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ABSTRACT
Themicrobiomes of deep and shallow aquifers located in an agricultural area, impacted
by an old tin mine, were explored to understand spatial variation in microbial commu-
nity structures and identify environmental factors influencing microbial distribution
patterns through the analysis of 16S rRNA and aioA genes. Although Proteobacteria,
Cyanobacteria, Actinobacteria, Patescibacteria, Bacteroidetes, and Epsilonbacteraeota
were widespread across the analyzed aquifers, the dominant taxa found in each aquifer
were unique. The co-dominance of Burkholderiaceae and Gallionellaceae potentially
controlled arsenic immobilization in the aquifers. Analysis of the aioA gene suggested
that arsenite-oxidizing bacteria phylogenetically associated with Alpha-, Beta-, and
Gamma proteobacteria were present at low abundance (0.85 to 37.13%) and were more
prevalent in shallow aquifers and surface water. The concentrations of dissolved oxygen
and total phosphorus significantly governed the microbiomes analyzed in this study,
while the combination of NO3

--N concentration and oxidation-reduction potential
significantly influenced the diversity and abundance of arsenite-oxidizing bacteria in the
aquifers. The knowledge of microbial community structures and functions in relation
to deep and shallow aquifers is required for further development of sustainable aquifer
management.
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INTRODUCTION
Groundwater ecosystems are important reservoirs, holding 94% of all available freshwater.
Not only do groundwater ecosystems provide the main source of drinking water worldwide
(Griebler & Avramov, 2015), they also contribute to the recycling of elements (e.g., C, N,
and S) and the biodegradation of anthropogenic pollutants (e.g., fertilizers, pesticides,
and hydrocarbons) in impacted aquifers Chotpantarat, Parkchai & Wisitthammasri,
2020; Griebler & Avramov, 2015; Jewell et al., 2016; Kotik et al., 2013; Wisitthammasri,
Chotpantarat & Thitimakorn, 2020). These two latter services provided by groundwater
ecosystems are dependent mainly on the existence and activity of specific microbial
taxa. Groundwater ecosystems are energy-limited habitats because of their low oxygen
concentrations and the lack of sunlight: however, they harbor muchmore diverse microbial
communities than previously suspected (Griebler & Avramov, 2015; Herrmann et al., 2019;
Probst et al., 2018).

Microbiome analysis of the 16S rRNA gene reveals that Proteobacteria, Firmicutes,
Bacteroidetes, Planctomycetes, Actinobacteria, OD1, Verrucomicrobia, and Nitrospirae are
common constituent taxa of the groundwater microbiome (Cavalca et al., 2019; Das
et al., 2017; Lee, Unno & Ha, 2018; Sonthiphand et al., 2019). However, some specific
microbial assemblages occur in groundwater at particularly high abundance. Candidatus
Kaiserbacteraceae, Candidatus Nomurabacteraceae, and unclassified UBA9983, members
of the phylum Patescibacteria, were highly represented in the shallowest groundwater well
(5.1 m depth) of the Hainich Critical Zone Exploratory (CZE) in Germany (Herrmann
et al., 2019). These microbial taxa involve in driving the nitrogen, sulfur and iron cycles.
Rhodospirillales, Rhodocyclales, Chlorobia, and Circovirus were dominant in the shallow
groundwater, whereas Deltaproteobacteria and Clostridiales were predominant in the deep
groundwater of the Ashbourne aquifer system in South Australia (Smith et al., 2012).
These microorganisms harbor metabolic genes involved in antibiotic resistance, lactose
and glucose utilization, flagella production, phosphate metabolism, and starch uptake
pathways (Smith et al., 2012). Candidatus Altiarchaeum sp. and Sulfurimonas respectively
dominated in the deep and shallow aquifers of the Paradox Basin in USA (Probst et al.,
2018). Candidatus Altiarchaeum sp. and Sulfurimonas are capable of reducing sulfite with
carbon fixation and oxidizing sulfide with N2 fixation, respectively (Probst et al., 2018).
Unlike groundwater microbiomes, surface water (e.g., lakes and rivers) microbiomes
generally host hgcI clade and Limnohabitans, belonging to the classes Actinobacteria and
Betaproteobacteria, respectively (Keshri, Ram & Sime-Ngando, 2018; Ram, Keshri & Sime-
Ngando, 2019). Members of Limnohabitans contribute to the carbon flow through food
chains as they are able to consume algal derivatives for their growth (Šimek et al., 2010).
Members of hgcI clade have a competitive advantage over others to survive in energy-
limited and nutrient-limited environments (Ghylin et al., 2014). However, previous studies
demonstrated the mobilizations of microbial taxa across different biomes (Herrmann et
al., 2019;Monard et al., 2016). That said, microorganisms found in one biome are possibly
transferred from an adjacent biome, such as from terrestrial to freshwater or from soil to
groundwater.
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Our study area was located in an intensively agricultural landscape, impacted by an
old tin mine, where the arsenic (As) concentration in soils was high, in the range of
4.84–1,070.42 mg kg−1 (Tiankao & Chotpantarat, 2018). The arsenic concentration in
a particular shallow groundwater well (14 µg l−1) located downstream of the old tin
mine exceeded the World Health Organization (WHO) limit of 10 µg l−1 (Tiankao &
Chotpantarat, 2018). Due to its extreme toxicity, As contamination in groundwater is an
issue of global environmental concern, which directly affects human health (Boonkaewwan,
Sonthiphand & Chotpantarat, 2020; Cavalca et al., 2019; Chotpantarat et al., 2014; Das et
al., 2017; Li et al., 2013; Wongsasuluk et al., 2018a; Wongsasuluk et al., 2018b). Previous
studies have suggested that microorganisms are responsible for reducing the toxicity,
solubility, and mobility of arsenic in impacted aquifers through arsenite oxidation (Li
et al., 2016; Osborne et al., 2010). Arsenite oxidation is performed by arsenite-oxidizing
bacteria using the key enzyme arsenite oxidase (aio), converting toxic arsenite (As3+) to
arsenate (As5+). Chemolithoautotrophic arsenite-oxidizing bacteria are able to use As3+

as an electron donor and use O2, NO3
−, or Fe 3+ as an electron acceptor for their energy

metabolism (Páez-Espino et al., 2009). Both cultured and uncultured arsenite-oxidizing
bacteria distributed in various environments have been examined by analysis of the
aioA gene, encoding a large subunit of arsenite oxidase (aioA). Molecular surveys of the
aioA gene have recovered arsenite-oxidizing bacteria of the classes Alphaproteobacteria,
Betaproteobacteria, and Gammaproteobacteria from aquifers across various locations
(Cavalca et al., 2019; Quéméneur et al., 2010).

