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ABSTRACT
Shrimp fisheries are among themost important fisheries worldwide, and shrimp culture
has increased considerably in recent years. Most current studies on reproduction-
related genes have been conducted on cultured shrimp. However, gene expression
is intimately linked to physiological and environmental conditions, and therefore an
organism’s growth environment has a great influence on reproduction. Thus, gene
expression profiling, should be applied in fisheries studies. Here, we identified the
expression patterns of 76 reproduction-related genes in P. vannamei via the analysis
of pooled transcriptomes from a time-series experiment encompassing a full circadian
cycle. The expression patterns of genes associated both directly (Vtg, ODP, and ProR)
and indirectly (FAMet, CruA1, and CruC1) with reproduction were evaluated, as these
genes could be used asmolecularmarkers of previtellogenic and vitellogenicmaturation
stages. The evaluated genes were prominently upregulated during vitellogenic stages,
with specific expression patterns depending on the organism’s environment, diet, and
season. Vtg, ProR,ODP, and FaMet could serve as molecular markers for both wild and
cultured organisms.
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INTRODUCTION
Industrial shrimp fisheries are among the most important fisheries worldwide (FAO,
2020; Tirado-Ibarra et al., 2020). However, most biological processes have been studied
in cultured organisms, due to the growing importance of the shrimp culture industry
(CONAPESCA, 2020). As a result, reproduction-associated genes have been well
characterized in cultured white shrimp Penaeus vannamei (Uengwetwanit et al., 2018;Wang
et al., 2019) but not in wild organisms. Therefore, standardizing molecular approaches for
gene expression analysis in wild organisms is crucial.

Reproduction studies in wild shrimp are based on morpho-colorimetric and histological
primary analyses of the maturity stages, which characterize changes in gonadal and the
oocyte development, respectively. These evaluated responses depend on the molecular
mechanisms of vitellogenesis, which modulate the process of yolk synthesis and its
accumulation in the oocyte and therefore also govern growth (Chen et al., 2018).

Molecular studies on crustacean reproduction primarily focus on gene characterization,
as well as mRNA expression and transcriptome analyses of different vitellogenesis stages;
which involves vitelline protein production via endoproteolysis of vitellogenin (Vtg; i.e., the
precursor of vitelline protein). Therefore, Vtg is themost studied reproduction-related gene
due to its role as the most important nutrient source for embryo development (Thongda et
al., 2015; Boulangé-Lecomte et al., 2017; Jimenez-Gutierrez et al., 2019).

However, other ovary expressed genes are known to participate in reproduction
regulation in crustaceans either directly or indirectly, including genes associated with
gonadal maturation, physiological processes, among others, in addition to some genes in
the hepatopancreas that regulate extraovarian Vtg sources and other nutrients (Shen et al.,
2014; Jimenez-Gutierrez et al., 2019). Additionally, the X organ/sinus gland complex located
in the eyestalk also regulates vitellogenesis and molting through hormone secretion (Bai
et al., 2015). Previously reported transcriptomes feature between 25 and 33 reproduction-
related genes (Gao et al., 2014; Jimenez-Gutierrez et al., 2019), some of which have been
used as molecular markers of ovarian maturation, particularly Vtg, Vtg receptor (VtgR),
gonadotropin-releasing hormone receptor (GnRHR), Vigillin, and Torso-like, among others
(Shen et al., 2014; Tarrant et al., 2014; Uengwetwanit et al., 2018).

Additionally, many other P. vannamei genes have been previously characterized via
next-generation sequencing; however, several of these genes have never been used as
molecular markers (Jimenez-Gutierrez et al., 2019). In addition to Vtg, the most important
genes directly involve in reproduction regulation include the ovary developing protein
(ODP ; which modulates oocyte maturation) and progesterone receptor (ProR). Moreover,
other protein encoding genes indirectly involved in reproduction by regulating nutrient
sources (this parameter constitutes the main difference between aquaculture and wild
environments), are farnesoic acid O-methyltransferase (FAMet ; which could have a role in
reproduction and growth), and crustacyanins A1 and C1 (CruA1 and CruC1, respectively),
which bind astaxanthin carotenoids (Gamiz-Hernandez et al., 2015; Meléndez, 2017).
Therefore, our study sought to identify novel genes involved in reproduction regulation
through next-generation sequencing, as well as their contribution to P. vannamei
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reproduction control and the expression of new molecular markers in cultured and
wild organisms.

