

611 Basic results

612 Mycorrhiza, herbivores and detritivores are relatively uncoupled, though influenced by 

613 predators, and follow the yearly climate curves. The bacterial and fungal biomasses are very 

614 strongly linked. The high gmax of bacteria allows steep peaks, which are generally followed by 

615 peaks in bacterivore biomass. As we used constant litter input into the soil and used a calculated 

616 constant fraction of potential evapotranspiration as water uptake from the soil, it cannot be 

617 expected that these results follow the normal annual trends in fluctuations of those fluxes. This 

618 can, at least partially, explain the relatively low bacterial biomass found in our results, since the 

619 bacteria would profit most from a rapidly changing environment, but under some unrealistic 

620 simulated conditions fungi could be displacing bacteria by competitive exclusion. For more 

621 realistic simulations the model can be coupled with other models that give that information as 

622 outputs, or with measured datasets.

623 All C pools tend to reach some stability after the first years, suggesting the model is well-

624 balanced; however, stability values seem to be more sensitive to changes in gmax parameters for 

625 some pools (e.g. SOM). The set-up of the model, where we only calibrate the faunal gmax, does 

626 not allow calibration towards different ratio of litter and SOM decay. This depends on the 

627 uncalibrated parameter fragmentation, the sensitivity to recalcitrance, but also the temperature 

628 used for the litter and SOM. Here we used the same temperature, while in reality it would be 

629 expected that there would be certain differences in mean temperatures or their variability at 

630 different depths.

631 There was a high variability within the 100 simulations of each scenario, e.g. basal scenario (Fig. 

632 3), calling into question the reliability of predictions. We suggest here some theoretical 

633 predictions based on this example, but it is clear that for a realistic application it will be 

634 necessary to improve the calibration, by using more detailed data or by linking the model to a 

635 vegetation model. This highlights the relevance of developing databases including enough details 

636 for the key parameters of the different parts of the soil system (i.e. soil structure, hydrology, food 

637 webs).

638 An overview of all C pools under the different simulation scenarios (Fig. 4) shows how changing 

639 one input parameter at a time influences the results. It must be taken into account that KEYLINK 

640 was run as a stand-alone model, which can explain why some of the resulting outputs seem not 

641 very realistic; linking it to a model or more detailed data of the aboveground ecosystem would 

642 greatly influence the results, but would not allow clear interpretation of the model functioning 

643 due to feedbacks. Since our goal here was to introduce the belowground model itself rather than 

644 a realistic application to a particular case, we chose to avoid those feedbacks with other parts of 

645 the ecosystem that are required for more realistic simulations. To further elucidate these effects 

646 and to show some of the potential outputs the model can give, we show a few of the most 

647 interesting fluxes (Table 7).

648 The simulated scenarios showed that increasing clay content (i.e. changing initial soil structure) 

649 resulted in an increase in water content (Fig. 5) and a decrease in litter and SOM decay while 

650 fungal/bacterial ratio decreased. In fact, this scenario caused the largest change in soil water 
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651 content, showing the sensitivity of the system to initial soil structure and its crucial role for soil 

652 hydrology. On the other hand, lowering litter recalcitrance or C:N ratio resulted in an increase in 

653 microbial biomass, mainly fungi, which caused an increase in litter decay, while SOM decay did 

654 not show a clear change. The scenario with higher pH allowed engineer species (and predators 

655 with them) to increase in biomass, altering the soil structure with an increase in macroporosity, 

656 which caused a clear decrease in SOM stabilization. Finally, the exclusion of predators totally 

657 changed the soil porosity and the trophic interactions along the food web, causing the largest 

658 increase in the decay of SOM and litter, which highlights the crucial role of predators in the 

659 regulation of the soil C cycle.

660

661

662 Discussion

663 The Brasschaat forest is sandy, with low pH and recalcitrant litter; as expected, this is an 

664 environment not suited to earthworms. The model correctly simulated extremely low values of 

665 engineer biomass. Increasing the pH increased the engineers pool, e.g. earthworms population, 

666 but this remained too low to have a significant impact on the system. This is quite realistic as 

667 neither litter quality nor soil quality are ideal for earthworms. Obviously, to calibrate the specific 

668 parameters concerning earthworms the Brasschaat forest is not an ideal site.

669 The high variability observed in some populations could make them appear more unstable than 

670 what can be expected in reality, and it is indeed expectable that a more realistic application of the 

671 model will yield different results. However, there are also empirical evidences that some 

672 populations, e.g. microbial biomasses, can be very unstable depending on hydrology (Blackwell 

673 et al., 2010; Zhao et al., 2010), showing short-term spikes in biomass as those observed in the 

674 presented simulations, in response to predicted changes in water availability.

