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Introduction 1 

Plant mating systems have important consequences affecting, to a large extent, the demographic 2 

and genetic properties of plant populations and, in the long term, their evolutionary potential 3 

(Charlesworth & Charlesworth, 1979; Eckert et al. 2009). For the case of self-compatible plant 4 

populations, there is a wide variation in mating systems from predominant or complete selfing to 5 

complete outcrossing. However, intermediate (or mixed) mating systems, i.e., those that combine 6 

selfing and outcrossing strategies, are common in nature (Stebbins, 1957; Goodwillie, Kalisz & 7 

Eckert, 2005; Barrett, 2010). 8 

It is well documented that the transition from outcrossing to selfing is one of the most 9 

frequent evolutionary shifts in flowering plants (Stebbins, 1957; Barrett, 2010; Sicard & Lenhard, 10 

2011). Evidence of this phenomenon comes from phylogenetic studies (Goodwillie, 1999; Foxe 11 

et al., 2009) that investigated inter-populational differences within species variation and at 12 

different geographic scales (Duncan & Rausher, 2013; Wright, Kalisz & Slotte, 2013). The 13 

mating system transition from outcrossing to selfing may be explained by two main hypotheses. 14 

One is the transmission advantage of selfers relative to outcrossers (3:2 genomes), that would 15 

promote the expansion of selfing modifiers in a population unless selection prevents this (Fisher, 16 

1941). The second hypothesis considers that under unfavorable ecological conditions for cross-17 

pollination, i.e., rarity or absence of potential mates and/or pollen vectors, natural selection would 18 

favor reproductive assurance through selfing (Baker, 1955; Stebbins, 1957; Schoen & Lloyd, 19 

1992; Schoen, Morgan & Bataillon, 1996). Nevertheless, despite the potential advantage of 20 

selfing, it may restrict gene flow within and among populations producing high levels of 21 

inbreeding between individuals and increasing homozygosity (Ho), and thus the likelihood of 22 

inbreeding depression (ẟ) (Charlesworth & Charlesworth,  1987; Charlesworth & Wright, 2001; 23 
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Takebayashi & Morrell, 2001). Therefore, it is expected that the inbreeding coefficient (F) would 35 

covariate positively with the level of selfing in a population. In the long term, however, 36 

theoretical models and empirical evidence suggest that increasing levels of inbreeding promote 37 

selection against inbred individuals by purging the populations of lethal or deleterious alleles, 38 

thus reducing genetic load (Husband & Schemske, 1996; Takebayashi & Delph, 2000; Crnokrak 39 

& Barrett, 2002; Morran, Parmenter & Phillips, 2009). Hence, it is expected that populations with 40 

a long history of inbreeding suffer from low levels of inbreeding depression.  41 

Herkogamy, the spatial segregation of sex organs within the flower, is considered a main 42 

floral trait affecting selfing rates (Webb & Lloyd, 1986). In hermaphroditic flowers, the 43 

likelihood of selfing is reduced when the stigma surpasses the length of the anthers (i.e., approach 44 

herkogamy), because flower stigmas are prevented from receiving self-pollen; this opens the 45 

opportunity for outcross pollen to first contact stigmas instead (Lloyd & Webb, 1986; Webb & 46 

Lloyd, 1986). Contrastingly, when anthers and stigmas are placed at the same spatial level (i.e. no 47 

- herkogamy) or the stigmas are below the anthers (i.e. reverse herkogamy), autonomous or 48 

facilitated selfing is likely to occur (Lloyd, 1992). Reverse or nil herkogamy might increase 49 

reproductive fitness (i.e., seed number) and be favored by selection, but it should also positively 50 

covariate with selfing rate. Natural selection, however, might oppositely favor approach 51 

herkogamy, increasing outcrossing rates (Motten & Stone, 2000; Elle & Hare, 2002; Herlihy & 52 

Eckert, 2007).  53 

Herkogamy is determined by genetic and ecological factors (Ashman & Majetic, 2006; 54 

Oøpedal et al., 2017). Within populations, standing genetic variation in herkogamy would depend 55 

on the history of selection of individual lineages. If selective pressures exerted by the community 56 

of pollinators fluctuate in time, variation in herkogamy between lineages would be maintained, 57 

producing differences in selfing rate and variation in inbreeding among individual plants. When 58 
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these associations are maintained through time, it would be reasonable to expect that selfing rate 83 

