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Background. The use of consumer-grade electroencephalography (EEG) systems for research purposes
has become more prevalent. In event-related potential (ERP) research, it is critical that these systems
have precise and accurate timing. The aim of the current study was to investigate the timing reliability of
event-marking solutions used with Emotiv commercial EEG systems.

Method. We conducted three experiments. In Experiment 1 we established a jitter threshold (i.e., the
point at which jitter made an event-marking method unreliable). To do this, we introduced statistical
noise to the temporal position of event-marks of a pre-existing ERP dataset (recorded with a research-
grade system, Neuroscan SynAmps2 at 1000 Hz using parallel-port event-marking) and calculated the
level at which the waveform peaks differed statistically from the original waveform. In Experiment 2 we
established a method to compare Emotiv event-marks to the actual EEG data of interest. We did this by
inserting 1000 events into Neuroscan data using a custom-built event-marking system, the “Airmarker”,
which marks events by triggering voltage spikes in two EEG channels. We used the lag between
Airmarker events and events generated by Neuroscan as a reference for comparisons in Experiment 3. In
Experiment 3 we measured the precision and accuracy of three types of Emotiv event-marking by
generating 1000 events, 1 sec apart. We measured precision as the variability (standard deviation in ms)
of Emotiv events and accuracy as the mean difference between Emotiv events and Airmarker events. The
three triggering methods we tested were: 1) Parallel-port-generated TTL triggers; 2) Arduino-generated
TTL triggers; and 3) Serial-port triggers. In Methods 1 and 2 we used an auxiliary device, Emotiv
Extender, to incorporate triggers into the EEG data. We tested these event-marking methods across
three configurations of Emotiv EEG systems: 1) Emotiv EPOC+ sampling at 128 Hz; 2) Emotiv EPOC+
sampling at 256 Hz; and 3) Emotiv EPOC Flex sampling at 128 Hz.

Results. In Experiment 1 we found that the smaller P1 and N1 peaks were attenuated at lower levels of
jitter relative to the larger P2 peak (14 ms, 11 ms, and 31 ms for P1, N1, and P2, respectively). In
Experiment 2, we found an average lag of 30.96 ms for Airmarker events relative to Neuroscan events. In
Experiment 3, we found some lag in all configurations. However, all configurations exhibited precision of
less than a single sample, with serial-port-marking the most precise when paired with EPOC+ sampling at
256 Hz.

Conclusion. All Emotiv event-marking methods and configurations that we tested were precise enough
for ERP research as the precision of each method would provide ERP waveforms statistically equivalent to
a research-standard system. Though all systems exhibited some level of inaccuracy, researchers could
easily account for these during data processing.
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14 Abstract

15 Background. The use of consumer-grade electroencephalography (EEG) systems for 

16 research purposes has become more prevalent. In event-related potential (ERP) 

17 research, it is critical that these systems have precise and accurate timing. The aim of 

18 the current study was to investigate the timing reliability of event-marking solutions used 

19 with Emotiv commercial EEG systems. 

20 Method. We conducted three experiments. In Experiment 1 we established a jitter 

21 threshold (i.e., the point at which jitter made an event-marking method unreliable). To 

22 do this, we introduced statistical noise to the temporal position of event-marks of a pre-

23 existing ERP dataset (recorded with a research-grade system, Neuroscan SynAmps2 at 

24 1000 Hz using parallel-port event-marking) and calculated the level at which the 

25 waveform peaks differed statistically from the original waveform. In Experiment 2 we 

26 established a method to compare Emotiv event-marks to the actual EEG data of 

27 interest. We did this by inserting 1000 events into Neuroscan data using a custom-built 

28 event-marking system, the “Airmarker”, which marks events by triggering voltage spikes 

29 in two EEG channels. We used the lag between Airmarker events and events generated 

30 by Neuroscan as a reference for comparisons in Experiment 3. In Experiment 3 we 

31 measured the precision and accuracy of three types of Emotiv event-marking by 

32 generating 1000 events, 1 sec apart. We measured precision as the variability (standard 

33 deviation in ms) of Emotiv events and accuracy as the mean difference between Emotiv 

34 events and Airmarker events. The three triggering methods we tested were: 1) Parallel-

35 port-generated TTL triggers; 2) Arduino-generated TTL triggers; and 3) Serial-port 

36 triggers. In Methods 1 and 2 we used an auxiliary device, Emotiv Extender, to 
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37 incorporate triggers into the EEG data. We tested these event-marking methods across 

38 three configurations of Emotiv EEG systems: 1) Emotiv EPOC+ sampling at 128 Hz; 2) 

39 Emotiv EPOC+ sampling at 256 Hz; and 3) Emotiv EPOC Flex sampling at 128 Hz.

40 Results. In Experiment 1 we found that the smaller P1 and N1 peaks were attenuated 

41 at lower levels of jitter relative to the larger P2 peak (14 ms, 11 ms, and 31 ms for P1, 

42 N1, and P2, respectively). In Experiment 2, we found an average lag of 30.96 ms for 

43 Airmarker events relative to Neuroscan events. In Experiment 3, we found some lag in 

44 all configurations. However, all configurations exhibited precision of less than a single 

45 sample, with serial-port-marking the most precise when paired with EPOC+ sampling at 

46 256 Hz.