675 Changes in litter quality (i.e. in C:N ratio and recalcitrance) caused small differences between 

676 scenarios, being the simulations from those two alternative scenarios quite similar to the basal 

677 scenario. Despite the apparent increase in litter decay for lower litter recalcitrance and for lower 

678 C:N ratio, as mentioned before, the high variability among simulations (Fig. 3) suggests that 

679 differences between scenarios caused by changes in litter quality are negligible. It is well known 

680 that litter quality is one of the main factors controlling litter decomposition rates (Zhang et al., 

681 2008; García-Palacios et al., 2013), and the observed trend fits with experimental evidence, but 

682 clearer effects of changes in litter quality are expected. Therefore, these simulations should be 

683 tested again, particularly with the model linked to a vegetation model, and, if necessary, 

684 improvements should be added.

685 Changes in textural porosity, on the other hand, showed clearer effects on soil processes. The 

686 scenario changing clay content to increase textural porosity caused the highest impact on 

687 hydrology, increasing soil water content (E in Figure 5), which led to a decrease in SOM 

688 availability, decreasing microbial community biomasses and, therefore, decreasing the 

689 decomposition of SOM and litter. However, changes in C pools were not as clear as in 

690 hydrology, mainly due to the high uncertainty in calibration results.

691 The scenario without predators showed the most interesting results because the interactions 

692 between the different food web parts are apparent, and it showed a high contrast with the basal 
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693 scenario. Exclusion of predators, setting the starting biomass of that pool at 0, showed how the 

694 model tracks its crucial role in the ecosystem (Fig. 4). Predators produce a top-down trophic 

695 cascade on the food web, e.g. on herbivores and roots. Microbial decay is reduced as fungi and 

696 bacteria are consumed by the increased populations of bacterivores and fungivores. Despite of 

697 the decrease in bacteria and fungi, SOM and litter were also lower without predators. This could 

698 be explained by an increase in engineer populations with implications also on the soil matrix. 

699 Overall the model successfully tracked soil food web dynamics and also their interactions with 

700 soil porosity. The effect of larger soil predators (e.g. Araneae, Carabidae, Formicidae) slowing 

701 down SOM decomposition and enhancing its stabilization has been previously found in 

702 experiments (Kajak, 1995), as well as mycorrhiza effect on porosity by making aggregates 

703 (Siddiky et al., 2012). Those trophic cascade effects over SOM stabilization depends on 

704 environmental conditions such as rainfall, with predation on microbivores reducing litter 

705 decomposition rates in more humid sites, while reductions in rainfall could lead to a shift in that 

706 trend with predation on microbivores indirectly increasing litter decomposition rates (Lensing 

707 and Wise, 2006). The predicted effects of predator exclusion increasing SOM and litter decay 

708 have been found in different ecosystems, e.g. grasslands (Kajak, 1997) and forests (Lawrence 

709 and Wise, 2000), but contrasting results (e.g. Kajak, 1995; Lawrence and Wise, 2004) suggest 

710 that it is not a general pattern. Considering the high rainfall conditions at the modelled Belgian 

711 forest, and according to the suggested trends based on experimental research, soil predators 

712 feeding on microbivores at Brasschaat forest could promote SOM stabilization, which would fit 

713 with the simulated scenarios. Therefore, KEYLINK model seems to fit with the expected food 

714 web and C dynamics, and could serve to improve the biogeochemical cycles modelling, as is 

715 needed for larger scale predictions (Grandy et al., 2016), by coupling it with other ecosystem 

716 models. 

717 Hydrology is influenced by aggregation and by macropore formation by ecosystem engineers. 

718 The increased macroporosity increases infiltration rate with reduced water-logging and runoff. 

719 Predators have a clear indirect effect on soil porosity by consuming engineer species, and also 

720 microbivore species, which leads to changes in soil hydrology (Fig. 5). Variations in bacterial 

721 pore and micropore volume are positively correlated, while mesopore variations are negatively 

722 correlated with both; the higher volume in mesopores, the lower in the two other classes, and the 

723 faster the water drains from the soil layer. That is what we can expect to happen in real soils, so 

724 the model seems to simulate appropriately those dynamics. The increase in macro and 

725 mesoporosity volumes without predators, so with higher engineers, resulted in a decrease of soil 

726 water content of 9.26 % (increasing the pore aeration), and under those conditions the 

727 availability of SOM and litter for bacteria and fungi could be increased, explaining why SOM 

728 and litter are lower even with lower bacteria and fungi. This highlights the role of hydrology on 

729 trophic cascade processes, which can be enhanced or reduced by water distribution through the 

730 soil matrix (Erktan, Or and Scheu, 2020), and also the relevance of considering how climate 

731 change effects on soil structure, hydrology and food web interactions (particularly trophic 

732 cascades) can affect microbial communities (Thakur and Geisen, 2019) and, therefore, litter and 

733 SOM decomposition. 

734 The aim of this study was to present a first version of a new concept model that hopefully will 

735 serve to challenge current state-of-the-art soil modelling. But we are aware that to do that we will 

736 need to improve the calibration of the model in the future, using more complete databases that 

737 take into account all the elements needed to calibrate KEYLINK, which, on the other hand, are 
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738 currently extremely scarce. By presenting this concept model that challenges the current way of 

739 simulating soil biochemical cycling, we hope to stimulate that future studies will also be 

740 designed to take into account the pools and functional groups needed to calibrate KEYLINK.