MATERIALS AND METHODS
Experimental organisms
All animals were handled according to ARRIVE (Animal Research: Reporting of In Vivo
Experiments) guidelines.Organismswere collected from two sources. CulturedP. vannamei
specimens were obtained in November, 2018 from Fitmar farm (El Walamo, Mazatlan,
Mexico). The organisms were kept under controlled conditions at 28 ◦C, a pH of 7.6 and
35 PSU (practical salinity units). Wild organisms, on the other hand, were donated by the
Regional Center for Aquaculture and Fisheries Research of Mazatlan (Instituto Nacional de
Pesca y Acuacultura; field study approval number PPF/DGOPA-002/18). These organisms
were collected from the East Pacific (23◦20′N 106◦30′W) during open season (September,
2018 to March, 2019; INAPESCA, 2019). Two samplings were performed on November,
2018 (25.76± 0.89 ◦C and 35 ± 0.1 PSU) andMarch, 2019 (20.32± 1.33 ◦C and 34.9± 0.2
PSU). On both occasions, the shrimps were identified to the species level (Perez-Farfante
& Kensley, 1997), and immediately frozen while still in the vessel.

Onlymature females (56.48± 9.6 g and 18.92± 1.68 cm total length) fromboth organism
sources were examined. The females were euthanized on ice and immediatelymeasured and
dissected thereafter. The ovary stages were primarily identified via morpho-colorimetric
methods (Pérez-Ferro & Paramo-Granados, 2014). Hepatopancreas and eyestalk samples
dissected from cultured organisms were kept at −80 ◦C until required for molecular
analyses, whereas the ovaries were extracted and preserved separately for other procedures.
A fragment of the ovarian tissue was preserved in Davidson’s solution (Bell & Lightner,
1988), for ovarian stage confirmation via histological methods (Bell & Lightner, 1988;
Alfaro-Montoya, 2013) with hematoxylin and eosin staining (Humason, 1979). The rest of
the ovary tissues were kept at −80 ◦C until used for molecular analyses. Complete ovaries
dissected from wild organisms, were kept at −80 ◦C until required.

RNA isolation and illumina sequencing
To obtain mRNA transcription profiles throughout an entire circadian cycle under
controlled conditions, only cultured organismswere used. For this purpose, eight samplings
were conducted every three hours and five cultured females were collected per sampling
for a total of 40 organisms. Total RNA from each tissue (ovaries, hepatopancreas and
eyestalk) was obtained according to Jimenez-Gutierrez et al. (2019), and a pool from the 40
organisms for each tissue was submitted to Genoma Mayor, Universidad Mayor in Chile
(Santiago de Chile) for next-generation sequencing. The library was constructed via the
TruSeq Stranded mRNA (Illumina, San Diego, CA) protocol and sequenced in an Illumina
MiSeq instrument according to the manufacturer’s instructions. De novo assembly and
bioinformatic analyses were also conducted as previously described (Jimenez-Gutierrez et
al., 2019).
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mRNA expression of P. vannamei reproduction regulation genes
Based on our histologic results, the samples from wild and cultured organisms were
classified as previtellogenic and vitellogenic ovaries. Stage III and post-spawning stages
were omitted, as they were considered intermediate stages. A 3 × 2 factorial experimental
design was used; with three different collection conditions and two vitellogenic stages.
Moreover, given that cultured shrimp and Vtg represent the most well characterized
organism source and reproduction-associated gene, respectively, these two were used as
sample source and molecular marker controls.

Total RNA was extracted from at least four organisms from each evaluated condition
in duplicate, and cDNA was synthesized with the RevertAid First Strand cDNA Synthesis
Kit (Thermo scientific), according to the manufacturer’s instructions. Vtg, ODP, and ProR
were deemed direct reproduction modulators, whereas FAMet, CruA1, and CruC1 were
considered to indirectly regulate P. vannamei reproduction. Both L8 and β-actin were used
as housekeeping genes for relative gene expression analysis.

cDNAs were amplified using the TopTaq Master Mix Kit (QIAGEN) according to
the manufacturer’s instructions using the specific Tm for each gene (Supplemental
Information 1). For gen expression analyses, 600 ng of total RNA template were employed
for all target genes, whereas, 300 and 400 ng were used for L8 and β-actin, respectively.
PCR products for each gene were first purified with the QIAquick PCR Purification
Kit (Nucleospin), according to the manufacturer’s instructions and quantified with a
spectrophotometer. All PCR products were electrophoretically separated (including the
purified gene products), digitalized in the Gel Doc EZ System (Biorad), and analyzed with
the ImageLab software.