There is very limited information on the microbial community structures, including the
diversity and abundance of arsenite-oxidizing bacteria, in deep and shallow aquifers
impacted by the combination of land uses. Due to the unique physicochemical
characteristics of deep and shallow aquifers, land uses, and the history of the study area,
we hypothesized that the communities of microorganisms and arsenite-oxidizing bacteria
in each aquifer were distinct. This study aimed to elucidate the microbial community
structures in deep and shallow aquifers and identify environmental factors influencing
their distribution patterns using an Illumina MiSeq platform targeting the V3-V4 region of
the 16S rRNA gene. In addition, the diversity and abundance of arsenite-oxidizing bacteria
in the aquifers were investigated by analysis of the aioA gene using PCR-cloning-sequencing
and quantitative PCR (qPCR). This study sheds light on spatial variations of microbiomes
in relation to deep and shallow aquifers impacted by agricultural and mining activities,
and expands knowledge of the diversity and abundance of arsenite-oxidizing bacteria
which play a vital role in arsenic bioremediation, especially in aquifers receiving external
pollutants (e.g., agricultural and mining activities).

MATERIALS & METHODS
Sampling site description and sample collection
The study area was located in the Lower Chao Praya Basin, Thailand, in Dan ChangDistrict,
Suphan Buri Province, and in adjacent Nong Prue District, Kanchanaburi Province
(Fig. 1). The sampling area covered an old tin mine, currently used for agricultural
purposes, including sugarcane and corn cultivation. Arsenic concentrations in soils from
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Figure 1 Study area showing the sampling locations of six deep groundwaters (DW1–DW6), six shal-
low groundwaters (W1–W6), and surface water (SW).

Full-size DOI: 10.7717/peerj.10653/fig-1

the old mine within this area were considerably high (52.12–1,070.42 mg kg−1) and in
one particular shallow groundwater well (14 µg l−1) exceeded the maximum admissible
concentration of 10 µg l−1 set by WHO (Tiankao & Chotpantarat, 2018). Groundwater is
commonly used by locals for daily consumption. Mr. Narong Ketprapum, the President
of Dan Chang Subdistrict Administrative Organization, and Mr. Surasi Songcharoen, the
President of Nong Prue Subdistrict Administrative Organization, gave verbal permission
for the collection of water samples. In this study, water samples were collected from three
aquifer types: deep groundwater (DW), shallow groundwater (W), and surface water (SW).
Twelve groundwater samples and one surface water sample were collected on April 5th
and 6th, 2018. All groundwater samples were collected from currently active wells, six
deep groundwater wells (DW1 to DW6) and six shallow groundwater wells (W1 to W6)
(Fig. S1). To obtain a representative groundwater sample, groundwaters were purged
for approximately 10 min before sampling. Deep groundwater samples were directly
collected from a tube well using a high density polyethylene (HDPE) plastic container.
Shallow groundwater samples were collected from a ring well using a polyethylene bailer.
The water table of each of the six shallow wells (W1 to W6), ranging from 3–6 m, were
measured onsite using an electric tape. Those of the six deep wells (DW1 to DW6) could
not be analyzed due to the limitation of their aquifer structure. The single surface water
sample (SW) was collected from an old tailing pond (Fig. 1). The surface water sample
was randomly collected from five locations from the pond; it was subsequently pooled on
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Table 1 Physicochemical parameters of water samples.

ID DO
(mg l−1)

pH ORP
(mV)

EC
(µs cm−1)

Temp
(◦C)

TKN
(mg l−1)

NO3
−-N

(mg l−1)
TP
(mg l−1)

TC
(mg l−1)

Total
arsenic
(µg l−1)

As3+

(µg l−1)
As5+

(µg l−1)

DW1 2.14 6.56 −64.8 544 28.8 0.3 <0.05 0.01 51.66 6.35 3.84 2.51
DW2 5.31 6.64 173.7 350 31.5 <0.1 0.11 0.01 29.92 0.59 0.28 0.31
DW3 4.74 6.55 172.6 371 28.5 <0.1 <0.05 0.01 4.965 1.93 1.11 0.83
DW4 2.48 6.42 189.7 362 30.2 <0.1 <0.05 0.01 6.925 2.38 0.36 2.02
DW5 4.39 6.51 144.3 362 30 <0.1 0.07 0.01 1.656 0.60 0.33 0.27
DW6 4.84 6.89 177.5 589 30.6 0.4 <0.05 0.01 37.1 9.13 5.70 3.43
W1 2.77 6.42 147.5 270 25.8 0.4 0.11 0.02 33.77 0.41 0.27 0.13
W2 2.47 6.3 217.2 350 30 0.3 0.12 0.06 31.77 1.48 0.41 1.08
W3 2.49 6.24 87 330 30.6 <0.1 <0.05 0.13 17.77 5.41 0.74 4.67
W4 3.6 6.6 199.4 282 27.4 0.2 <0.05 0.06 6.978 2.85 0.28 2.57
W5 2.5 6.53 208.2 546 27.1 <0.1 <0.05 0.01 5.039 0.68 0.36 0.31
W6 2.83 6.38 200.5 334 28.1 0.3 <0.05 0.03 30.64 3.75 0.43 3.32
SW 4.61 6.9 182.9 311 29.1 0.3 <0.05 0.24 22.08 23.66 15.31 8.35

Notes.
DO, dissolved oxygen; ORP, oxidation-reduction potential; EC, Conductivity; Temp, temperature; TKN, Total Kjeldahl nitrogen; TP, total phosphorus; TC, total carbon.

site. All groundwater and surface water samples were collected in triplicate and kept on ice
during transportation.