741

742 Conclusions

743 KEYLINK is a relatively simple, fast and easy to modify soil model that can be used as a stand-

744 alone model to understand soil systems, or linked to detailed aboveground data/models to predict 

745 SOM turnover. Model evaluation showed that KEYLINK is capable of simulating properly not 

746 only the soil food web and C pools dynamics, but also how they interact with soil porosity and 

747 hydrology, which is one of the main goals of this new model. The results from the evaluation 

748 scenarios showed that SOM turnover is driven not only by microbial biomass, but also by soil 

749 structure and hydrology. Moreover, microbial biomass is strongly regulated by the 

750 presence/absence of the other soil fauna. Especially the effects of the predators and the 

751 ecosystem engineers are extremely significant for our understanding of soil functioning. 

752 Furthermore, since management can differentially affect the larger soil fauna, KEYLINK can be 

753 of great use to investigate potential effects of management changes on soil SOM, nutrient 

754 turnover and hydrology.

755 This model shows degradability of SOM can be adequately simulated from accessibility in 

756 relation to pore space instead of the existing concepts of slow and fast pools. This allows a closer 

757 link to the soil structure and soil fauna which we consider closer to the actual, and follows the 

758 concepts as first described by Kuka, Franko and Rühlmann (2007), but applied here in a wider 

759 framework and including the hydrology.

760 For a full validation or better calibration of the model, datasets are required including basic data 

761 on the aboveground, e.g. litter input, water uptake, root growth and turnover, in combination 

762 with relatively detailed data on soil structure, i.e. pore size distribution, and hydrology and soil 

763 biota, e.g. biomass of bacteria, fungi, mycorrhizal fungi and main meso-and macrofauna. All 

764 these data are available, but very seldom at one site as most studies are focused on one or other 

765 aspect of soil science.

766 In conclusion, KEYLINK is a step towards a new generation of ecosystems models that include 

767 functional diversity, trophic structures and ecological processes as important factors shaping 

768 soil/ecosystem carbon and water cycling. Future versions, fed by more detailed data, will need to 

769 be developed in order to improve our current predictive capacity.

770

771 Acknowledgements

772 The authors express their gratitude to all the people who have contributed to the BioLink and 

773 KEYSOM COST Actions, whose work contributed also to the development of the KEYLINK 

774 model.

775

776 References

PeerJ reviewing PDF | (2020:03:47320:2:0:NEW 17 Nov 2020)

Manuscript to be reviewed



777 Birch, L. (1948). The intrinsic rate of natural increase of an insect population. The Journal of 

778 Animal Ecology, 17(1), 15-26.

779 Blackwell, M. S. A., Brookes, P. C., de La Fuente-Martinez, N., Gordon, H., Murray, P. J., 

780 Snars, K. E., Williams, J. K., Bol, R., and Haygarth, P. M. (2010). Phosphorus 

781 solubilization and potential transfer to surface waters from the soil microbial biomass 

782 following drying–rewetting and freezing–thawing. In Advances in agronomy (Vol. 106, 

783 pp. 1-35). Academic Press.

784 Camino-Serrano, M., Guenet, B., Luyssaert, S., Ciais, P., Bastrikov, B., De Vos, B., Gielen, B., 

785 Gleixner, G., Jornet-Puig, A., Kaiser, K., Kothawala, D., Lauerwald, R., Peñuelas, J., 

786 Schrumpf, M., Vicca, S., Vuichard, N., Walmsley, D., and Janssens, I. A. (2018). 

787 ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon 

788 (DOC) dynamics along vertical soil profiles in Europe. Geoscientific Model 

789 Development, 11(3), 937-957.

790 Campbell. E. E., Parton, W. J., Soong, J. L., Paustian, K., Hobb, N. T., and Cotrufo, M. F. 

791 (2016). Using litter chemistry controls on microbial processes to partition litter carbon 

792 fluxes with the Litter Decomposition and Leaching (LIDEL) model. Soil Biology and 

793 Biochemistry, 100, 160-174.

794 Campbell, E. E., and Paustian, K. (2015). Current developments in soil organic matter modeling 

795 and the expansion of model applications: a review. Environmental Research Letters, 

796 10(12), 123004.

797 Chertov, O., Komarov, A., Shaw, C., Bykhovets, S., Frolov, P., Shanin, V., Grabarnik, P., 

798 Priputina, I., Zubkova, E., and Shashkov, M. (2017a). Romul_Hum - A model of soil 

799 organic matter formation coupling with soil biota activity. II. Parameterisation of the soil 

800 food web biota activity. Ecological Modelling, 345, 140-149.

801 Chertov, O., Shaw, C., Shashkov, M., Komarov, A., Bykhovets, S., Shanin, V., Grabarnik, P., 

802 Frolov, P., Kalinina, O., Priputina, I., and Zubkova, E. (2017b). Romul_Hum model of 

803 soil organic matter formation coupled with soil biota activity. III. Parameterisation of 

804 earthworm activity. Ecological Modelling, 345, 140-149.