47 Conclusion. All Emotiv event-marking methods and configurations that we tested were 

48 precise enough for ERP research as the precision of each method would provide ERP 

49 waveforms statistically equivalent to a research-standard system. Though all systems 

50 exhibited some level of inaccuracy, researchers could easily account for these during 

51 data processing.

52
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53 Introduction

54 The use of consumer-grade electroencephalography (EEG) devices has 

55 increased markedly in recent years. EEG devices measure the voltage of electrical 

56 fields generated when neurons fire and whereas early EEG systems were cumbersome 

57 and expensive, newer systems have become smaller and cheaper. This is particularly 

58 true of commerical-grade EEG. These systems have lowered the financial barrier to 

59 neuroscientific research and, due to their portable nature, allowed studies to move 

60 outside the laboratory into more naturalistic settings, such as the classroom (see Xu & 

61 Zhong, 2018 for a review).  Even when used in a laboratory, commercial EEG systems 

62 can streamline data collection as the setup is often quicker and simpler than traditional 

63 EEG systems. 

64 Research techniques that were once possible only with expensive EEG setups 

65 are now achievable using low-cost alternatives (Sawangjai, Hompoonsup, Leelaarporn, 

66 Kongwudhikunakorn, & Wilaiprasitporn, 2020; Williams, McArthur, & Badcock, 2020). 

67 One of these techniques is the event-related potential (ERP) approach. An ERP is the 

68 average electrical potential generated by large groups of neurons in response to a 

69 particular event. It is measured by recording a person's EEG during the repeated 

70 occurrence of a stimulus and then isolating the EEG into discrete sections of time, or 

71 epochs. These epochs contain the neural response of interest to each individual event 

72 and are averaged together to produce an ERP (see Figure 1B, for a typical auditory 

73 ERP).

74 A number of studies have validated commercial-grade EEG devices for ERP 

75 research by comparing their performance to research-grade systems (see Sawangjai, 
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76 Hompoonsup, Leelaarporn, Kongwudhikunakorn, & Wilaiprasitporn, 2020 for a review). 

77 Overall, the results have been encouraging. For example, Krigolson et al. (2017) found 

78 that a MUSE EEG system could measure ERP components in a visual oddball and a 

79 reward-learning task. Similarly, Emotiv’s EPOC system was found to measure research-

80 grade auditory ERPs in adults (Badcock et al., 2013) and children (Badcock et al., 

81 2015); as well as visual ERPs in response to faces (de Lissa et al. (2015). Recently, 

82 Williams, McArthur, de Wit, Ibrahim, and Badcock (2020) found analogous results for 

83 the Emotiv EPOC Flex system. The fact that EEG systems in this class cost a fraction of 

84 the price of research systems makes them an appealing alternative to researchers for 

85 “acquiring research-grade ERPs on a shoestring budget” (Barham et al., 2017).

86 To capitalise on the ERP technique, it is critical to know exactly when a stimulus 

87 occurs. This is because the EEG signal of interest occurs very quickly following the 

88 stimulus—often under 300 ms. To accurately represent the signal requires a method of 

89 incorporating precise stimulus timestamps, or events, into EEG data in order to isolate 

90 the discrete temporal period, or epoch, of interest. If the event is inserted at the wrong 

91 time, then the epochs do not represent the desired signal, resulting in degraded or non-

92 existent ERPs (see Figure 1B for an example of a degraded waveform).

93 Before going further, we address the use of the terms “trigger” and “event” in 

94 ERP research. Many studies use the two terms interchangeably. However, for clarity we 

95 draw a distinction. We use the term “trigger” to denote the production of some signal 

96 (e.g., TTL pulse) that is indicative of the time a stimulus occurred and is transmitted to 

97 the EEG data. We use the term “event” to denote the timestamped incorporation of that 
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98 signal into the data. Thus, an experimental stimulus script (e.g., MATLAB) generates a 

99 trigger (e.g., TTL pulse), which is then received as an event in the EEG data.

100 An obstacle in ERP research using commercial-grade EEG devices is time-

101 locking the stimulus with the EEG data to derive ERP components. This is because 

102 these systems were not designed for ERP research and often do not have in-built 

103 methods for event-marking. Even in cases in which there exists event-marking 

104 solutions, the results can be inconsistent. For example, in early iterations of Emotiv 

105 software researchers have found that serial-port-based event-marking was unreliable 

106 and did not produce quality ERPs (Hairston, 2012; Ries, Touryan, Vettel, McDowell, & 

107 Hairston, 2014). Researchers have attempted to circumvent this problem using various 

108 methods. Some have used offline processing techniques such as regression-based 

109 timing correction of triggers (Akimoto & Takano, 2018; Whitaker & Hairston, 2012), or 

110 using the timestamps from the log files of the stimulus scripts (Hairston, 2012; Ries et 