(s), inbreeding coefficient (F) and herkogamy coevolve at the lineage level. Significant 84 

associations between high outcrossing rate and approach herkogamy have been reported before 85 

(Takebayashi, Wolf & Delph, 2006; de Vos et al., 2018; but see Chen et al., 2009; Brys & 86 

Jacquemyn, 2012; Oøpedal, Armbruster & Pélabon, 2015; Toräng et al., 2017). However, few 87 

studies have evaluated the within-population association between herkogamy and outcrossing 88 

rate (Karron et al., 1997; Brunet & Eckert 1998; Medrano, Takebayashi & Delph, 2000; Herrera 89 

& Barret, 2005) and none with inbreeding coefficient (F) at a lineage level.  90 

Annual, self-fertilizing, plant species may evolve in heterogeneous environments (e.g. 91 

disturbed and/or arid habitats) where pollinator communities are unpredictable (Friedman & 92 

Rubin, 2015). Under high environmental heterogeneity (i.e., in pollination service), daily and 93 

seasonal fluctuations represent different opportunities for cross- or self-fertilization producing 94 

variable selection on traits that affect the plants’ mating system, such as herkogamy or the 95 

inbreeding history of each maternal lineage (Schoen & Lloyd, 1992; Schoen, Morgan & 96 

Bataillon, 1996; Morgan & Wilson, 2005; Eckert, Samis & Dart, 2006; Barrett, 2010; Shirk & 97 

Hamrick, 2014; Pannell, 2015). However, it is not quite clear how strong and how frequent the 98 

association between mating strategies, herkogamy and inbreeding history of lineages occur 99 

within populations in short-lived species. Here, we assessed the extent of these associations in 100 

each of two populations of the annual plant Datura inoxia Mill.  101 

Datura inoxia (Solanaceae) is an annual self-compatible plant that inhabits arid and semi-102 

arid lands in Mexico and Southern USA (i.e. The Chihuahuan desert). Characteristic of these 103 

ecosystems is the high daily fluctuation of ambient temperature. Datura inoxia produces large, 104 

nectar producing, tubular flowers that open at dusk and remain receptive one night only. Genetic 105 

differentiation at neutral loci (i.e., genetic structure) and phenotypic differentiation in floral traits 106 
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related to plants’ mating system have previously been documented among and within 109 

populations, suggesting adaptive evolution (Jiménez-Lobato & Núñez-Farfán, 2012). Flowers are 110 

commonly visited by honeybees and hawkmoths whose activity mainly depends on air 111 

temperature (Barclay, 1959). The wide daily range of temperature in populations generates an 112 

unpredictable pollinator activity that coupled with variation in herkogamy suggest correlated 113 

selection on herkogamy, selfing rates and inbreeding history within populations.  114 

 115 

Materials and Methods 116 

Species description and sampled populations 117 

Datura inoxia Mill. (Solanaceae) is a summer annual herbaceous plant native to Mexico and 118 

southwestern USA (Barclay, 1959). It occurs in xeric environments, mainly along the 119 

Chihuahuan desert (Barclay, 1959; Lockwood, 1973). The onset of flowering of D. inoxia is in 120 

July and lasts up to September as others Datura species in this region (Bronstein et al., 2009). 121 

Datura inoxia produces large, funnel-shaped, hermaphroditic and self-compatible white flowers 122 

(Barclay, 1959). The flowers, that live one night only, open at dusk when both anthesis and 123 

receptivity of stigma occur. During the flowering period, individuals can display from few up to 124 

tens of flowers each night. Flower traits related to mating system, herkogamy and flower size, 125 

display broad variation within and among populations (Jiménez-Lobato & Núñez-Farfán, 2012). 126 

The species is pollinated by hawkmoths (Manduca sexta, M. quinquemaculata and Hyles lineata) 127 

(Grant, 1983) who forage on nectar, and by honeybees that collect pollen (Lockwood, 1973; 128 