805 Christian, P. R., and Casella, G. (1999). Monte Carlo statistical methods. Springer. New York.

806 Chuine, I. (2000). A unified model for budburst of trees. Journal of Theoretical Biology, 207(3), 

807 337-347.

808 Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., and Paul, E. (2013). The Microbial 

809 Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition 

810 with soil organic matter stabilization: do labile plant inputs form stable soil organic 

811 matter? Global Change Biology, 19, 988-995.

812 Deckmyn, G., Campioli, M., Muys, B., and Kraigher, H. (2011). Simulating C cycles in forest 

813 soils: Including the active role of micro-organisms in the ANAFORE forest 

814 model. Ecological Modelling, 222, 1972-1985.

PeerJ reviewing PDF | (2020:03:47320:2:0:NEW 17 Nov 2020)

Manuscript to be reviewed



815 Deckmyn, G., Meyer, A., Smits, M. M., Ekblad, A., Grebenc, T., Komarov, A., and Kraigher, 

816 H., (2014). Simulating ectomycorrhizal fungi and their role in carbon and nitrogen 

817 cycling in forest ecosystems. Canadian Journal of Forest Research, 44(6), 535-553.

818 Erktan, A., Or, D., and Scheu, S. (2020). The physical structure of soil: Determinant and 

819 consequence of trophic interactions. Soil Biology and Biochemistry, 107876.

820 Filser, J., Faber, J. H., Tiunov, A. V., Brussaard, L., Frouz, J., De Deyn, G., Uvarov, A. 

821 V., Berg, M. P., Lavelle, P., Loreau, M., Wall, D. H., Querner, P., Eijsackers, 

822 H., and Jiménez, J. J. (2016). Soil fauna: key to new carbon models. Communications in 

823 Soil Science and Plant Analysis, 2, 565-582.

824 Franko, U. (1989). C-und N-Dynamik beim Umsatz organischer Substanzen im Boaen. Diss., 

825 Berlin, Akad. Landwirtsch.

826 Freytag, H. E., and Luttich, M. (1985). Zum Einfluß der Bodenfeuchte auf die Bodenatmung 

827 unter Einbeziehung der Trockenraumdichte. Archiv für Acker-und Pflanzenbau und 

828 Bodenkunde, 29(8), 485-492.

829 García‐Palacios, P., Maestre, F. T., Kattge, J., and Wall, D. H. (2013). Climate and litter quality 

830 differently modulate the effects of soil fauna on litter decomposition across 

831 biomes. Ecology letters, 16(8), 1045-1053.

832 Gaublomme, E., De Vos, B., and Cools, N. (2006). An indicator for microbial biodiversity in 

833 forest soils. Brussels (BE): Instituut voor Natuur-en Bosonderzoek (INBO). R.

834 Geisen, S., Briones, M. J., Gan, H., Behan-Pelletier, V. M., Friman, V.P., de Groot, G. A., 

835 Hannula, S. E., Lindo, Z., Philippot, L., Tiunov, A. V., and Wall, D. H. (2019). A 

836 methodological framework to embrace soil biodiversity. Soil Biology and Biochemistry, 

837 136, 107536.

838 Gelman, A., and Shirley, K. (2011). Inference from simulations and monitoring convergence. In: 

839 Brooks, S., Gelman, A., Jones, G., and Meng, X. L. (eds.), Handbook of Markov Chain 

840 Monte Carlo, 6, 163-174. CRC press, USA.

841 Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J., and Torn, M. S. (2017). Microbial 

842 community-level regulation explains soil carbon responses to long-term litter 

843 manipulations. Nature Communications, 8(1), 1-10.

844 Grandy, A. S., Wieder, W. R., Wickings, K., and Kyker-Snowman, E. (2016). Beyond microbes: 

845 Are fauna the next frontier in soil biogeochemical models? Soil Biology and 

846 Biochemistry, 102, 40-44.

847 Grosbellet, C., Vidal-Beaudet, L., Caubel, V., and Charpentier, S. (2011). Improvement of soil 

848 structure formation by degradation of coarse organic matter. Geoderma, 162(1-2), 27-38.

849 Horemans, J., Roland, M., Janssens, I., and Ceulemans, R. (2017). Explaining the inter-annual 

850 variability in the ecosystem fluxes of the Brasschaat Scots pine forest: 20 years of eddy 

851 flux and pollution monitoring. In: EGU General Assembly Conference Abstracts, 19, 

852 10402.

PeerJ reviewing PDF | (2020:03:47320:2:0:NEW 17 Nov 2020)

Manuscript to be reviewed



853 Janssens, I. A., Sampson, D. A., Cermak, J., Meiresonne, L., Riguzzi, F., Overloop, S., and 

854 Ceulemans, R. (1999). Above- and belowground phytomass and carbon storage in a 

855 Belgian Scots pine stand. Annals of Forest Science 56, 81-90.

856 Janssens, I. A., Sampson, D. A., Curiel Yuste, J., Carrara, A., and Ceulemans, R. (2002). The 

857 carbon cost of fine root turnover in a Scots pine forest. Forest Ecology and Management, 

858 168(1-3), 231-240.