Physicochemical analyses
Physicochemical parameters of groundwater and surface water samples were analyzed.
Oxidation–reduction potential (ORP) and pH were measured on site using a portable
pH meter (WTW, USA). Conductivity (EC), dissolved oxygen concentration (DO), and
temperature were also measured at the field sites using a Hach meter (Hach, USA). For
other physicochemical parameters, all water samples were preserved on-site according
to standard protocols (APHA 2012). Total Kjeldahl nitrogen (TKN), nitrate-nitrogen
(NO3

−-N), total phosphorus (TP), and total carbon (TC) were respectively analyzed by
the macro-Kjeldahl method, cadmium reduction, the ascorbic acid method, and a total
organic carbon analyzer (APHA, 2012). The concentrations of total arsenic and As3+ were
measured using an inductively coupled plasma mass spectrometer (ICP-MS) according
to previously published protocols (APHA, 2012). All analyzed water samples were filtered
through an arsenate removal cartridge following the manufacturer’s protocol (Meng
& Wang, 1998). The cartridge selectively adsorbs As5+: the filtered water samples were
subsequently collected for the analysis of As3+ concentration. The concentration of As5+

was calculated from the difference between the concentrations of total arsenic and As3+.
All analyzed physicochemical parameters of the water samples are shown in Table 1.

Genomic DNA extraction
All groundwater and surface water samples, approximately 1 liter for each sample, were
filtered through a 0.2 µM membrane filter (Sigma-Aldrich, USA). Genomic DNA was
extracted from the filter using FastDNATM SPIN Kit for Soil (MP Biomedicals, USA),
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according to the manufacturer’s protocol. The extracted genomic DNA was quantified and
verified using a NanoDrop spectrophotometer ND-100 (Thermo Fisher Scientific, USA)
and agarose gel electrophoresis. It was then diluted to 5–10 ng µl−1 to use as a genomic
DNA template for downstream analysis of the 16S rRNA and aioA genes

16S rRNA gene sequencing and data analysis
Extracted genomic DNA of 12 groundwater and one surface water samples was amplified,
for each sample, in triplicate using a T100TM Thermal Cycler (Biorad, USA). The V3-V4
region of the 16S rRNA gene was amplified using previously published forward (5′-TCGTC

GGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′) and
reverse primers (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTA
CHVGGGTATC TAATCC-3′) (Klindworth et al., 2013). Overhang adapter sequences of
forward and reverse primers are 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-
3′ and 5′-GTCTCGTG GGCTCGGAGATGTGTATAAGAGACAG-3′, respectively. The
PCR mixture, with a total volume of 25 µl, was composed of 0.05 µl of each primer
(100 mM), 0.5 µl of dNTPs (10 mM), 0.125 µl of Taq polymerase (New England
Biolabs, USA), 2.5 µl of 10X ThermoPol reaction buffer, 1.5 µl of bovine serum albumin
(BSA, 10 mg ml−1), and 1 µl of genomic DNA template. Amplification was conducted
under the following conditions: 95 ◦C for 3 min, followed by 30 cycles at 95 ◦C for
30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, and a final extension at 72 ◦C for 5 min.
Triplicate PCR products of each sample were pooled and purified using a NucleoSpin R©

Gel and PCR Clean-up kit (Macherey-Nagel, Germany), following the manufacturer’s
protocols. The quality and quantity of the purified PCR products were examined using
the NanoDrop spectrophotometer ND-100 (Thermo Fisher Scientific, USA) and agarose
gel electrophoresis. The purified PCR products were subsequently used for the Illumina
library preparation using the MiSeq Reagent Kit V3, 500 cycles (2×250 bases; Illumina,
USA), following the manufacturer’s protocol. Raw 16S rRNA gene amplicon sequence data
are available in the Genbank database (SRA accession PRJNA630252).

During data analysis, raw amplicon sequences were evaluated using FastQC version
0.11.7. Forward and reverse primers were trimmed (17 and 21 bps, respectively) using
Trimmomatic version 0.36. All processed sequences were applied to investigate the
microbial profiles using Mothur 1.40.1 (Schloss et al., 2009) and following MiSeq SOP
(https://mothur.org/wiki/miseq_sop/) with minor adjusted parameters and criteria
specifically to the studied samples. The forward and reverse amplicon sequences were
merged into contigs considering overlapped regions. These contigs were filtered using the
criteria of sequence length between 430–470 bps, no ambiguous base and a maximum of 8
bps of homopolymer. Non-targeted region sequences were removed based on the reference
database SILVA 132 (Quast et al., 2012). All candidate contigs were then de-noised and
chimeric sequences were removed. Off-target sequences, including eukaryotes, chloroplast,
and mitochondria, were also removed. De novo clustering was performed to identify
operational taxonomic units (OTUs). Taxonomic assignment of the identified OTUs
were based on the database SILVA 132. Alpha-diversity, including rarefaction curves,
Chao1, and Shannon indices, was measured via Mothur. The numbers of reads in each
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sample were normalized by scaling based on the number of smallest total sequences of the
investigated samples. Bray–Curtis dissimilarities were measured to compare the microbial
community profiles and displayed via principal coordinates analysis (PCoA) and heatmap.
Microbial compositions, PCoA and heatmapwere plotted using in-house Python scripts. To
investigate the relationship between microbial community structures and environmental
factors, canonical correspondence analysis (CCA) was performed and plotted using the
vegan R package (Dixon, 2003).