McCall et al. 2018; V. Jiménez-Lobato, pers. Obs.). Hawkmoths visit the flowers at dusk when 129 

night temperatures reach more than 24°C (pers. Obs.). Honeybees visit the flowers in the 130 
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afternoon, even if these are closed, and early in the morning, before flowers wilt and fall (McCall 134 

et al., 2018).  135 

Two populations of D. inoxia were selected to assess the relationships between selfing 136 

rate, herkogamy and inbreeding: which?. A previous report indicates that these two populations 137 

possess large individual variation in herkogamy and flower size-related traits (Jiménez-Lobato & 138 

Núñez-Farfán, 2012). The Cañada de Moreno population (CM) is located in the State of 139 

Querétaro (21° 17’ 43” N?; 100° 31’ 00”W?) in the Mexican Bajío at 1933 m a.s.l. During the 140 

flowering period of D. inoxia (July to September), this locality has an average temperature of 141 

18.8° C, with a daily range from 7.4 °C to 30.8 °C, and a three-month total precipitation of 314 142 

mm. The Mapimí population (Map) is located at 1157 m a.s.l. in the Mexican Plateau in the 143 

States of Coahuila and Durango (26° 41’ 11” N?; 103° 44’ 49” W?). This is a more xeric 144 

environment, with a quarterly average temperature of 22.8 °C (range: 12.6 °C to 32.9 °C) and a 145 

total three-month precipitation of 253 mm. Because flight activity of hawkmoths and honeybees 146 

depends on ambient temperature, the wide fluctuation in daily temperature at both sites suggests a 147 

heterogeneous and unpredictable pollinator service along the flowering season. Collection of seed 148 

material for experimental analyses was made under the permission SGPA-DGGFS-712-1596-17 149 

(Subsecretaría de Gestión para la Protección Ambiental, Secretaría de Medio ambiente y 150 

Recursos Naturales, Mexico). 151 

Herkogamy level variation within populations 152 

Thirty plants in reproductive stage were randomly selected and tagged for sampling within each 153 

population in an area of 1 ha. For each individual plant, 4-6 open flowers were selected to 154 

measure herkogamy. Herkogamy was measured as the difference between pistil and stamens 155 

length. Approach herkogamy was defined as pistil surpassing stamens in length, whereas reverse 156 
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herkogamy was the opposite trend. Absence of herkogamy occurred when pistil and stamens had 183 

similar lengths. To estimate phenotypic variation in herkogamy for each population, we 184 

calculated the within- and between-individual variances. Individual plants were considered a 185 

random effect. The residual variance is accounted by the intra-plant variation. The significance of 186 

individuals was evaluated by a likelihood-ratio ꭓ2 test (LRT) between a model that includes 187 

individuals as random effect (function lme) and one that does not (LRT1; function gls) (Zuur et 188 

al., 2009). Analyses were conducted with nlme package (Pinheiro et al., 2017) in R software (R 189 

Development Core Team, 2008). 190 

Mating system parameters 191 

To estimate mating system parameters from each marked plant in the field, five mature fruits 192 

derived from natural pollination were collected, labelled and bagged. In the laboratory, seeds of 193 

each fruit were separated and germinated in a greenhouse; seeds of each fruit within each family 194 

(maternal plant) were sowed separately. Germination per fruit, per family, was recorded for 30 195 

days. To obtain an average estimate of germination rate per fruit, we recorded the final number of 196 

seeds germinated in each pot. Germination percentage was ≥ 90% for all plants. Once seedlings 197 

emerged, at least five seedlings per fruit, and 25 seedlings per maternal plant (i.e., family) were 198 

collected for further genetic analysis. We collected leaf tissue from young plants, bagged, 199 

labelled, and stored in an ultra-freezer at -97 °C. Finally, we analyzed 20 seedlings per each of 30 200 

maternal families per population (N = 600). 201 

DNA of seedlings was extracted following the Miniprep protocol (Doyle & Doyle, 1987). 202 

Five microsatellite nuclear loci developed for D. stramonium (Andraca, 2009) were amplified for 203 

each seedling. Further, we standardized one additional microsatellite locus for D. inoxia (F8: Rw: 204 