111 al., 2014). Others have approached this issue by using a custom-built event-marking 

112 system (the “Airmarker”) that converted an audio or visual stimulus into an infrared light 

113 pulse (Thie, 2013). This pulse is then transmitted to a custom-built receiver mounted on 

114 a portable EEG device (Emotiv EPOC in this case) and injected into two of the EEG 

115 channels (for a full description of procedure and equipment see Badcock et al., 2015; 

116 Thie, 2013). Events were thus visualised as distinct voltage spike in the EEG signal and 

117 timing of the events was calculated according to the onset of the spikes. While this 

118 approach yielded ERPs, it required post-processing and the sacrifice of two EEG 

119 channels. Thus, a dedicated system that incorporates events directly into EEG data 
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120 would be preferable to an alternative that requires fabrication of a custom device, 

121 modification to an EEG system, and significant post-processing.

122 Though previous iterations of Emotiv EEG acquisition software were unreliable 

123 for event-marking, the situation may be improved by developments in hardware and 

124 software. Hardware-based event-marking can now be achieved using a device called 

125 Extender. Likewise, serial-port event-marking is purported to be more reliable with 

126 version 2 of Emotiv Pro software relative to earlier Emotiv acquisition software such as 

127 Testbench or Emotiv Pro version 1. While these options promise to deliver 

128 synchronisation of stimulus presentation and EEG data, their reliability is untested. 

129 For an event-marking system to reliably produce ERPs, it must be both accurate 

130 and precise. Accuracy refers to the time difference between when an event is received 

131 in the EEG data (e.g., parallel-port code received) and when the respective stimulus 

132 actually occurs (e.g., audio tone is emitted from a speaker). This is often referred to as 

133 the “lag”. Precision refers to the variability in the accuracy of the event-mark and is often 

134 referred to as “jitter”. As an example, consider a system that generates audio tones and 

135 in which the event-mark consistently appears in the EEG data 20 ms after the sound 

136 comes out of a speaker. This 20 ms difference is considered the lag and can easily be 

137 accounted for during post-processing by subtracting 20 ms from each event. However, if 

138 the difference is sometimes 12 ms, sometimes 27 ms, sometimes 33 ms, etc., this is 

139 considered imprecise, or “jittery”, timing. Jittery timing is difficult to correct as the 

140 difference between the stimulus and event-mark is unknown from trial to trial. An 

141 imprecise event-marking system is problematic for deriving ERPs as it may distort the 

142 averaged component. For example, Hairston (2012) simulated the effect of 55 ms of 
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143 timing jitter on an ERP and found that the waveform was almost entirely attenuated. 

144 Likewise, a study by Ries, Touryan, Vettel, McDowell, and Hairston (2014) presented 

145 results from an Emotiv device with jittery event-marking that showed severe waveform 

146 degradation compared to the waveform when the timing was corrected. Thus, ERP 

147 researchers can account for inaccurate triggers but not for imprecise ones.

148 Though jitter in an event-marking system is more problematic than inaccuracy, it 

149 is easier to measure. It can be quantified as the variability (e.g., standard deviation) of 

150 known inter-trial intervals (the time difference between the events). For example, if 

151 successive stimuli are presented 1000 ms apart, then a perfect system would exhibit a 

152 mean inter-trial interval of 1000 ms and a standard deviation of 0 ms. This would 

153 indicate that each event was recorded precisely 1000 ms after the preceding event.

154 Accuracy, though less problematic than imprecision, is more difficult to measure. 

155 This is because one must know when an event should occur in the EEG data in order to 

156 compare when the event actually does occur. That is, how closely in time does the 

157 actual event match up to the EEG signal of interest. There are various methods for 

158 assessing accuracy but most include inserting some stimulus-related signal into the 

159 EEG. One example is inserting the signal from a microphone positioned by a speaker 

160 into an EEG channel. This would provide a visual reference in the EEG of when the 

161 stimulus (e.g., audio tone) occurred.

162 With these considerations in mind, the aim of this study was to quantify the timing 

163 of Emotiv hardware and software used for ERP research. We conducted three 

164 experiments in which we examined both the accuracy and precision of event-marking 

165 timing. In Experiment 1, we established a “jitter” threshold by introducing temporal noise 
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166 into the events-marks of a pre-existing, exemplary ERP dataset collected with a 

167 research-grade EEG system, Neuroscan, and calculating the jitter levels at which the 

168 ERP waveform peaks were statistically different to the exemplar. In Experiment 2, we 

169 benchmarked a method to compare Emotiv event-marking to the actual EEG data of 

170 interest by inserting Airmarker events (i.e., voltage spikes in two EEG channel) in 

171 Neuroscan EEG, which also contained simultaneously triggered parallel-port events. 

172 The lag of Airmarker events relative to Neuroscan events provided a measure of 

173 Airmarker processing time, which we used to assess Emotiv event-marking in 

174 Experiment 3. In Experiment 3, we measured the precision of both hardware-based 

175 (i.e., Emotiv Extender) and software-based (i.e., serial port) events, using the thresholds 

176 established in Experiment 1 to determine whether the event-marking methods were 

177 sufficiently precise. We also compared Emotiv events to simultaneously generated  

178 Airmarker events to assess Emotiv accuracy. 

179 Experiment 1: Establishing Jitter Thresholds

180 The purpose of Experiment 1 was to determine the tolerance of an ERP to jitter. 

181 To investigate this, we used a single pre-existing dataset selected because it exhibited 

182 a classic auditory ERP with standard P1, N1, and P2 peaks. We then incrementally 

183 introduced random noise, or jitter, into the event-marks. This allowed us to calculate 

184 jitter thresholds by establishing the tolerance of an ERP waveform to timing imprecision. 