Absolute expressions were quantified based on previously purified PCR products.
The relative expression of each target gene was calculated via the 2−11Ct method using
the housekeeping genes and previtellogenic stage as first and second delta, respectively
(Schmittgen & Livak, 2008), with modifications. Unlike Ct values, where lower values
indicate higher mRNA concentrations and vice versa, absolute expression provides a direct
gene expression quantification value. The following modification allows for the use of the
absolute expression in the 2−

11Ctm
formula:

Ctm= 30−AE

where Ctm is the modified Ct; 30 is a constant that represents the number of PCR cycles;
AE is the absolute expression of each PCR product.

Statistical analysis
Relative expressions for each condition were analyzed for normality and variance
homogeneity. Statistical significance was evaluated via one-way ANOVA (P ≤ 0.05) and
differences between treatments were determined via Tukey-Kramer multiple-comparison
tests. Finally, correlation coefficients from multivariate Principal Component Analysis
(PCA) were used to verify the relationships between the evaluated genes using the InfoStat
2018 statistical software (Di Rienzo et al., 2018).
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Figure 1 Histological sections of oocyte differentiation in ovaries from Penaeus vannamei. GT, germi-
nal tissue. PO, perinuclear oocytes. N, Nucleus. CA, cortical alveolus. FC, Follicular cells. PA, perinuclear
alveolus. LD, lipid drops. CC, cortical crypts. VG, vitellic grains. AO, atresic oocytes. Scaled bar represent
20 µm.

Full-size DOI: 10.7717/peerj.10694/fig-1

RESULTS
Histological results from ovary development
Upon analyzing all samples to characterize ovary development, five development stages
and one post-spawning stage were identified. In previtellogenic stages I and II, germinal
tissue, follicular cells, perinuclear oocytes, and cortical alveolus were observed. Stage III
is a transition between previtellogenic and vitellogenic oocytes, and lipid droplets and
perinuclear alveoli were observed in the first vitellogenic oocytes.

Vitellogenic stages IV and V exhibited larger oocytes, with elongated nuclei, vitellogenic
grains, and cortical crypts. Finally, in the post-spawning stage, flaccid tissue, atretic oocytes,
and a group of stage I oocytes began to appear (Fig. 1). The V-Red semi-stage, where stage
V ovaries turn red, was only observed in wild organisms from samples acquired in March
(Supplemental Information 2).