aioA clone library preparation
The presence of the aioA gene in water samples was investigated using primers aoxBM1-
2F-ND/aoxBM2-1R-ND (Quéméneur et al., 2010). The PCR mixture, with a total volume
of 25 µl, contained 0.05 µl of each primer (100 µM), 0.5 µl of dNTPs (10 mM), 0.125 µl
of Taq polymerase (New England Biolabs, USA), 2.5 µl of 10× ThermoPol reaction buffer,
1.5 µl of BSA (10 mg ml−1), and 1 µl of genomic DNA template. To examine an optimal
PCR condition for amplifying the aioA gene, a gradient annealing temperature function
of 50−60 ◦C was performed using a T100TM Thermal Cycler (Biorad, USA). The PCR
conditions started with an initial denaturation at 95 ◦C for 30 s, followed by 35 cycles at
95 ◦C for 30 s, 53−55 ◦C for 30 s, and 68 ◦C for 30 s, and a final extension at 68 ◦C for
5 min. Positive aioA amplified products were verified using agarose gel electrophoresis.
Before aioA clone library construction, the aioA amplified products were purified using a
NucleoSpin R© Gel and PCR Clean-up kit (Macherey-Nagel, Germany), according to the
manufacturer’s protocols. Ligation and transformation were respectively conducted using
pGEM R©-T Easy Vector Systems (Promega, USA) and XL1-Blue supercompetent cells
(Agilent, USA), following the manufacturer’s protocols. For each library, approximately
25 aioA clones were randomly selected for sequencing. The aioA sequences recovered from
this study were submitted to GenBank (accession numbers MT432317 to MT432351).

aioA -based phylogenetic construction
All retrieved aioA sequences were compared against those previously reported in the
GenBank databases using blastn and blastx tools (Camacho et al., 2009). For each clone
library, the aioA sequences were clustered into operational taxonomic units (OTUs) based
on 3% cut-off using a CD-HIT program (Li & Godzik, 2006). Representative OTUs from
each clone library were selected for phylogenetic analysis. All representative OTUs were
aligned with selected reference cultured and uncultured aioA sequences using MUSCLE
(Edgar, 2004). Synechocystis sp. was included as an outgroup. An aioA-based phylogenetic
tree was generated using the MEGA package, version 7.0.21 (Kumar, Stecher & Tamura,
2016). A neighbor-joining tree was constructed using the maximum composite likelihood
model with bootstrap values of 1,000 replicates (Tamura, Nei & Kumar, 2004).

aioA gene quantification
The abundances of aioA and total 16S rRNA genes were estimated by quantitative PCR
(qPCR) using a CFX96 real-time system (Bio-Rad, USA). Amplifications of the aioA
and 16S rRNA genes were performed with primer sets aoxBM1-2F-ND/aoxBM2-1R-
ND (Quéméneur et al., 2010) and 341f/518r (Muyzer, DeWaal & Uitterlinden, 1993),

Sonthiphand et al. (2021), PeerJ, DOI 10.7717/peerj.10653 7/29

https://peerj.com
https://www.ncbi.nlm.nih.gov/nucleotide?term=MT432317
https://www.ncbi.nlm.nih.gov/nucleotide?term=MT432351
http://dx.doi.org/10.7717/peerj.10653


respectively. The relative abundance of aioA gene was expressed as the proportion of
aioA to total bacterial 16S rRNA gene copies. The qPCR mixture contained 5 µl of SsoFast
EvaGreen Supermix (Bio-Rad, Hercules, CA, USA), 0.03 µl of each primer (100 µM),
0.02 µl of BSA (10 mg ml−1), and 1 µl of DNA template (5 ng µl−1), in a total volume
of 10 µl. The qPCR conditions started with an enzyme activation at 98 ◦C for 2 min,
followed by 35 cycles of 98 ◦C for 5 s and 55 ◦C for 5 s, with a plate read after each
cycle. However, the plate read was added at 84 ◦C to avoid the quantification of a primer
dimer for the aioA gene quantification. After each run, melt curves were performed
between 65–95 ◦C in 0.5 ◦C increments to verify the specificity of qPCR amplification. In
addition, the specificity of qPCR products was checked by agarose gel electrophoresis. The
standard curves of aioA and 16S rRNA amplifications were constructed from positive clones
amplified by primer sets aoxBM1-2F-ND/aoxBM2-1R-ND and 341f/518r, respectively. The
aioA and 16S rRNA PCR products were then purified using a NucleoSpin R© Gel and PCR
Clean-up kit (Macherey-Nagel, Düren, Germany) and quantified by using a NanoDrop
spectrophotometer ND-100 (Thermo Fisher Scientific, Waltham, MA, USA) to generate
respective standard templates for qPCR. The qPCR standard curves were generated by
ten-fold serial dilutions. An aioA standard curve was linear between 102–107 gene copies,
with efficiencies of 93% (R2

= 1). A 16S rRNA standard curve was linear between 101–107

gene copies, with efficiencies of 102% (R2
= 0.998).

Statistical analysis
A principal component analysis (PCA), based on the Euclidean distance, was calculated
using MATLAB software (MathWorks, Natick, MA, USA) to investigate the similarity
among the water samples collected from deep groundwater (DW), shallow groundwater
(W), and surface water (SW). Correlations between each physicochemical factor were
calculated using Pearson’s correlation coefficients and their corresponding p-values through
MATLAB software. To identify physicochemical parameters significantly affecting the alpha
diversity of microorganisms in water samples, the correlations between physicochemical
parameters and alpha diversity indices were determined using Pearson’s correlation
coefficients. The modified BIOENV method was also conducted to reveal a set of
physicochemical parameters having the maximal Mantel correlations (Mantel, 1967)
between Bray–Curtis and Gower distance matrices. The Bray–Curtis distance matrix was
used to estimate dissimilarities between sites based on alpha diversity indices, while
the Gower distance matrix was used to evaluate dissimilarities between sites based
on physicochemical parameters. The BIOENV method is used to determine matrix
correlation between the Bray–Curtis dissimilarity and the Euclidean distance matrices
(Clarke & Ainsworth, 1993). In this study, the BIOENV method was modified by using
the Gower distance matrix instead of the Euclidean distance matrix because it is more
appropriate for our heterogeneous physicochemical parameters (Gower, 1971). To identify
physicochemical parameters significantly affecting the community and abundance of aioA
gene, the set of physicochemical parameters having the maximal Mantel correlations with
the community and abundance of aioA gene were also determined using the modified
BIOENV method. The Bray–Curtis distance matrix was used to determine dissimilarities
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based on the community and abundance of aioA gene, while the Gower distance matrix
was used to evaluate dissimilarities between sites based on physicochemical parameters.
All mentioned statistical analyses were performed using the Fathom Toolbox of MATLAB
software (Jones, 2015).