185 Data and processing and analysis scripts may be found at Open Science Framework 

186 (https://osf.io/pj9k3/).
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187 Materials and Methods

188 An EEG datafile was taken from an auditory oddball validation study (for 

189 complete details see, Badcock et al., 2013) in which participants heard 666 tones. Of 

190 these, 566 were standard (1000 Hz) and 100 were deviant (1200 Hz) 175-ms pure 

191 tones, with an inter-tone onset interval that randomly varied between 900 and 1100 ms. 

192 Participants watched a silent DVD while listening to tones. EEG data were collected 

193 with Neuroscan SynAmps2 using Scan software (4.3), recorded at 1000 Hz from 16 

194 electrodes: F3, F7, FC4, FT7, T7, P7, O1, O2, P8, T8, FT8, FC4, F8, F4, M1 (online 

195 reference), and M2; with VEOG and HEOG; and the ground at AFz. The tone onset was 

196 marked in the EEG data via parallel port using Presentation (version 16; 

197 Neurobehavioral System Inc.).

198 Processing and Analysis

199 We used a single electrode for the current purposes, F3, selected for having a 

200 clear ERP waveform. We selected an individual with clearly defined P1, N1, and P2 

201 peaks in response to standard tones. The processing was conducted as in Badcock et 

202 al. (2013) with the exception that the data were not downsampled (processing included 

203 0.1 and 30 Hz bandpass filters, independent components analysis removal of eye-blink 

204 artefacts, epoching -100 to 600 relative to tone onset, and baseline correction). All 

205 processing was conducted with EEGLAB 14.1.0b (Delorme & Makeig, 2004). Epoching 

206 and baseline correction were repeated at different levels of temporal jitter of the parallel-

207 port event mark. A value of 0 reflects no adjustment. We then jittered the temporal 

208 position of the trigger event by generating a normal distribution with a standard 

209 deviation of increasing values: 1 to 50 ms. A cut-off of activation beyond ±150 μV was 
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210 set for epoch exclusion. A cut-off of activation beyond ±150 μV was set for epoch 

211 exclusion, though no epochs were excluded for even the highest jitter level . Peak 

212 magnitudes were determined using an automated method, selecting peak values within 

213 the following time periods: P1, 36-96; N1, 75-135; P2, 140-200 ms. These reflected 

214 intervals of ± 30 ms either side of the peak time-point for the 0 jitter waveform to the 

215 standard tone. 

216 We first calculated the mean amplitude of each of the ERP peaks (P1, N1, and 

217 P2) at each level of jitter. We then calculated the best-fitting polynomial regression line 

218 as well as the 95% confidence interval around that line. For each of the peaks, we then 

219 determined at which jitter level the regression-line 95% confidence interval diverged 

220 from the zero-jitter 95% confidence interval. We deemed this the jitter threshold at which 

221 the ERP waveform was different from the original.

222 Results and Discussion

223 Figure 1A shows the distribution of peak means at each level of jitter. The jitter 

224 thresholds differed for each of the peaks with P1, N1, and P2 peaks degrading at 14 

225 ms, 11 ms, and 31 ms of jitter, respectively. Figure 1B shows the waveforms produced 

226 by increasing levels of jitter. Overall, these results suggest that larger auditory ERP 

227 peaks are more resilient to jitter, whereas smaller peaks are more easily attenuated. 

228 Further, these findings provide jitter cut-offs for event-marking devices before they 

229 become inaccurate for ERP research. We note that these values should be considered 

230 guidelines and not be interpreted as absolute precision thresholds. For the purposes of 

231 the current study, they represented values against which we could compare subsequent 

232 timing analyses.
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233 Experiment 2: Establishing the Airmarker Benchmark

234 The purpose of Experiment 2 was to establish a benchmark to which we could 

235 compare Emotiv triggering systems. We did this by establishing the precision of an 

236 event-marking system previously used in our lab (see Badcock et al., 2015), the 

237 Airmarker. Data, the triggering script, and processing and analysis scripts may be found 

238 at https://osf.io/pj9k3/.

239 Methods

240 The triggering script was run on a Dell Precision T3620 computer running 

241 Windows 10 version 1607. We used a custom-written MATLAB (version R2017b) script 

242 that included the Psychtoolbox plugin (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) 

243 and a plugin to interface with the parallel-port hardware 

244 (http://apps.usd.edu/coglab/psyc770/IO32.html).