5´ -GGACAACATCTTTGCGACCC- 3´) (Supplementary Information), in order to obtain a total 205 
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of six polymorphic microsatellite loci per individual. Primers were labelled with PET, VIC, 6-215 

FAM, and NED dyes (Applied Biosystems) (PCR protocols are shown in Supplementary 216 

Information). 217 

Multiloci outcrossing (tm) and selfing (s = 1-tm) rates, primary selfing rate (r) and 218 

inbreeding coefficient (F) were estimated for each maternal family for each population. Mating 219 

system parameters (tm and s) at the family level were calculated with MLTR 3.2 (Ritland, 2002), 220 

using the Expectation-Maximization method (EM) that allows presence of missing data and 221 

undetected null alleles (Ritland & Jain, 1981). Standard errors and standard deviations were 222 

estimated by bootstrapping, with 1000 replicates and re-sampling individuals at family level. The 223 

frequency of null alleles per locus, per population, was assessed using Micro-Checker v.2.2.3 224 

(Cock et al., 2004). Since one locus (G8) did not amplified for plants of Cañada de Moreno, 225 

analyses were carried out with five loci, and six loci for Mapimí. Selfing rates (s) obtained from 226 

molecular markers, after fertilization and germination, might not be completely independent from 227 

inbreeding depression and thus may underestimate its true value (Lande, Schemske & Schultz, 228 

1994). Primary selfing rate (r) is a better predictor of mating system because it assesses 229 

separately the magnitude of inbreeding depression. Hence, r is referred to as the proportion of 230 

selfed progeny at the time of fertilization (Lande, Schemske & Schultz, 1994). The primary 231 

selfing rate (r) was calculated for each maternal family as: r = s / [1 - ẟ + sẟ], where s is the 232 

selfing rate obtained from microsatellite loci, and ẟ is the cumulative inbreeding depression 233 

obtained for each population (see below).  234 

The inbreeding coefficient (F) may include components of inbreeding other than mating 235 

system, such as biparental inbreeding or population substructure. Here, we use this parameter as a 236 

proxy of the inbreeding history of each maternal family (i.e., adult cohort) (Latta & Ritland, 237 

1994). F values were inferred per lineage from the loci amplified previously with GenePop v.4.2 238 
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(Rousset & Raymond, 1995; Rousset, 2008). To investigate whether inbreeding depression was 244 

associated with the selfing rate and herkogamy, we calculated inbreeding coefficients at 245 

equilibrium (Fe) (i.e., progeny cohort) at each lineage, assuming that adult F and tm are constant 246 

among generations (Ritland, 1990). We then related these differences with selfing rate and 247 

herkogamy. Since Fe increases in relation to F due to self-fertilization, differences between F and 248 

Fe at each maternal lineage should indicate the presence of higher inbreeding depression. Once 249 

selection against inbred progeny occurred, Fe and F will be equal (Ritland, 1990; Shirk & 250 

Hamrick 2014). Fe was calculated as Fe = (1-tm) / (1+tm), where tm is the outcrossing rate 251 

calculated from MLTR for each maternal family (Ritland, 1990).   252 

Multiloci outcrossing (tm) and primary selfing rates (r) were highly and inversely 253 

correlated (CM: estimated = -1.00, p = 0.000, d.f. = 25; Map: estimated = -0.969, p = 0.000, d.f. = 254 

27), hence we present here only the analyses for primary selfing rates (r). Since r is a proportion 255 

with binomial distribution, correlation with herkogamy was calculated by a generalized linear 256 

model with a quasi-binomial distribution error (Crawly, 2013). F, Fe and their differences were 257 

associated to herkogamy and r with a generalized linear model with gaussian distribution error 258 

(Crawly, 2013). All analyses were implemented in R package (R Development Core Team 2008). 259 

Inbreeding depression 260 

To estimate inbreeding depression (ẟ), we collected 150 fruits from different individual plants in 261 

each population, including the maternal families previously analysed. From each fruit, we sowed 262 

ten seeds on separate pots under greenhouse conditions. When seeds germinated, only one 263 

seedling per fruit was randomly chosen and grown under controlled conditions until 264 

reproduction. For each population, 100 individuals were randomly chosen to act as pollen 265 

receptors (mothers) and 50 individuals as pollen donors (fathers). Two manual pollination 266 

Excluído: In order to infer267 
Excluído: is 268 

Excluído: would 269 

Comentado [SC5]: I am not sure whether the tense formulation 
in English is here correct. 