RESULTS
Water characteristics
Groundwater samples, in total 12, were collected from 6 deep wells (tube wells) and 6
shallow wells (ring wells). One surface water sample was also collected from an old tailing
pond in which the concentration of total arsenic was higher than the permissible limit of
10 µg l−1 recommended by WHO (Table 1). The concentration of total arsenic in surface
water (SW) was 23.66 µg l−1, with the major species of As3+ (Table 1). The concentration
of total arsenic in 12 groundwater samples ranged from 0.41 to 9.13 µg l−1, comprising
As3+ (0.27 to 5.70 µg l−1) and As5+ (0.13 to 4.67 µg l−1). Temperatures and conductivity
(EC) of water samples were 25.8 to 31.5 ◦C and 270 to 589 µs cm−1, respectively. Dissolved
oxygen (DO) concentrations and pH ranged from 2.14 to 5.31 mg l−1 and 6.24 to 6.90,
respectively (Table 1). Oxidation reduction potential (ORP) in all water samples was in
the range of 64.8 to 217.2 mV, indicating slightly reducing to oxidation conditions. Total
Kjeldahl Nitrogen (TKN) and NO3

−-N concentrations were less than 0.1 to 0.4 mg l−1 and
less than 0.05 to 0.12 mg l−1, respectively. The concentrations of total carbon (TC) across
all samples were in a broad range of 1.66 to 51.66 mg l−1. A principal component analysis
(PCA) showed that low concentrations of total phosphorus (TP), pH, total arsenic and As3+

typified water characteristics of the shallow groundwaters, while the high concentrations
of these physicochemical parameters contributed to the distinct characteristics of surface
water (Fig. 2).

Alpha diversity of microorganisms in deep and shallow groundwaters,
and surface water
Rarefaction curves demonstrated that the diversity richness of W1 was much higher than
in the other samples (Fig. S2). The rarefaction curve of W1 did not reach an asymptote,
indicating greater sequencing depth possibly leads to the detection of rare microbial taxa.
Both the Chao1 and Shannon indexes also demonstrated thatW1 harbored themost diverse
microbial diversity although neither index demonstrated that W1 distinctly differed from
the rest of the analyzed samples (Table S2). The rarefaction curves of the 12 samples, other
than W1, were saturated, indicating optimal sequencing depth (Fig. S2). The diversity
richness of all 12 samples (6 deep groundwater samples, 5 shallow groundwater samples,
and 1 surface water sample) was comparable. The correlation between physicochemical
parameters and alpha diversity indices of all water samples was investigated using Pearson’s
correlation coefficient (Table S1). The microbial diversity in the analyzed water samples
was positively correlated with TKN (r = 0.605, p = 0.029) and negatively correlated
with temperature (r =−0.670, p = 0.012). The modified BIOENV method suggested that
temperature,NO3

−-N, andECcollectively shaped the alpha diversity of themicroorganisms
in the analyzed water samples (r = 0.515, p= 0.002). Overall, the results demonstrated that
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temperature, TKN, NO3
−-N, and EC influenced the alpha diversity of microorganisms in

deep groundwaters, shallow groundwaters, and surface water.

Microbial community structures in deep and shallow groundwaters,
and surface water
The 16S rRNA gene analysis showed that Proteobacteria were a major phylum, detected
across all analyzed samples, accounting for 36–98% of the total microbial abundance
(Fig. S3). Other microbial phyla highly represented in deep groundwaters, shallow
groundwaters or surface water were Cyanobacteria (24%), Actinobacteria (31%),
Patescibacteria (15%), Bacteroidetes (11%), and Epsilonbacteraeota (10%). Although these
5 detected phyla were highly abundant in particular samples, they were rare in the others
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(less than 0.01%), indicating the dynamics of microbial taxa across different aquifer types
(Fig. S3).

To better understand the microbial community structures in deep and shallow
groundwaters, and surface water, the microbial abundances of the six dominant phyla were
separately analyzed at the class level for comparison (Fig. 3). The phylum Proteobacteria
found in the water samples was composed of four main classes: Alphaproteobacteria,
Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria which respectively
showed their highest abundances in DW4 (56%), W6 (77%), DW1 (9%), and DW2
(85%) (Fig. 3A). Betaproteobacteria were the majority of microbial taxa detected in shallow
groundwaters (42–77%). Although Proteobacteria were highly represented in both deep
and shallow groundwaters, they were also present in surface water at lower abundance
(Fig. 3A).
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One major class belonging to the phylum Cyanobacteria found in our analyzed samples
was Oxyphotobacteria, highly detected in DW4 (23%), SW (7%), W4 (4%), W1 (2%),
and W6 (1%) (Fig. 3B). It was rare, however, (less than1%) in the other samples. The
classes Acidimicrobiia and Actinobacteria, members of the phylum Actinobacteria, were
highly detected in DW6 and SW (Fig. 3C). Although these two classes were not commonly
detected in most deep groundwater samples, Acidimicrobiia and Actinobacteria were
particularly found in DW6, accounting for 2% and 5% of the total microbial abundance,
respectively. The class Actinobacteria was found as a minor assemblage across all shallow
groundwaters. Surface water hosted high abundances of both Acidimicrobiia (12%) and
Actinobacteria (18%). The abundance of the phylum Patescibacteria was relatively high in
DW1 (15%), DW4 (2%), DW6 (13%), and W1 (6%), but barely detected in the other
samples (Fig. 3D and Fig. S3). Three classes, ABY2, Gracilibacteria, and Parcubacteria,
were highly represented in DW1, DW6, and W1, whereas the classes Dojkabacteria and
Saccharimonadia were exclusively present in DW4 and W1, respectively (Fig. 3D). The
class Bacteroidia, a member of the phylum Bacteroidetes, was commonly found at low
abundance across all samples, ranging from less than 1% to 9% of the total microbial
abundance (Fig. 3E). Surface water contained a high abundance of the phylum Bacteroidetes
comprising the classes Bacteroidia (8%), Chlorobia (2%), and Ignavibacteria (1%). The
class Campylobacteria, belonging to the phylum Epsilonbacteraeota, was highly represented
in W4 (10%), DW3 (8%), DW6 (2%), W5 (1%), and DW1 (1%), while it was found at
low abundance in the rest of the samples (less than 1%) (Fig. 3F).