245 The script generated 1000 events, each 1000 ms apart. There were two types of 

246 events: a parallel-port code sent through a Sunix LPT PCI card and a 1000 Hz audio 

247 tone sent through a 3.5 mm audio output port. The parallel port trigger went to the 

248 Neuroscan amplifier where it was incorporated as an event into the EEG data. The 

249 audio tone fed into the Airmarker transmitter and was converted to an infrared signal 

250 that was received by the Airmarker receiver and converted to a square electrical wave. 

251 We attached the positive and negative Airmarker receiver wires to a bipolar electrode of 

252 the Neuroscan system (VEOG). We used a Neuroscan Synamps2 system at a 1000 Hz 

253 sampling rate to collect EEG data to Curry acquisition software (version 7; 

254 compumedicsneuroscan.com) on a Dell Optiplex 7760 computer running Windows 10 

255 version 1809. See Figure 2 for a schematic of the triggering setup.
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256 Processing and Analysis

257 EEG data were imported using EEGLAB (Delorme & Makeig, 2004). To derive 

258 Airmarker triggers we wrote a custom MATLAB script that calculated the absolute value 

259 of the EEG channel derivative and then set a threshold of +3 standard deviations above 

260 the derivative mean. Within the time-window of 200 ms following each parallel-port 

261 trigger, the script identified the first sample in which the Airmarker EEG derivative 

262 exceeded the threshold. The time point of each of these samples was considered an 

263 Airmarker event. We then calculated the time between each of the parallel-port and 

264 Airmarker events. The variability of these inter-trial intervals (i.e., standard deviation) 

265 represented our measure of precision (or jitter). See Figure 3 for an example of a three-

266 trial sequence of Airmarker EEG signal and derived events.

267 Results

268 Table 1 shows the timing performance in Experiment 2 (and 3). We observed 

269 sub-millisecond precision with respect to the parallel-port trigger (Figure 4A). The 

270 Airmarker trigger was slightly less precise (Inter-trial interval SD = 3.49 ms), though was 

271 well below the thresholds established in Experiment 1. On average, Airmarker triggers 

272 appeared in the EEG data 30.96 ms behind parallel-port triggers. As we assumed a 

273 near-zero latency for parallel-port triggers in the Neuroscan configuration, we 

274 considered 30.96 ms the processing lag associated with the Airmarker and subtracted 

275 this calculation from Airmarker lag times in each configuration in Experiment 3. This 

276 allowed us to examine the accuracy of Emotiv event-marking. 
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277 Experiment 3: Emotiv and Airmarker Triggering

278 The purpose of Experiment 3 was to examine the accuracy and precision of ERP 

279 triggers with Emotiv EEG hardware. To do this, we tested three event-marking methods: 

280 1) a parallel-port-generated TTL trigger sent to Emotiv Extender hardware (Extender); 

281 2) an Arduino-generated TTL trigger sent to Extender; and 3) a serial-port-code trigger 

282 sent directly to the acquisition computer. For each of these methods we tested three 

283 Emotiv EEG configurations: 1) Emotiv EPOC+ (EPOC) at 128 Hz sampling rate; 2) 

284 EPOC at 256 Hz sampling rate; and 3) Emotiv EPOC Flex (Flex) at 128 Hz sampling 

285 rate. Data, the triggering script, and processing and analysis scripts may be found at 

286 https://osf.io/pj9k3/.

287 Methods

288 The stimulus and acquisition computers were the same as in Experiment 2. We 

289 also used the same triggering script as Experiment 2 in which audio-tone triggers were 

290 sent to Airmarker. To incorporate Airmarker events into the Emotiv EEG data, we used 

291 the same procedure as in previous validation studies (Badcock et al., 2013, 2015; de 

292 Lissa et al., 2015). We connected the receiver wires to two channels of the Emotiv 

293 device and biased them to the driven-right-leg (DRL) channel using a second set of 

294 wires that included a 4.7 k resistor (Figure 5D). This setup is necessary with “active” 

295 EEG systems to simulate a connected head circuit and obtain a clean EEG signal. See 

296 Figure 5 for a schematic of the parallel-port trigger (A), Arduino Uno trigger (B), and 

297 serial-port trigger (C), configurations.

298 For the TTL triggering, we wrote a switch into the MATLAB code that depended 

299 on triggering method (i.e., parallel port, Arduino, or serial port). The exact setup varied 
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300 for each configuration, and each is described below. In each case, we generated 1000 

301 triggers, 1000 ms apart. All EEG data were acquired using Emotiv Pro (2.3.0). The 

302 triggering script may be found at https://osf.io/pj9k3/.