859 Jones, C. G., Lawton, J. H., and Shachack, M. (1994). Organisms as ecosystem engineers. Oikos 

860 69, 373-386.

861 Jörgensen, S. E. (2009). Ecological modelling: an introduction. WIT press. ISBN 978-1-84564-

862 408-6

863 Kajak, A. (1995). The role of soil predators in decomposition processes. European Journal of 

864 Entomology, 92(3), 573-580.

865 Kajak, A. (1997). Effects of epigeic macroarthropods on grass litter decomposition in mown 

866 meadow. Agriculture, ecosystems & environment, 64(1), 53-63.

867 Kuka, K., Franko, U., and Rühlmann, J. (2007). Modelling the impact of pore space distribution 

868 on carbon turnover. Ecological Modelling, 208(2-4), 205-306.

869 Lal, R., and Shukla, M. K. (2004). Principles of soil physics. CRC Press.

870 Lavelle, P., Chauvel, A., and Fragoso, C. (1995). Faunal activity in acid soils. In Plant-Soil 

871 Interactions at Low pH: Principles and Management (pp. 201-211). Springer, Dordrecht.

872 Lavelle, P., Spain, A., Blouin, M., Brown, G., Decaëns, T., Grimaldi, M., Jiménez, J. J., McKey, 

873 D., Mathieu, J., Velasquez, E., and Zangerlé, A. (2016). Ecosystem engineers in a self-

874 organized soil: a review of concepts and future research questions. Soil Science, 181(3/4), 

875 91-109.

876 Lawrence, K. L., and Wise, D. H. (2000). Spider predation on forest-floor Collembola and 

877 evidence for indirect effects on decomposition. Pedobiologia, 44(1), 33-39.

878 Lawrence, K. L., and Wise, D. H. (2004). Unexpected indirect effect of spiders on the rate of 

879 litter disappearance in a deciduous forest. Pedobiologia, 48(2), 149-157.

880 Lensing, J. R., and Wise, D. H. (2006). Predicted climate change alters the indirect effect of 

881 predators on an ecosystem process. Proceedings of the National Academy of 

882 Sciences, 103(42), 15502-15505.

883 Linkosalo, T., Lappalainen, H., and Hari, P. (2008). A comparison of phenological models of 

884 leaf bud burst and flowering of boreal trees using independent observations. Tree 

885 Physiology, 28(12), 1873-1882.

886 Malamoud, K., McBratney, A. B., Minasny, B., and Field, D. J. (2009). Modelling how carbon 

887 affects soil structure. Geoderma, 149, 19-26.

888 Mambelli, S., Bird, J. A., Gleixner, G., Dawson, T. E., and Torn, M. S. (2011). Relative 

889 contribution of foliar and fine root pine litter to the molecular composition of soil organic 

890 matter after in situ degradation. Organic Geochemistry, 42, 1099-1108.

PeerJ reviewing PDF | (2020:03:47320:2:0:NEW 17 Nov 2020)

Manuscript to be reviewed



891 Muys, B. (1993). A synecological evaluation of the earthworm activity and litter decomposition 

892 in Flemish forests in the context of sustainable forest management. D. Phil. Thesis, 

893 University of Ghent.

894 Osler, G. H., and Sommerkorn, M. (2007). Toward a complete soil C and N cycle: incorporating 

895 the soil fauna. Ecology, 88(7), 1611-1621.

896 Persson, T., Bååth, E., Clarholm, M., Lundkvist, H., Soderstroem, B. E., and Sohlenius, B. 

897 (1980). Trophic structure, biomass dynamics and carbon metabolism of soil organisms in 

898 a Scots pine forest. Ecological Bulletins, 32, 419-459.

899 Regelink, I. C., Stoof, C. R., Rousseva, S., Weng, L., Lair, G. J., Kram, P., Nikolaidis, N. P., 

900 Kercheva, M., Banwart, S., and Comans, R. N. J. (2015a). Linkages between aggregate 

901 formation, porosity and soil chemical properties. Geoderma 247, 24-37.

902 Regelink, I. C., Weng, L., Lair, G. J., and Comans, R. N. J. (2015b). Adsorption of phosphate 

903 and organic matter on metal (hydr)oxides in arable and forest soil: a mechanistic 

904 modelling study. European Journal of Soil Science, 66(5), 867-875.

905 Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Knight, R., 

906 and Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an 

907 arable soil. The ISME journal, 4(10), 1340-1351.

908 Rousk, J., Brookes, P. C., and Bååth, E. (2009). Contrasting soil pH effects on fungal and 

909 bacterial growth suggest functional redundancy in carbon mineralization. Applied and 

910 Environmental Microbiology, 75(6), 1589-1596.

911 Rousk, J., Brookes, P. C., and Bååth, E. (2010). Investigating the mechanisms for the opposing 

912 pH relationships of fungal and bacterial growth in soil. Soil Biology and 

913 Biochemistry, 42(6), 926-934.

914 Saxton, K. E., Rawls, W., Romberger, J. S., and Papendick, R. I. (1986). Estimating generalized 

915 soil-water characteristics from texture 1. Soil Science Society of America Journal, 50(4), 

916 1031-1036.