P. vannamei ovary, hepatopancreas, and eyestalk transcriptomes
The transcriptomes from the ovary, hepatopancreas and eyestalk circadian rhythm pools
exhibited 76 genes related to P. vannamei reproduction regulation, 32 and 44 of which
were directly and indirectly related to reproduction, respectively. As expected, most of
them were only found in the ovary transcriptome. Additionally, 14 of them were expressed
in both the ovary and hepatopancreas, of which six were expressed in both the ovary
and eyestalk, and five were expressed exclusively in the eyestalk (Fig. 2). Among all
identified genes, some had never been reported in the GenBank database. The codified
proteins were found to be related to one or more steps of the mitotic or meiotic processes,
and some of them were specifically involved in oocyte development, such as Vitelline
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Figure 2 Proteins directly and indirectly related to Penaeus vannamei reproduction regulation. (Ov)
Ovary, represented in yellow. (Hp) Hepatopancreas, represented in dark red. (Et) Eyestalk, represented
in brown. Violet cells represent mitotic process. Red cells represent meiotic process. Hexagonal cells
represent oocyte development. Proteins in bold dark blue are directly reproduction-related. Proteins in
green are indirectly reproduction-related. Proteins outside the ovary are involved in several places of the
ovary at the same time. PO, Primary oocyte. Pb, Polar bodies. Abreviated Genes: Ag, Agrin. As, Asterix.
BP, Blastula protease. Ch, Chitinase. Cl, Clathrin. CruA1, Crustacyanin A1. CruC1, Crustacyanin C1.
CP450, Cytochrome P450. CyB, Cyclin B. DH, Diuretic Hormone. ED, Estradiol 7 beta Dehydrogenase.
ES, Estrogen Sulfotransferase. ESC, Extra sex comb. FAMet, Farnesoic Acid O-Methyltransferase.
Fem-1, Sex-determining protein Fem-1. FSH, Female Sterile Homeotic. G2MC, G2 mitotic specific
cyclin. GrHR, Gonadotropin-releasing hormone receptor. Gu, Gustavus. GZF, Gastrula zinc finger.
HD, Hydroxysteroid Dehydrogenase. Ho, Homeobox. Hsp70, Heat Shock Protein 70. IHD, Inactive
Hydroxyesteroid Dehydrogenase. JH, Juvenile hormone epoxide hydrolase. Kr, Krueppel. Li, Lin-9.
MN/T, Complex Mago Nashi/TsunagiY14. M-21, Mab-21. Ma, Masquerade. MAD, Mothers Against
Decapentaplegic. MAF, Meiosis arrest female. MEEA, Maternal effect embryo arrest. MELK, Maternal
Embryonic Leucine zipper Kinase. MIH, Molt-inhibiting hormone. MOM, Missing oocyte meiosis. MPR,
Membrane progestin receptor. MR, Meiosis regulator. MT, Maternal protein Tudor. Ne, Neuroparsin.
Notch, Notch proteins (Notch, Notchless protein and Strawberry Notch). Ob-E, Obstructor-E. ODP,
Ovary Development Protein. OP, Ovaric Peritrophin. OZF, Oocyte zinc finger. PD, Partitioning Defective.
Pe, Pelota protein. PIBF, Progesterone-Induced Blocking Factor. PoE, Purity of essence. PP, Peter Pan.
ProR, Progesterone Receptor. RPL10a, Ribosomal Protein 10a. SB, Singles Bar. SC, Shuttle craft. SDF,
Se: Sel-1. Sel, protein Seele. Sex Determination Fruitless. Sl, Slowmo. SLH, Sex-lethal homolog. TG,
Twisted Gastrulation. Tr, Trithorax. Vasa, Vasa protein. VERL, Vitelline envelope receptor of lysin.
VIH, Vitellogenesis-inhibitinghormone. VMO, Vitelline Membrane Outer layer. Vn, Vitellin. VtgR,
Vitellogenin Receptor. (Artist: Rafael Serrano-Quiñonez).

Full-size DOI: 10.7717/peerj.10694/fig-2
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Figure 3 Relative expression of directly shrimp reproduction-related genes. Bars indicates average±
standard error. n = 4. Light green bars indicate previtellogenic states. Dark blue bars indicate vitellogenic
states. Asterisks (**) indicate highly statistically significant differences at P ≤ 0.01. (A) Vtg. (B) ProR. (C)
ODP.

Full-size DOI: 10.7717/peerj.10694/fig-3

(for which the precursor is Vtg), VtgR, Vasa, Missing oocyte meiosis, TsunagiY14, Fem-1,
Crustacyanin A1 and C1, among others.

Some other encoded proteins were simultaneously involved in several parts of the
ovary, such as ODP, FAMet, ProR, Membrane progestin receptor, diuretic hormone,
ovarian peritrophin, trithorax, among others. The function of each gene is summarized in
Supplemental Information 3.

Relative expression of Vtg, ODP, ProR, FAMet, CruA1, and CruC1
Relative expression of directly related reproduction regulation genes was greater than
that of indirectly related genes; Vtg displayed the highest expression levels among all the
evaluated genes (Fig. 3). As expected, Vtg expression was greater in vitellogenic stages
than in previtellogenic stages; this was more evident in cultured organisms with highly
significant differences (i.e., three orders of magnitude greater than the vitellogenic stages
of wild-caught shrimp captured in March and eight orders of magnitude greater than the
rest of the treatments).
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Figure 4 Relative expression of indirectly shrimp reproduction-related genes. Bars indicates average±
standard error. n = 4. Light green bars indicate previtellogenic states. Dark blue bars indicate vitellogenic
states. Two asterisks (**) indicate highly statistically significant differences at P ≤ 0.01. One asterisk (*) in-
dicates statistically significant differences at P ≤ 0.05. (A) FAMet. (B) CrusA1. (C) CrusC1.

Full-size DOI: 10.7717/peerj.10694/fig-4

Adifferent patternwas observed inODP and ProR, where the highest expressionwas seen
in wild shrimp caught in March during vitellogenic stages, exhibiting two and six orders of
magnitude upregulation relative to the rest of the treatments, respectively. However, gene
expression was generally lower in previtellogenic stages.