A heatmap analysis, based on the presence of more than 3% OTU abundance, indicated
the dominant microbial taxa in each sample (Fig. 4). The majority of Betaproteobacteria
and Class ABY1 in DW1 were Gallionellaceae and Candidatus Falkowbacteria, respectively.
DW2 was exclusively dominated by Gammaproteobacteria (85%) chiefly comprising the
genera Acinetobacter and Aeromonas. Betaproteobacteria hosted by DW2 were mostly
Comamonas. Unlike DW2, DW3 was primarily dominated by Betaproteobacteria (71%),
mostly comprising Massilia, unclassified Gallionellaceae, and Candidatus Nitrotoga. The
genus Sulfurimonas, a member of Epsilonbacteraeota, were also prevalent in DW3. DW4was
dominated by both uncultured Caulobacteraceae and Fischerella sp. PCC 9339, members of
the classes Alphaproteobacteria andOxyphotobacteria, respectively. Although DW5 was also
dominated byBetaproteobacteria (67%), the dominant generawereMassilia andCaldimonas
(Figs. 3A and 4). The dominant taxa found in DW6 were Piscinibacter, Pseudomonas, and
Novosphingobium, members of the classes Betaproteobacteria, Gammaproteobacteria, and
Alphaproteobacteria, respectively. Unlike the other deep groundwater samples, DW6 hosted
a relatively high abundance of the hgcI clade, members of the phylum Actinobacteria.

As for shallow groundwaters, the heatmap analysis showed that W1 and W5
were respectively dominated by Pseudogulbenkiania and Hydrogenophilaceae, while
Burkholderiaceae predominated in W2, W3, W5, and W6 (Fig. 4). These three taxa are
members of the class Betaproteobacteria. AlthoughW3 was dominated by Burkholderiaceae,
Novosphingobium which are affiliated with the class Alphaproteobacteria were also highly
detected. The dominant Betaproteobacteria found in W4 were the genus Vogesella and
Rivicola. The genus Arcobacter, belonging to the class Campylobacteria, was also found in
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W4 at high abundance (Figs. 3F and 4). Like neither DWnorW, SWwas dominated by hgcI
clade and CL500-29 marine group, members of the class Actinobacteria and Acidimicrobiia,
respectively.

Factors influencing microbial community structures of deep and
shallow groundwaters, and surface water
A principal coordinate (PCoA) analysis revealed that the microbial community structures
in deep groundwater (DW), shallow groundwater (W), and surface water (SW) were
different from one another (Fig. 5). A canonical correlation analysis (CCA) was also
conducted to evaluate the relationship between physicochemical parameters and microbial
community structures. The resulting CCA demonstrated that the concentrations of DO
influenced the microbial community structure in most of the shallow groundwaters, while
the low concentrations of TP were associated with the microbial community structure in
the deep groundwaters (Fig. 6). The microbial community structure in surface water was
influenced by the high concentrations of TP and DO.
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Diversity and abundance of the aioA genes in deep and shallow
groundwaters, and surface water
A previous study reported that the arsenic concentration in groundwater from the study
area was higher than the maximum admissible concentration of 10 µg l−1 (Tiankao
& Chotpantarat, 2018). The current analysis of arsenic concentration in surface water
showed a high concentration of arsenic which exceeded the standard limit (Table 1). In
As-contaminated aquifers, arsenite-oxidizing bacteria play a crucial role in transforming
highly toxic As3+ to less toxic As5+. Consequently, the diversity and abundance of arsenite-
oxidizing bacteria in all water samples were investigated by analysis of large subunit of
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the functional gene arsenite oxidase (aioA) using PCR cloning-sequencing and qPCR.
The aioA amplifications indicated that, six out of 13 samples (one deep groundwater,
four shallow groundwaters, and one surface water) showed a positive signal. All positive
aioA samples (DW1, W2, W3, W5, W6, and SW) were then cloned and sequenced. The
results demonstrated that all analyzed aioA sequences were 99–100% identical to the protein
arsenite oxidase and were 88–99% identical to previously reported aioA sequences retrieved
from As-contaminated environments such as groundwater (Hassan et al., 2015), aquatic
sediment (Yamamura et al., 2014), paddy soils (Hu et al., 2015), and biofilms elsewhere (Li
et al., 2016; Osborne et al., 2010).

Phylogenetic analysis showed that the analyzed aioA sequences were associated with
Alphaproteobacteria, Betaproteobacteria, andGammaproteobacteria (Fig. 7). The aioA-based
phylogenetic tree revealed two major branches with robust bootstrap values affiliated with
Alphaproteobacteria and Betaproteobacteria. The majority of retrieved aioA sequences were
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affiliated with Alphaproteobacteria and Betaproteobacteria, while a gammaproteobacterial
aioA sequence was found only in W2 at low abundance (Fig. 7 and Table 2). In deep
groundwaters, aioA genes were only detected in DW1. The aioA sequences retrieved
from DW1 were mainly grouped with Alphaproteobacteria, but those phylogenetically
related to Betaproteobacteria were also discovered. The aioA genes were found in shallow
groundwaters at higher frequency than in deep groundwaters. Most aioA sequences
recovered from W3, W5, and W6 were associated with Betaproteobacteria, while those
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Table 2 The relative abundances of alphaproteobacterial-, betaproteobacterial-, and gammaproteobacterial arsenite-oxidizing bacteria, and
aioA gene copies detected in deep- (DW), shallow (W) groundwaters, and surface water (SW).