303 Parallel port to Extender. To generate parallel-port TTL triggers, we used the same 

304 plugin as in Experiment 2. TTL triggers were transmitted using a custom-built parallel-

305 port-to-BNC adapter that carried the pulse from a single parallel-port pin to a 2.5 mm 

306 tip-ring-sleeve jack plugged into Extender. The event was then incorporated into the 

307 Emotiv device data (i.e., EPOC or Flex) by a USB cable where it was transmitted via 

308 Bluetooth to the acquisition computer.

309 Arduino to Extender. For the Arduino to Extender testing we used the MATLAB 

310 Support Pack for Arduino Hardware 

311 (https://au.mathworks.com/matlabcentral/fileexchange/47522-matlab-support-package-

312 for-arduino-hardware) that interfaced with an Arduino Uno (https://arduino.cc). Triggers 

313 were achieved by sending a digital pin output command to the Arduino, which then sent 

314 a TTL pulse to a 2.5 mm tip-ring-sleeve jack plugged into Extender. As before, the event 

315 was then incorporated into the Emotiv EEG data and transmitted to the acquisition 

316 computer via Bluetooth.

317 Serial port. To generate serial-port-code triggers, we used native MATLAB functions. 

318 The trigger was sent from a serial port to a virtual serial-port USB adapter on the 

319 acquisition computer. Serial-port events were then incorporated directly into the Emotiv 

320 EEG data in Emotiv Pro.
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321 Processing and Analysis

322 EEG data were imported using EEGLAB (Delorme & Makeig, 2004). We first 

323 calculated the number of dropped samples in each configuration. We did this because 

324 wireless EEG systems, like EPOC and Flex, can sometimes experience interference 

325 that results in incomplete data transmission. To calculate the number of dropped 

326 samples, we counted the number of instances in which a value of ‘1’ appeared in the 

327 ‘INTERPOLATION’ channel. This indicates that the acquisition software did not receive 

328 a sample and thus interpolated EEG channel values according to temporally-adjacent 

329 channel values. We also calculated the number of times dropped samples resulted in 

330 missed triggers. Though it was rare, this situation did arise in two configurations. 

331 We again calculated the inter-trial intervals for each of the primary triggering 

332 methods and used the standard deviation as a measure of precision. In the 

333 configurations where a trigger was missed, we removed the affected inter-trial intervals 

334 before calculating timing numbers.

335 We calculated Airmarker events identically to Experiment 2, using the +3 

336 standard deviation above the mean method. For each configuration we also calculated 

337 a measure of accuracy by subtracting the Airmarker processing lag observed in 

338 Experiment 2 (i.e., 30.96 ms) from the Airmarker lag in this experiment. Any resulting 

339 difference should have been due to inaccuracy in Emotiv event-marking. Thus, these 

340 calculations represented the time difference between the events and the actual EEG 

341 data of interest.  
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342 Results

343 Table 1 shows the timing results. Overall, Emotiv triggering systems were well 

344 below Experiment 1 thresholds. To compare jitter between triggering systems within 

345 each device configuration, we performed Levene’s tests of equality of variance on the 

346 inter-trial intervals with follow-up pairwise comparisons (Bonferroni corrected for the 

347 number of comparisons) where we detected significant results. Results of the EPOC 

348 128 Hz configuration indicated significant differences in variances (F = 3.15, p = .043). 

349 However, none of the follow-up tests achieved significance at the corrected  = 0.016 

350 level (all Fs < 5.56, all p > 0.018). This indicated that there was no difference in jitter 

351 between Arduino, parallel-port, and serial-port triggering. Results of the EPOC 256 Hz 

352 configuration indicated a significant difference in variances (F = 134.48, p < .001). All 

353 follow-up tests were significant at the corrected level (all Fs > 27.75, all p < .001) 

354 suggesting that the serial-port event-marking was the most precise, followed by parallel-

355 port event-marking, and then Arduino-triggered event-marking. Results of the Flex 

356 configuration were also significant (F = 17.78, p < .001) with follow-up tests suggesting 

357 that Arduino triggering was more jittery than both parallel-port (F = 27.79, p < .001) and 

358 serial-port (F = 21.89, p < .001) event-marking. There was no difference between 

359 parallel-port and serial-port event-marking (F = 0.42, p = .518). Overall, these results 

360 suggested that serial-port event-marking with EPOC at 256 Hz sampling rate was the 

361 most precise configuration. We note, however, that all configurations exhibited jitter of 

362 less than a single sample. See Figure 4 (B – C) for distributions of inter-trial intervals for 

363 each configuration.
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364 All configurations exhibited some level of inaccuracy (see Table 1). This lag 

365 indicated the difference between the event timestamp (i.e., when the stimulus was said 

366 to have occurred) and the EEG data of interest (i.e., when the Airmarker signal 

367 appeared in the EEG). We provide the calculations here for reference but note that we 

368 did not perform statistical tests on the lag measure for two reasons. The first is that the 

369 variance of this calculation is directly impacted by the precision of the event-marking 

370 trigger, which we assessed above. The second is that we do not want to give the 

371 impression that this measure would be identical in the setups of prospective users. We 

372 stress that researchers should test the accuracy of their respective configurations. 