Regarding the genes that were indirectly associated with reproduction, the relative
expression of CrusC1 was the lowest. FAMet showed the same pattern as Vtg expression
in cultured vitellogenic stages; however, it did not present significant differences in the
vitellogenic stages of wild shrimp caught in March, and both treatments had expression
values five orders of magnitude higher than those of previtellogenic stages (Fig. 4).

Furthermore, both crustacyanin genes exhibited a particular expression pattern.
Specifically, CrusA1 was only found in wild organisms, whereas CrusC1 was only found
in cultured organisms. As in the previously discussed genes, the previtellogenic stages
exhibited highly significant minimum expression values, with three and one orders of
magnitude of difference, respectively.
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Figure 5 Scaled principal component of relative expression of directly and indirectly shrimp
reproduction-related genes.

Full-size DOI: 10.7717/peerj.10694/fig-5

There was a positive correlation inmost evaluated genes, with a cophenetic correlation of
1 (Fig. 5). Correlations between variables were particularly strong between Vtg and CrusC1
(1.0), followed by ProR, CrusA1, and ODP (0.98), and finally FAMet and Vtg (0.85).
Although some variables exhibited a negative correlation (e.g., CrusC1 and CrusA1), none
were statistically significant.

DISCUSSION
Depending on the authors, ovarian development in shrimp is often classified into three
to five stages (Perdichizzi et al., 2012; Pérez-Ferro & Paramo-Granados, 2014; Nguyen et al.,
2018) plus one post-spawning stage. However, wild shrimp presented a V-Red semi-stage
in organisms sampled in March, which was likely due to the rich carotenoid diet of shrimp
in spring (Yanar, çelik & Yanar, 2004). Red ovaries had not been reported in cultured
organisms. Here, reproduction-related differences between cultured and wild organisms
were observed at the anatomical and molecular level.

Transcriptome analysis throughout an entire circadian cycle in cultured organisms
allowed for the discovery of a greater number of reproduction-related genes than in previous
reports (Gao et al., 2014; Jimenez-Gutierrez et al., 2019). However, infradian rhythms and
different collection areas must also be considered to obtain a better estimation of the
number of these genes, without considering the large number of genes whose functions
remain unknown.

Moreover, a close anatomical and molecular relationship were observed between the
ovaries and hepatopancreas, as evidenced by the great number of genes involved in P.
vannamei reproduction expressed in the hepatopancreas, as well as the presence of ProR
andVtgR in both tissues, thereby demonstrating communication betweenmembranes. The
genes examined in this work were divided into directly related reproduction genes, whose
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encoded proteins have a direct function in oocyte maturation or meiosis, and indirectly
related genes, whose encoded proteins bind to directly related proteins, thereby inhibiting
or activating them.

Most differential expression reports are based on directly related genes, which are used
as molecular markers (Bae et al., 2017; Boulangé-Lecomte et al., 2017; Chen et al., 2017).
The differences in the relative expression of the genes in both groups were of several orders
of magnitude, with Vtg being the most highly expressed, as expected.

Vtg expression is known to be species- and tissue-specific, in addition to the effects of
external and physiological conditions (Jimenez-Gutierrez et al., 2019). This was confirmed
by the differential expression between wild and cultured organisms. Furthermore, the
remaining evaluated genes in this work had never been examined in the conditions
evaluated herein.

Only a few sequences for ODP are available in the GenBank database, of which only
one corresponds to crustaceans (Shanghai crab Eriocheir sinensis; Zhu et al., 2016). Despite
its direct relationship with ovary maturation, its expression patterns had never been
documented in crustacean species. In this study, ODP was confirmed to be linked to both
ovary development and seasonal maturity.

Additionally, the seasonal variation of ProR in wild organisms was more noticeable than
that of ODP. ProR is not only well known as a membrane surface receptor that is mainly
present in follicular cells (Ye et al., 2010; Wu et al., 2014), but also as a transcriptional
activator or repressor, involving cofactors or coactivators that regulate many aspects of
the female reproductive system (Klotzbücher et al., 1997; Chen et al., 2008). Its role as a
reproduction regulator in the estrogen pathway in vertebrates and invertebrates is well
documented in the ovary, as well as its synthesis in the hepatopancreas (Ye et al., 2010;Wu
et al., 2014; Thongbuakaew et al., 2016).