ID arsenite-oxidizing bacteria aioA/16S
rRNA gene copies (%)

Alphaproteobacteria (%) Betaproteobacteria (%) Gammaproteobacteria
(%)

DW1 75 25 0 0.85
W2 79 17 4 3.60
W3 8 92 0 37.13
W5 5 95 0 1.98
W6 0 100 0 1.26
SW 31 69 0 5.18

belonging to Alphaproteobacteria were a minor assemblage. The aioA sequences retrieved
from W2 were mainly associated with Alphaproteobacteria, followed by Betaproteobacteria
and Gammaproteobacteria. As for SW, the more aioA sequences were associated with
Betaproteobacteria than with Alphaproteobacteria (Fig. 7 and Table 2).

The resulting qPCR demonstrated that the numbers of aioA and 16S rRNA genes were
in the range of 3.7 × 103 ± 2.2 × 102 to 1.7 × 105 ± 4.8 × 103 and 4.3 × 105 ± 6.1
× 104 to 1.1 × 106 ± 8.2 × 104 copies per ng of genomic DNA, respectively (Table
S3). The numbers of 16S rRNA gene copies were relatively consistent across all analyzed
samples, indicating no bias caused by DNA extraction and different biomass. To better
compare the abundance of aioA gene across all samples, the abundance of the aioA gene
copies was normalized to that of the 16S rRNA gene copies. The relative abundance of
the aioA gene found in water samples ranged from 0.85 to 37.13% (Table 2). To elucidate
those physicochemical factors significantly affecting the diversity and abundance of aioA
gene, a modified BIOENV was conducted. The results indicated that the combination of
ORP and the concentration of NO3

−-N influenced the diversity and abundance of aioA
retrieved from this study (r = 0.521, p = 0.019).

DISCUSSION
Physicochemical characteristics of deep and shallow groundwaters were comparable.
However, the concentrations of TP, total arsenic, and As3+ in deep and shallow
groundwaters were lower compared to those of surface water. SW was collected from
an old tailing pond where was surrounded by an intensively agricultural area. The elevated
concentrations of TP, total arsenic, and As3+ in SW likely resulted from the effects of
the old tailing pond and leaching of fertilizers and pesticides/herbicides. High As3+

concentration in SW may favor the presence of particular bacterial assemblages, especially
arsenite-oxidizing bacteria, involved in mediating the arsenic cycle.

Distinct microbial community structures in each aquifer
Rarefaction analysis suggested that, with deeper sequencing effort, rare microbial taxa
were possibly discovered from W1, a shallow groundwater (Fig. S2). Previous studies have
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found that shallow aquifers hosted a higher diversity of microorganisms than deep aquifers
(Lee, Unno & Ha, 2018; Sultana et al., 2011). However, the major phylum found in both
deep and shallow groundwater microbiomes was Proteobacteria which comprised 55–98%
of the total microbial abundance. Microbiome analysis revealed that Proteobacteria were
the majority of groundwater microbiomes previously reported across different locations,
including groundwater of Rayong Province, Thailand (37–93%; Sonthiphand et al., 2019),
As-contaminated groundwater of Assam, India (63%, Das et al., 2017); groundwater
of the Nakdong River Bank, South Korea (64–98%; Lee, Unno & Ha, 2018), and high
As-contaminated groundwater in Northern Italy (∼70%, Cavalca et al., 2019).

DW2 and DW5 were exclusively dominated by Proteobacteria (Fig. 3A). The microbial
structure of DW2 was mainly composed of Acinetobacter, Aeromonas, and Comamonas,
while that of DW5 was heavily occupied byMassilia and Caldimonas (Fig. 4). Acinetobacter
and Aeromonas, opportunistic pathogens, were isolated from South African groundwater
aquifer affected by mining, agricultural, and municipal sewage (Carstens et al., 2014).
Acinetobacter and Aeromonas were also dominant in groundwater from a thickly crowded
market area in India (Patel et al., 2014). Agricultural and residential areas possibly
contributed to the high abundance of Acinetobacter in groundwater of Rayong province,
Thailand (Sonthiphand et al., 2019). In addition, Acinetobacter were commonly detected
in As-contaminated groundwater where contributed to arsenic transformations (Das
et al., 2016; Li et al., 2015a). Massilia were the dominant taxa found in As-contaminated
groundwater of Hetao Basin in China (Li et al., 2013) and in a fermentation system, capable
of the degradation of rice bran (Hou et al., 2019).

As with DW5, DW3 was dominated by Massilia: however, it also harbored other
dominant members of the class Betaproteobacteria, such as Gallionellaceae and Candidatus
Nitrotoga (Fig. 4). Gallionellaceae are a well-known iron oxidizer detected in groundwater.
A metatranscriptomic analysis recently revealed their performance in nitrate reduction
(Hassan et al., 2015; Jewell et al., 2016). Candidatus Nitrotoga, commonly known as
nitrite-oxidizing bacteria, were present in both natural and engineered environments;
metagenomic analysis indicated their versatile energy metabolisms involved in N, S, and C
cycling (Boddicker & Mosier, 2018).

Three microbial taxa uniquely detected in DW4 at high abundance were Fischerella
sp. PCC 9339, Caulobacteraceae and Dojkabacteria, members of the phyla Proteobacteria,
Cyanobacteria, and Patescibacteria, respectively (Figs. 3 and 4). Although none of these was
ubiquitous in groundwater environments, all have previously been detected in hot springs
and in soils (Alcorta et al., 2018; Zhang et al., 2020). The phylum Patescibacteria was highly
represented in DW1 and DW6. Patescibacteria are dominant in oligotrophic groundwaters
as a result of their accumulation from soil microbiome leaching (Herrmann et al., 2019).
The heatmap revealed that Candidatus Falkowbacteria were the dominant patescibacterial
taxa found in DW1. Elsewhere they are not commonly found in groundwater; however,
they have previously been detected in a thermokarst lake (Vigneron et al., 2020).