Excluído: ´s270 
Excluído: ere271 

Excluído: are 272 

Excluído: MAP273 

Excluído:  only274 

Excluído: fitted 275 

Excluído: the magnitude of 276 

Excluído: d277 



9 
 

treatments were applied to each maternal receptor: (1) cross-pollination (o), where two flowers 278 

were emasculated before anthesis and hand-fertilized with pollen of one donor randomly chosen 279 

from the same population; (2) self-pollination (s), where two flowers of each receptor plant were 280 

fertilized with self-pollen. After pollination, flowers in both treatments were bagged individually 281 

with a fine nylon mesh. Since many mother plants did not produce the four flowers needed for 282 

pollination treatment application, the final sample included mother plants that produced at least 283 

one fruit per treatment (CM: N = 77; Map: N = 41). Two components of fitness per pollination 284 

treatment were evaluated in each population: seed-set mean (i.e. number of seeds / number of 285 

ovules) and seed mass. Seed mass was obtained from a random sample of 30 seeds per fruit using 286 

an analytical balance (Adventurer OHAUS).  287 

Cumulative inbreeding depression coefficient (ẟ) was calculated for each population as: 288 

𝛿 = 1 − !"!
!""
,	where 𝑤(# and 𝑤($ are the mean fitness of progenies derived from self- or cross-289 

pollination, respectively. Average fitness of self- and out-cross progenies was calculated as the 290 

product of seed-set and seed mass (Schemske & Lande, 1985), and it was used to estimate the 291 

primary selfing rate (r) at each maternal lineage.  292 

 293 

Results 294 

Variation in herkogamy between populations of Datura inoxia 295 

The average herkogamy in the Cañada de Moreno population (CM) was negative (mean = -4.72; 296 

sd = 5.5 mm) with a range of 17.48 mm (from -13.83 to +3.65 mm). In this population 20 out of 297 

27 individual plants (74%) had reverse or nil herkogamy and 7 (26%) showed approach 298 

herkogamy (Fig. 1A). In the Mapimí (Map) population (N=29) mean herkogamy was positive 299 
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and more variable than in Cañada de Moreno (Mean = 2.57 mm; sd = 11.15 mm; range = 317 

44.8mm, from -20 to +24.8 mm) (Fig. 1B).  318 

The proportion of variance in herkogamy explained by the among individual plants term 319 

was higher in Map (77.32%) than in CM (50.62%), indicating higher intra-individual variation in 320 

the latter population (Map: 22.68%; CM: 49.38%). Likelihood ratio ꭓ2 test (LRT) indicated a 321 

significant variation between individual plants in each population (Map: LRT = 105.04, df = 2, P 322 

<0.0001; CM: LRT = 38.56, df = 2, P <0.0001).  323 

Mating system estimation and inbreeding coefficient (F) 324 

The multiloci outcrossing rate (tm) was, on average, higher in Mapimí than in Cañada de Moreno 325 

(0.682 vs 0.294) although high variation in this parameter was detected among lineages in each 326 

population (Mapimí, from 0.022 up to 1; Cañada, from 0 up to 1). The distribution of tm is 327 

skewed to low values in Cañada de Moreno (ca. 60% of mother plants), but to high values in 328 

Mapimí (50% of the families with tm > 0.8) (Fig. 2). Primary selfing rate (r) was more than two-329 

fold higher in Cañada de Moreno than in Mapimí (0.716 vs. 0.353), varying from r = 0 to 1 and 330 

from r = 0 to 0.978, respectively. 331 

Inbreeding coefficients of adult cohorts (F) were negative in the two populations and 332 

highly variable (Cañada: F = -0.193, from -1 to +0.75; Mapimí: F = -0.085, from -0.553 to +1). 333 

Inbreeding coefficients at equilibrium (Fe) were higher in Cañada than Mapimí (Fe = 0.626 vs. 334 