This receptor belongs to the steroidogenic-related proteins including estradiol 17
beta dehydrogenase, estrogen sulfotransferase, and hydroxysteroid dehydrogenase, all
of which directly modulate estrogen enzyme biosynthesis, and cytochrome P450, which
modulates these mechanisms indirectly (James & Boyle, 1998; Thongbuakaew et al., 2016;
Subramoniam, 2017). All genes listed above were also found in this study. The relationship
between Vtg during the ovarian cycle with progesterone levels and the aforementioned
enzymes have been previously reported (Subramoniam, 2017).

Progesterone translocates from follicular cells through the oocyte plasma membrane
and binds to ProR to form a progesterone-ProR complex to reach the nuclei and regulate
transcriptional activity. Many studies have characterized progesterone activity and several
of them have confirmed a considerable increase in progesterone levels during vitellogenesis
(Ye et al., 2010; Wu et al., 2014; Thongbuakaew et al., 2016). ProR has been studied via
immunohistological approaches (Wu et al., 2014); however, the analysis of its expression
had not been implemented for the evaluation of progesterone’s role in ovary maturation
or as a molecular marker in crustaceans until now.

Only three indirectly related reproduction genes were evaluated herein due to their
key role in nutrition to account for the differences in dietary quality and availability
between cultured and wild shrimp. FAMet has been reported to participate in P. vannamei
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reproduction (Hui, Tobe & Chan, 2008). Furthermore, its substrate (i.e., methyl farnesoate)
is also related to neurohormones and ecdysteroids (Ye et al., 2010). FAMet was evaluated
in several tissues, molt conditions, between sexes, and between larvae and juvenile
organisms (Hui, Tobe & Chan, 2008); however, its expression in ovaries and its role in
gonad maturation had not been characterized. In this work, FAMet exhibited the same
expression pattern as Vtg, and both shared a significant correlation according to our PCA
results.

Finally, crustacyanin had not previously been studied as a reproduction-related
protein. However, the presence of the V-Red semi-stage warranted the assessment of
the aforementioned gene in this work. Crustacyanins are specific crustacean proteins
that bind to astaxanthin (Cianci et al., 2002; Budd et al., 2017) and belong to the lipocalin
family, which also includes retinol-binding protein (RBP) and apolipoproteins (Ma et
al., 2020). There are five precursor subtypes of crustacyanins reported in the GenBank
databases: A1, A2, A3, C1, and C2. Nevertheless, only CruA1 and CruC1 were found in P.
vannamei transcriptomes.

These results indicate an evident relationship between the red ovaries from wild
organisms caught in March and CruA1, suggesting a more intimate link with carotenoids,
unlike CruC1, which is only found in cultured organisms. The above-mentioned
relationships were confirmed by our PCA results. Adult cultured organisms are fed
with the same formulated diet throughout most of the year, which is specifically
formulated to promote maturation; however, differences between natural diets limit the
availability of bioactive metabolites for natural growth and development (Liñán Cabello,
Paniagua-Michel & Zenteno-Savín, 2003). Wild shrimp are mostly scavengers that feed on
smaller crustaceans, fish, mollusks, plants, and organic detritus (INAPESCA, 2019). Food
availability and quality are affected by different population dynamics, regions, and seasons
(Yanar, çelik & Yanar, 2004; FAO, 2016).

In this sense, differences in the carotenoid content between cultured and wild shrimp
were previously studied, and their possible relationship with gonadal maturation was
reported, with extensive focus on wild organisms. This suggests that these carotenoids are
able to bind to Vtg to form a lipo-carotene-glyco-protein (Liñán Cabello, Paniagua-Michel
& Zenteno-Savín, 2003), which translates into seasonal differences in gonad maturation
(Thongda et al., 2015; Jimenez-Gutierrez et al., 2019).

There are several genes involved in shrimp reproduction regulation that possess great
potential as molecular markers but are yet to be evaluated and validated. Moreover, despite
the wealth of studies that have reported on the physiology and gene expression patterns of
cultured shrimp, additional studies should be conducted in wild shrimp to account for the
environmental variability that wild organisms face.

CONCLUSIONS
This study identified more than 76 genes related to reproduction regulation in P. vannamei.
Vtg exhibited the highest expression among all evaluated genes. The genes directly- and
indirectly-associated with shrimp reproduction studied herein act as molecular markers
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between previtellogenic and vitellogenic maturation stages. Variations in anatomical and
specific gene expression patterns were observed between wild and cultured shrimps. Vtg,
ProR, ODP, and FaMet could serve as molecular markers for both wild and cultured
organisms, whereas CrusA1 and CrusC1 were exclusively suitable to characterize wild and
cultured organisms, respectively.
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