917 Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., 

918 Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. 

919 P., Weiner, S., and Trumbore, S. E. (2011). Persistence of soil organic matter as an 

920 ecosystem property. Nature, 478, 49-56.

921 Siddiky, R. K., Kohler, J., Cosme, M., and Rillig, M. C. (2012). Soil biota effects on soil 

922 structure: interactions between arbuscular mycorrhizal fungal mycelium and collembola. 

923 Soil Biology and Biochemistry, 50, 33-39.

924 Thakur, M. P., and Geisen, S. (2019). Trophic regulations of the soil microbiome. Trends in 

925 microbiology, 27(9), 771-780.

926 Thornthwait, C. W. (1948). An approach toward a rational classification of climate. 

927 Geographical Review, 38(1), 55-94.

928 Van Oijen, M. (2008). Bayesian Calibration (BC) and Bayesian Model Comparison (BMC) of 

929 process-based models: Theory, implementation and guidelines.

PeerJ reviewing PDF | (2020:03:47320:2:0:NEW 17 Nov 2020)

Manuscript to be reviewed



930 Van Oijen, M., Rougier, J., and Smith, R. (2005). Bayesian calibration of process-based forest 

931 models: bridging the gap between models and data. Tree Physiology, 25(7), 915-927.

932 Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., Vanderborght, J., 

933 Young, M. H., Amelung, W., Aitkenhead, M., Allison, S. D., Assouline, S., Baveye, P., 

934 Berli, M., Brüggemann, N., Finke, P., Flury, M., Gaiser, T., Govers, G., Ghezzehei, T., 

935 Hallett, P., Hendricks Franssen, H. J., Heppell, J., Horn, R., Huisman, J. A., Jacques, D., 

936 Jonard, F., Kollet, S., Lafolie, F., Lamorski, K., Leitner, D., McBratney, A., Minasny, B., 

937 Montzka, C., Nowak, W., Pachepsky, Y., Padarian, J., Romano, N., Roth, K., Rothfuss, 

938 Y., Rowe, E. C., Schwen, A., Šimůnek, J., Tiktak, A., Van Dam, J., van der Zee, S. E. A. 

939 T. M., Vogel, H. J., Vrugt, J. A., Wöhling, T., and Young, I. M. (2016). Modeling soil 

940 processes: Review, key challenges, and new perspectives. Vadose Zone Journal, 15(5).

941 von Lützow, M., Kögel-Knabner, I., Ludwig, B., Matzner, E., Flessa, H., Ekschmitt, K., 

942 Guggenberger, G., Marschner, B., and Kalbitz, K. (2008). Review Article Stabilization 

943 mechanisms of organic matter in four temperate soils: Development and application of a 

944 conceptual model. Journal of Plant Nutrition and Soil Science, 171(1), 111-124.

945 Wieder, W. R., Grandy, A. S., Kallenbach, C. M., and Bonan, G. B. (2014). Integrating 

946 microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral 

947 Carbon Stabilization (MIMICS) model. Biogeosciences, 11, 3899-3917.

948 Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G., and Bonan, G. B. (2015). 

949 Representing life in the Earth system with soil microbial functional traits in the MIMICS 

950 model. Geoscientific Model Development Discussions, 8(2), 1789-1808.

951 Zhang, D., Hui, D., Luo, Y., and Zhou, G. (2008). Rates of litter decomposition in terrestrial 

952 ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1(2), 85-

953 93.

954 Zhao, B., Chen, J., Zhang, J., and Qin, S. (2010). Soil microbial biomass and activity response to 

955 repeated drying–rewetting cycles along a soil fertility gradient modified by long-term 

956 fertilization management practices. Geoderma, 160(2), 218-224.

PeerJ reviewing PDF | (2020:03:47320:2:0:NEW 17 Nov 2020)

Manuscript to be reviewed



Table 1(on next page)

Initial input data.

Data from Brasschaat Scots pine forest (Belgium). Microbial C pool was estimated as hot
water extractable C (HWC).
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Variable Unit Value Reference

Earthworm biomass g C m-3 200 Muys (1993)

pH 3.5 Janssens et al. (1999)

Sand % 93 Janssens et al. (1999)

Initial SOM g C m-3 11470 Janssens et al. (1999)

Initial litter g C m-3 2680 Janssens et al. (1999)

Fine root biomass g C m-3 400 Janssens et al. (2002)

Fine root litter g C m-3 300 Janssens et al. (1999)

Fine root growth rate g C m-3 year-1 210 Janssens et al. (2002)

Annual  litter fall g C m-3 year-1 400 Horemans et al. (2017)

Fine root turnover g C m-3 year-1 740 Based on Janssens et al. (2002)

C input to mycorrhiza g C m-3 year-1 197 Assumed based on Deckmyn et al. (2014)

Microbial C as HWC g m-3 1338.21 Gaublomme et al. (2006)

1
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Table 2(on next page)

Calibration data.