0.238) and highly variable in both populations (from 0 to 1). The differences between F and Fe 335 

were much higher in Cañada Moreno than in Mapimí (Fe – F = 0.819 vs. 0.323). Cumulative 336 

inbreeding depression was higher in Mapimí than in Cañada (ẟ = 0.25 vs. 0.09). 337 

Relationships between mating system parameters and herkogamy 338 
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Linear correlations between primary selfing rate (r), inbreeding coefficient (F), inbreeding 357 

coefficient at equilibrium (Fe) and herkogamy within each population were only significant in the 358 

Mapimí population (Table 1, Fig. 3). In Mapimí, r and Fe were negatively associated with 359 

herkogamy (Table 1; Fig. 3B, F), indicating that individuals with nil or reverse herkogamy had 360 

progenies with higher selfing rate and inbreeding coefficient than plants with approach 361 

herkogamy. As expected, progenies’ inbreeding coefficient (Fe) is positively correlated with 362 

primarily selfing rate (r) at both populations (Table 1; Fig. 4C, D). In addition, selfing is also 363 

linked to the breeding history of each maternal lineage (F) only in Mapimí (Fig. 4A, B), but not 364 

with herkogamy in the two populations (Table 1; Fig. 3C, D). The difference Fe – F is positively 365 

correlated with primary selfing rate (r) only in Cañada Moreno (Table 1; Fig. 4E). We did not 366 

find any indication of a significant correlation between Fe – F and herkogamy (Table 1; Fig. 4G, 367 

H). 368 

 369 

Discussion 370 

In annual, short-lived, plant species inhabiting heterogeneous environments, the evolution of 371 

plant mating system in association with flower traits, such as herkogamy, depends on the 372 

variation of natural selection within populations, and on the opportunity to cross and self-fertilize 373 

every year (Shirk & Hamrick 2014). If some associations among traits and mating strategies are 374 

favored through time, it is expected to find that different lineages within populations would vary 375 

in their history of inbreeding. In this work we evaluated the association among herkogamy, 376 

mating system and inbreeding history at a lineage level within two populations of Datura inoxia, 377 

an annual/short live species distributed in arid and semiarid environments in Mexico and North 378 

America.   379 
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We found that herkogamy, selfing rates, inbreeding coefficients as well as their 388 

associations varied considerably within the two populations. In line with expectations, in one 389 

population (Mapimí), plants with more pronounced approach herkogamy showed, on average, 390 

higher outcrossing rates and less inbreeding coefficient of progenies, than those individuals that 391 

exhibited nil or reverse herkogamy. These results are in line with the hypothesis of adaptive 392 

herkogamy as a mechanism that prevents selfing in populations and avoids inbreeding between 393 

individuals (Web & Lloyd 1986; Lloyd 1992). Relationship between selfing/outcrossing rate and 394 

herkogamy has been found in other species of Datura such as D. stramonium (Motten & 395 

Antonovics, 1992; Motten & Stone, 2000) and D. wrightii (Elle & Hare, 2002), but also in other 396 

species like Gilia achilleifolia (Takebayashi & Morrell, 2001), Clarkia temblorensis (Holtsford 397 

& Ellstrand, 2006) and Mimulus ringens (Karron et al., 1997). However, we did not detect a 398 

significant association between inbreeding coefficients of adults’ cohort with herkogamy. This 399 

suggests that the inbreeding history at each lineage not only depends on herkogamy; instead, 400 

purge of inbred individuals and/or biparental inbreeding may also come into play.   401 

Fluctuation of environmental variables, especially pollinator availability, as it occurs in 402 

Mapimí, can contribute to maintain variation in herkogamy within populations. Variation in 403 

herkogamy may be linked with plants’ reproductive assurance when pollinators are scarce, or 404 

with high outcrossing rates when abundant (Kalisz, Vogler & Hanley, 2004; Goodwillie, Kalisz 405 