373 Discussion

374 In this study we examined the timing performance of event-marking solutions 

375 used with Emotiv EEG systems. We first established jitter thresholds by introducing 

376 noise into an exemplary ERP dataset and determining at which level the waveform was 

377 attenuated to the extent that it no longer resembled the original. We then benchmarked 

378 a custom-built event-marking system known to produce valid ERPs (i.e., the Airmarker; 

379 Thie, 2013). Finally, we compared these data to the performance of the Emotiv 

380 triggering systems. 

381 Our first main finding was that large peaks in an ERPs are more resilient to jitter 

382 attenuation than are the smaller peaks. In Experiment 1, it took twice as much jitter to 

383 attenuate the large P2 peak as it did to attenuate the smaller P1 and N1 peaks. It is 

384 notable that jitter did not change the timing of the peaks. Rather, it suppressed the 

385 amplitude of the peaks and distorted the slopes. This is a similar pattern to previous 

386 work in which Hairston (2012) reported the effects of timing jitter on a simulated ERP.
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387 Our second main finding was the Emotiv event-marking systems we tested were 

388 precise, with all configurations showing less than a sample of jitter. The accuracy of the 

389 event-marking configurations varied. Although inaccuracy is not ideal, the low levels of 

390 jitter observed across the configurations would make timing correction straightforward 

391 for ERP researchers. In line with this we note that while we provide precision and 

392 accuracy values in Table 1, we do so for reference only. We tested these systems on 

393 only one computer setup. As computer hardware and software could feasibly influence 

394 performance, we suggest that researchers employing these event-marking systems 

395 benchmark their respective setups.

396 Conclusion

397 All Emotiv event-marking configurations we tested were suitably precise for ERP 

398 research. Though all configurations were somewhat inaccurate, these inaccuracies can 

399 easily be accounted for during processing of the EEG data. Finally, we note that 

400 although we provide precision and accuracy calculations for these specific Emotiv 

401 event-marking solutions, we suggest researchers measure the precision and accuracy 

402 of their respective setups.

PeerJ reviewing PDF | (2020:10:53533:0:0:CHECK 8 Oct 2020)

Manuscript to be reviewed



403 References

404 Akimoto, Y., & Takano, G. (2018). Effect of regression-based trigger timing correction 

405 on the N170 ERP waveform using emotiv EPOC+ with a limited number of triggers. 

406 Proceedings - 2018 Joint 10th International Conference on Soft Computing and 

407 Intelligent Systems and 19th International Symposium on Advanced Intelligent 

408 Systems, SCIS-ISIS 2018, (2012), 982–985. https://doi.org/10.1109/SCIS-

409 ISIS.2018.00163

410 Badcock, N. A., Mousikou, P., Mahajan, Y., de Lissa, P., Thie, J., & McArthur, G. 

411 (2013). Validation of the Emotiv EPOC ® EEG gaming system for measuring 

412 research quality auditory ERPs. PeerJ, 1, e38. https://doi.org/10.7717/peerj.38

413 Badcock, N. A., Preece, K. A., de Wit, B., Glenn, K., Fieder, N., Thie, J., & McArthur, G. 

414 (2015). Validation of the Emotiv EPOC EEG system for research quality auditory 

415 event-related potentials in children. PeerJ, e907. 

416 https://doi.org/http://dx.doi.org/10.7717/peerj.907

417 Barham, M. P., Clark, G. M., Hayden, M. J., Enticott, P. G., Conduit, R., & Lum, J. A. G. 

418 (2017). Acquiring research-grade ERPs on a shoestring budget: A comparison of a 

419 modified Emotiv and commercial SynAmps EEG system. Psychophysiology, 54(9), 

420 1393–1404. https://doi.org/http://dx.doi.org/10.1111/psyp.12888

421 Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436. 

422 https://doi.org/10.1163/156856897X00357

423 de Lissa, P., Sörensen, S., Badcock, N., Thie, J., & Mcarthur, G. (2015). Measuring the 

424 face-sensitive N170 with a gaming EEG system: A validation study. Journal of 

425 Neuroscience Methods, 253, 47–54. 

PeerJ reviewing PDF | (2020:10:53533:0:0:CHECK 8 Oct 2020)

Manuscript to be reviewed



426 https://doi.org/10.1016/j.jneumeth.2015.05.025

427 Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbaox for anlaysis of 

428 single-trial EEG dynamics including independent component anlaysis. Journal of 

429 Neuroscience Methods, 134, 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

430 Hairston, W. D. (2012). Accounting for Timing Drift and Variability in Contemporary 

431 Electroencepholography ( EEG ) Systems. DTIC Document, (March), 1–22. 

432 Retrieved from 

433 http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA561

434 715

435 Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). 

436 What’s new in psychtoolbox-3. Perception, 36(14), 1–16.

437 Krigolson, O. E., Williams, C. C., Norton, A., Hassall, C. D., & Colino, F. L. (2017). 

438 Choosing MUSE: Validation of a low-cost, portable EEG system for ERP research. 

439 Frontiers in Neuroscience, 11(MAR), 1–10. 

440 https://doi.org/10.3389/fnins.2017.00109

441 Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming 

442 numbers into movies. Spatial Vision, 10(4), 437–442. 