Data of C pools used for the model calibration. Biomasses of the nine food web functional
groups: bacteria (Bb), fungi (Bf), mycorrhiza (Bmyc), bacterivores (Bbvores), fungivores (Bfvores),

detritivores (Bdet), engineers (Beng), herbivores (Bhvores) and predators (Bpred); and the other two

C pools: litter and soil organic matter (SOM). Values were used once per year during
calibration at days 180, 545, 910, 1275, 1640, 2005, 2370, 2735 and 3100.
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C pool Value (g C m-3) Error (g C m-3) 

Bb 15.1 3.02

Bf 15.1 3.02

Bmyc 160 32

Bbvores 0.1 0.02

Bfvores 0.8 0.16

Bdet 0.6 0.12

Beng 0.2 0.04

Bhvores 0.2 0.04

Bpred 0.4 0.04

Litter 2680 335

SOM 11470 1433.75

1
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Table 3(on next page)

Lower and upper bounds for the gmax prior probability distribution, for each one of the
nine functional groups in the food web.
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gmax Lower bounds Upper bounds

Bacteria 1 3

Fungi 0 3

Mycorrhiza 1 3

Bacterivores 0 2

Fungivores 0 2

Detritivores 0 0.5

Engineers 0 0.5

Herbivores 0 0.5

Predators 0 0.5

1
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Table 4(on next page)

Averages ± standard deviation from the sample of 100 gmax vectors from the posterior
distribution of the KEYLINK model calibrated for the Brasschaat Scots pine forest.
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Sample gmax

Bacteria 1.970 ± 0.424

Fungi 0.295 ± 0.134

Mycorrhiza 2.208 ± 0.302

Bacterivores 0.205 ± 0.098

Fungivores 0.095 ± 0.050

Detritivores 0.091 ± 0.050

Engineers 0.292 ± 0.062

Herbivores 0.028 ± 0.018

Predators 0.408 ± 0.060

1
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Table 5(on next page)

Effect of changes in input parameters on the average C pool (in g C m-3) size over 10
years.

Averages from 100 runs of ten years with gmax parameter sets of the sample from the

posterior distribution. The "basal" column has the results using reference input parameters
(Supplemental File S2), and the other columns show the results with lower litter
recalcitrance (rec 20%), lower input litter C:N ratio (C:Nlit 40), higher pH (5.9), excluding

predators (Bpred 0) and a higher clay content in the soil (clay 15%), respectively.
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C pools basal rec  20% CNlit 40 pH 5.9 Bpred 0 clay 15%

Bacteria (g C/m3) 5,98 6,94 6,35 5,90 2,67 4,75

Fungi (g C/m3) 210,14 224,83 231,33 158,06 30,70 141,83

Mycorrhiza (g C/m3) 39,83 40,20 40,03 38,70 29,75 39,27

Bacterivores (g C/m3) 0,00 0,00 0,00 0,00 0,03 0,00

Fungivores (g C/m3) 0,30 0,31 0,39 0,18 0,90 0,40

Detritivores (g C/m3) 2,49 2,12 2,01 3,83 145,39 0,87

Engineers (g C/m3) 0,04 0,04 0,04 0,51 1,54 0,05

Herbivores (g C/m3) 0,12 0,12 0,13 0,02 5,48 0,16

Predators (g C/m3) 3,33 2,86 2,87 6,41 0,00 1,36

Litter (g C/m3) 3695,08 3262,71 3481,79 3728,85 2727,81 4245,54

SOM (g C/m3) 10825,04 10941,01 10742,97 9347,23 3175,08 11655,70

1

2

3
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Table 6(on next page)

Effect of changes in input parameters on the posterior distribution of C pool (in g C m-3)
size over 10 years.

Minimum and maximum values within 100 runs of ten years with gmax parameter sets of the

sample from the posterior distribution. The "basal" columns have the results using reference
input parameters (Supplemental File S2), and the following columns show the same
changes from basal as in Table 5. For C pool notation see Table 2.
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C 

pools

basal rec  20% CNlit 40 pH 5.9 Bpred 0 clay 15%

(g 

C/m3)