& Eckert, 2005; Chen et al., 2009). Since outcrossing rates in Mapimí are related to herkogamy, 406 

it is likely that episodes of differential (or even contrasting) selection on herkogamy among 407 

lineages every year, could have favored either outcrossing (approach herkogamy) or selfing (nil 408 

or reversal herkogamy). This phenotypic variance in herkogamy could explain the maintenance 409 

of the mixed mating system of D. inoxia in Mapimí.  410 
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On the other hand, the mating system of the population of Cañada de Moreno is 416 

predominantly selfing, and no association between selfing rates, herkogamy and inbreeding 417 

coefficients in the adult cohort were detected. Nevertheless, like the Mapimí population, there is a 418 

positive relationship between selfing rate with inbreeding coefficients in the progenies, and with 419 

the F vs. Fe difference. These results suggest inbreeding depression in selfing individuals and 420 

then genetic purging (Ritland, 1990). This result is supported by the contrasting average value of 421 

inbreeding depression in the two populations of D. inoxia. Theoretical models and experimental 422 

results have demonstrated that mutations of large effect causing inbreeding depression can be 423 

purged from one to another generation (Willis, 1999; Charlesworth & Willis, 2009). However, 424 

mild in effect and rare mutations which are responsible for inbreeding depression may be 425 

maintained in populations for multiple generations (Lande, Schemske & Schultz, 1994; 426 

Charlesworth & Willis 2009). The expression of mutations with mild deleterious effect in inbred 427 

individuals of D. inoxia, would explain the differences of inbreeding coefficients between 428 

progeny and adult generations and the relationship with selfing rate. 429 

Phenotypic variance in herkogamy results from genetic (Herlihy & Eckert, 2007), 430 

developmental (Vallejo-Marín & Barrett, 2009) or environmental factors, such as soil nutrients, 431 

as demonstrated in Datura stramonium (Camargo et al. 2017). However, the evolution of mating 432 

system, linked to floral traits like herkogamy, requires additive genetic variance. A revision of 433 

evidence points out to the potential evolution by selection of herkogamy owing to the presence of 434 

additive genetic variance (heritability) and genetic additive variation (evolvability) (see revision 435 

in Oøpedal et al., 2017). Our results, derived from the partition of phenotypic variance in 436 

herkogamy among individual plants and random variation (within individual variation or residual 437 

term), indicate a large amount of variance between individuals in each population, but notably 438 
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Excluído: and can441 
Excluído: (442 
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more so in Mapimí (77.32%) than in Cañada de Moreno (50.62 %). Thus, there is a strong 445 

indication that individual variation in average herkogamy in D. inoxia in Mapimí is genetically 446 

based and potentially adaptive (see Jiménez-Lobato & Núñez-Farfán 2012). High within-447 

individual variation could be adaptive if, on average, high intra-individual variation is linked to 448 

higher fitness (Herrera, 2009; Camargo et al. 2017). Otherwise, high intra-individual variation 449 

can be maintained in highly heterogeneous environments (i.e., pollination likelihood by animals) 450 

through time. In Cañada de Moreno the high within-plant variation in herkogamy could limit 451 

selection on it, constraining an adaptive response in this population (Falconer & MacKay, 1996; 452 

Lynch & Walsh, 1998).  453 

The within-individual variation in plant traits, and particularly in flowers, can originate 454 

during development or can be an elicited response to environmental variability (Herrera, 2009). 455 

The stability of development or homeostasis has been associated with different levels of 456 

heterozygosity, where heterozygous individuals are more stable than their homozygous (Lerner, 457 

1954). However, there is not clear consensus on this hypothesis; some evidence points out to the 458 

potential effect of inbreeding, the fixation of deleterious alleles and genetic drift influencing the 459 

level of developmental stability of individuals (Clarke, 1993). To what extent inbreeding and 460 

deleterious mutations are responsible of intra-individual variation in the CM population is not 461 

known yet, but evidence suggests such kind of developmental variation as shown in one highly 462 

inbred population of D. stramonium (Camargo et al. 2017)  463 

 464 

Conclusions 465 

Association between herkogamy, mating system and inbreeding history at a lineage level is 466 

expected to occur within populations in self-compatible, hermaphroditic plant species. Similarly, 467 
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as environments do vary, particularly in pollination service by animals, variations in trait values 471 

and their correlations are also expected. In D. inoxia, as in other species of Datura, approach 472 

herkogamy is associated to outcrossing rates and to low levels of inbreeding in the progenies. 473 

Results of this study show that populations of D. inoxia are diverging in mating system 474 

characteristics with important genetic implications.  475 
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