443 https://doi.org/10.1016/j.jmgm.2005.11.005

444 Ries, A. J., Touryan, J., Vettel, J., McDowell, K., & Hairston, W. D. (2014). A 

445 Comparison of Electroencephalography Signals Acquired from Conventional and 

446 Mobile Systems. Journal of Neuroscience and Neuroengineering, 3(1), 10–20. 

447 https://doi.org/10.1166/jnsne.2014.1092

448 Sawangjai, P., Hompoonsup, S., Leelaarporn, P., Kongwudhikunakorn, S., & 

PeerJ reviewing PDF | (2020:10:53533:0:0:CHECK 8 Oct 2020)

Manuscript to be reviewed



449 Wilaiprasitporn, T. (2020). Consumer Grade EEG Measuring Sensors as Research 

450 Tools: A Review. IEEE Sensors Journal, 20(8), 3996–4024. 

451 https://doi.org/10.1109/JSEN.2019.2962874

452 Thie, J. (2013). A wireless marker system to enable evoked potential recordings using a 

453 wireless EEG system (EPOC) and a portable computer. PeerJ PrePrints, 1, e32v1. 

454 https://doi.org/10.7287/peerj.preprints.32v1

455 Whitaker, K. W., & Hairston, W. D. (2012). Assessing the Minimum Number of 

456 Synchronization Triggers Necessary for Temporal Variance Compensation in 

457 Commercial Electroencephalography ( EEG ) Systems. (September).

458 Williams, N., McArthur, G., & Badcock, N. (2020). 10 years of EPOC: A scoping review 

459 of Emotiv’s portable EEG device. https://doi.org/10.1101/2020.07.14.202085

460 Williams, N. S., Mcarthur, G. M., Wit, B. De, Ibrahim, G., & Badcock, N. A. (2020). A 

461 validation of Emotiv EPOC Flex saline for EEG and ERP research. PeerJ, 8, 

462 e97133. https://doi.org/10.7717/peerj.9713

463 Xu, J., & Zhong, B. (2018). Review on portable EEG technology in educational 

464 research. Computers in Human Behavior, 81, 340–349. 

465 https://doi.org/10.1016/j.chb.2017.12.037

466

PeerJ reviewing PDF | (2020:10:53533:0:0:CHECK 8 Oct 2020)

Manuscript to be reviewed



Figure 1
The effects of increasing event-marking jitter on an exemplary ERP waveform.

(A) Mean P1, N1, and P2 peak values for increasing levels of jitter (in ms SD). Open circles represent the
mean peak values at each jitter level. Bars represent 95% confidence intervals. The lines (and shaded area
around lines) represent the regression lines (and 95% confidence intervals around the regression lines). The
rectangular shaded areas represent the 95% confidence interval of the original waveform peak. (B) The
original ERP waveform and the effects of 10, 20, 30, 40, and 50 ms SD of jitter.
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Figure 2
Experiment 2 event-marking setup schematic.
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Figure 3
Three-trial example of Airmarker EEG signal with parallel port and derived Airmarker
events.

Note that the parallel port and Airmarker events do not represent any real values on the y-
axis but are presented for visualisation only.
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Figure 4
Boxplots of the inter-trial intervals observed for each triggering method in Experiments
2 and 3.

(A) Parallel-port triggering with Neuroscan SynAmps2 acquired with Curry Software. (B)
Arduino-generated TTL triggers to Emotiv Extender acquired with Emotiv Pro. (C) Parallel-
port-generated triggers to Emotiv Extender acquired with Emotiv Pro. (D) Serial-port-
generated triggers acquired with Emotiv Pro.
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Figure 5
Experiment 3 triggering setup schematics

(A) Parallel-port generated TTL pulse to Extender. (B) Arduino-generated TTL pulse to
Extender. (C) Serial-port triggering. (D) Airmarker and bias wire configuration used to insert
Airmarker signal into Emotiv EEG channels.
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Table 1(on next page)

Precision and accuracy of event-marking methods in Experiments 2 and 3.

Jitter was calculated as the standard deviation (in samples and ms units) of the inter-trial
intervals. Lag was calculated as the average time difference (in ms) between Emotiv and
Airmarker events.
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1

EEG System

Sampling 

rate (Hz) Trigger Method

Dropped 

samples

Missed 

triggers

Jitter 

(samples 

SD)

Jitter (ms 

SD) Lag (ms)

Neuroscan 1000 Parallel port -- -- 0.43 0.43 --

EPOC+ 128 Parallel port to Extender 56 0 0.53 4.14 -57.1

  Arduino to Extender 112 1 0.64 4.97 -52.37

  Serial port 42 0 0.54 4.21 -22.29

 256 Parallel port to Extender 0 0 0.72 2.83* -55.45

  Arduino to Extender 0 0 0.98 3.83* -51.61

  Serial port 0 0 0.49 1.91* 10.54

Flex 128 Parallel port to Extender 21 1 0.43 3.39 -56.01

  Arduino to Extender 21 0 0.58 4.57* -52.09

  Serial port 7 0 0.45 3.48 -19.66

2
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