min max min max min max min max min max min max

Bb 9,61E-

42

670,64 3,41E-

43

676,40 8,48E-

38

683,87 0,00 669,74 0,00 547,97 8,06E-

43

788,31

Bf 2,63E-

25

4660,93 3,87E-

25

4587,16 3,74E-

25

4677,78 0,00 4656,39 0,00 4038,0

9

2,56E-

25

4763,21

Bmyc 4,18 649,45 5,11 684,88 5,79 652,73 0,00 648,45 0,00 592,13 5,87 515,60

Bbvores 6,89E-

110

0,10 4,91E-

105

0,10 1,17E-

108

0,10 0,00 0,10 0,00 44,07 1,13E-

96

0,10

Bfvores 4,47E-

84

194,08 5,82E-

84

169,06 5,28E-

83

204,50 0,00 141,68 0,00 351,94 1,27E-

74

244,39

Bdet 1,13E-

67

1720,93 3,76E-

67

1524,58 3,02E-

68

1567,73 0,00 6898,50 0,00 5997,9

0

7,56E-

79

431,85

Beng 7,13E-

178

61,50 6,54E-

176

33,87 5,45E-

172

74,46 0,00 396,62 0,00 88,62 7,18E-

140

43,86

Bhvores 1,11E-

68

49,65 5,23E-

65

49,75 1,78E-

65

49,64 3,78E-

89

34,32 7,95E-

22

85,00 1,12E-

56

51,33

Bpred 4,72E-

21

1616,28 4,73E-

21

1409,80 4,72E-

21

1466,09 0,00 5512,93 0,00 0,28 4,60E-

21

452,07

Litter 6,0E+01 9056,63 42,89 8850,72 53,95 8996,91 60,08 8749,61 63,63 7409,2

8

75,00 9257,38

SOM 2,35E+3 15687,9 2356,64 16027,4 2350,89 15751,5 921,46 15687,4 1340,6 11589, 3919,25 15842,3
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Table 7(on next page)

Effect of changes in input parameter on major output fluxes over 10 years.

The first three rows show bacterial, fungal and mycorrhiza respiration (R) fluxes (g C m-3),

respectively. The next three rows show the total turnover (g C m-3) on an organic matter pool
carried out by bacteria (Bact) or engineers (Eng) over 10 years. The penultimate row shows

the fungi to bacteria ratio. And the last row is soil water content (SWC, l m-3). Columns show
average values and standard deviations from 100 runs of ten years from the sample of the
posterior distribution, with a basal scenario using reference input parameters
(Supplemental File S2), and the same changes from it as in Table 5.
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units basal rec  20% C:Nlit 40 pH 5.9 Bpred 0 clay 15%

Rbact g C m-3 250.2±222.8 293.6±227.2 262.3±225.7 248.9±222.4 119.3±149.9 204.5±225.9

Rfun g C m-3 3924.8±5043.

6
4190.0±5035.6 4215.4±5166.1

3400.6±4776.

3

963.6±2669.

4

2638.5±4270

.7

Rmyc g C m-3 773.9±443.7 785.3±447.3 779.1±445.9 760.4±431.3 560.3±335.5 760.5±447.5

Bact SOM 

turnover

g C m-3 

995.6±758.2 1100.2±716.3 1036.5±757.7 985.4±752.6 438.6±524.2 780.2±741.7

Bact litter 

turnover

g C m-3 
258.6±264.1 367.7±328.6 280.2±276.2 257.6±263.9 119.6±170.6 223.5±279.7

Eng litter 

turnover

g C m-3 
1.5±5.3 1.3±4.5 1.3±4.4 43.8±104.4 97.3±72.1 2.0±5.8

Bfungi/Bbact - 35.2 32.4 36.4 26.8 11.5 29.9

SWC l m-3 147.9±32.7 149.2±32.4 150.3±33.7 144.2±31.1 134.2±21.8 321.6±27.2

1
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Figure 1
Simplified model scheme.

General structure of the KEYLINK model. Square boxes represent pools of organic matter.
Wide double-line arrows, with a circle within the arrow, represent fluxes between pools (blue
arrowheads show bidirectional fluxes). Isolated circles represent abiotic factors that affect
model fluxes, and red narrow arrows connect each factor or pool with the model parts (at the
arrowheads) that are regulated by them.
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Figure 2
Pools and fluxes in the KEYLINK model.

Scheme of C pools with their interactions. All pools, soil, microorganisms and fauna (see
Table S1.2 in Supplemental File S1) are represented in the model in the same units (g C

m-3). The arrows represent carbon fluxes between the pools; each arrow is represented by a
term in the model equations.
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Figure 3
C pools daily biomass averages and standard deviations from the basal scenario

C pools (in g C m-3) averages (black) and standard deviations (grey) among 100 simulations
of ten years using the gmax sample from the basal simulation scenario. A) bacteria pool; B)

non-mycorrhizal fungi; C) mycorrhizal fungi; D) microbivores feeding on bacteria; E)
microbivores feeding on fungi; F) non-engineer detritivores; G) ecosystem engineers; H)
herbivores; I) predators; J) plant litter; K) soil organic matter.
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Figure 4
C pools daily biomass averages under different scenarios.

Averages of C pools (in g C m-3) among 100 simulations of ten years using the gmax sample,

with the basal simulation (black solid lines), and the alternative scenarios: higher clay
content (red dashed lines), lower input litter C:N (yellow dotted lines), excluding predators
(dark blue dotted dashed lines), higher soil pH (green long dash lines) and lower litter
recalcitrance (light blue, lines with two different dashes). Pools are the same as in Figure 3,
i.e. the nine food web functional groups, litter and soil organic matter (SOM).
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Figure 5
Daily volume averages of soil water content (SWC) and pore size classes in the soil
matrix.

Means of volume (in l m-3) among 100 simulations of ten years using the sample of gmax

vectors, for the evaluation scenarios (see Figure 4). Graphs A-D for pore size classes, E for
SWC. The innaccesible pore size class is not shown because it was not affected by changes in
porosity.
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