The genera Piscinibacter, Novosphingobium, and Pseudomonas constituted the majority
of proteobacterial taxa found in DW6. Although Piscinibacter have been rarely documented
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in groundwater, a member of Piscinibacter was actively present in chloroethene-
contaminated groundwater in the Czech Republic (Kotik et al., 2013). Novosphingobium
were predominant in groundwater and they had ability to degrade organic pollutants
(Tiirola et al., 2002). Like Acinetobacter and Aeromonas, Pseudomonas are opportunistic
pathogens. Pseudomonas were commonly found in groundwater environments and
dominated in groundwater impacted by sewage canals (Lee, Unno & Ha, 2018; Patel et
al., 2014). The abundance of such opportunistic pathogens in groundwater may be used as
an indicator of groundwater quality.

The majority of the microbial proportion found in the shallow groundwaters was
Betaproteobacteria (42–77%) (Fig. 3A). W2, W3, W5, and W6 were mainly occupied
by Burkholderiaceae. Betaproteobacteria, especially Burkholderiaceae, were abundant in
As-contaminated groundwater and are potentially involved in As, Fe, and P cycling
(Chakraborty, DasGupta & Bhadury, 2020; Hassan et al., 2015). The most abundant
betaproteobacterial taxa found inW5, however, wereHydrogenophilaceae (Fig. 4), elsewhere
found at high abundance in groundwater polluted by organic substances (Kotik et al., 2013).
The major Betaproteobacteria detected in W1 were Pseudogulbenkiania, which are able to
perform denitrification coupled with iron oxidation (Liu et al., 2018). Betaproteobacterial
genera uniquely found at high abundance in W4 were Vogesella and Rivicola (Fig. 4).
Although Vogesella and Rivicola were rarely found in groundwater at high abundance,
these taxa were previously isolated from freshwater environments (Chen et al., 2015; Sheu
et al., 2014).

Although surface water (SW) was dominated by Proteobacteria (36%), their abundance
was lower than in the groundwaters (DW and W) (Fig. 3A). Unlike groundwater, surface
waterwasmainly occupied by the hgcI clade andCL500-29 marine groupwhich aremembers
of the classes Actinobacteria and Acidimicrobiia, respectively (Figs. 3C and 4). Both taxa
were found at high abundance in freshwater lakes and freshwater reservoirs (Keshri, Ram
& Sime-Ngando, 2018; Ram, Keshri & Sime-Ngando, 2019).

Overall, the results suggested that although Proteobacteria were commonly detected in
deep groundwaters, shallow groundwaters, and surface water, the dominant taxa found in
each samples were likely unique. The combination of variable physicochemical conditions
and unique features of each aquifer may contribute to distinctness of the microbial
communities among different aquifers. The dominant taxa detected play critical roles in
not only mediating the biogeochemical cycles (i.e., N, C, S, and As) but also degrading toxic
compounds in aquatic environments. In addition, groundwater quality may be assessed by
examining bacterial indicators, such as Acinetobacter and Aeromonas, and Pseudomonas.

The microbial community structures in deep groundwaters, shallow groundwaters, and
surface water were likely unique within the same aquifer type (Fig. 5). A previous study
reported that microbial community structures in unconfined and confined aquifers
were distinguishable (Guo et al., 2019). Physicochemical parameters influencing the
microbial community structures in the aquifers were the concentrations of DO and
TP (Fig. 6). DO concentration and ORP primarily controlled the microbial communities
in groundwaters collected from different depths (Lee, Unno & Ha, 2018). However, a
study of groundwater in Luoyang area, China suggested that DO concentration showed
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no significant correlation with groundwater depth due to the complicating factors such
as the groundwater conditions and prevailing land use (Li et al., 2015b). The elevated
concentration of TP in surface water was possibly caused by agricultural run-off through
fertilizer leaching (Masipan, Chotpantarat & Boonkaewwan, 2016; Worsfold, McKelvie &
Monbet, 2016). Deep groundwaters were associated with low concentrations of TP because
they were less likely to receive external contaminants, compared to surface water. In
addition, the concentrations of TP were positively correlated with the concentrations
of total arsenic and As3+ (Table S4). Previous studies suggested that application of
phosphorus fertilizers led to high concentrations of arsenic in an impacted area and
aquifers (Jayasumana et al., 2015; Lin et al., 2016).

Diversity and abundance of arsenite-oxidizing bacteria in aquifers
impacted by anthropogenic activities
Due to the water conditions and the history of the sampling site, the occurrence of
arsenite-oxidizing bacteria was examined through analysis of the aioA gene. One deep
groundwater sample, four shallow groundwater samples, and one surface water sample
showed the presence of arsenite-oxidizing bacteria (Table 2). Shallow groundwaters
and surface water were more sensitive to external disturbances (e.g., agricultural and
mining activities) compared to deep aquifers, and hence provided more positive aioA.
That said external inputs, including arsenic, NO3

−, and organic substances, can be used
as energy and carbon sources for promoting the growth of arsenite-oxidizing bacteria.
Arsenite-oxidizing bacteria retrieved from this study belonged to Alphaproteobacteria,
Betaproteobacteria, and Gammaproteobacteria (Fig. 7). Previous studies indicated the
concurrence of alphaproteobacterial-, betaproteobacterial-, and gammaproteobacterial
arsenite-oxidizing bacteria in aquifers, across different locations, impacted by a board
range of arsenic concentrations (Cavalca et al., 2019; Hassan et al., 2015; Quéméneur et al.,
2010). The relative abundances of aioA gene in the analyzed samples ranged from 0.85
to 37.13% (Table 2). The aioA gene copies were the most abundant in W3, followed by
SW. The arsenic concentration in W3 used to be higher than 10 µg l−1, while that in the
other shallow groundwaters was below 10 µg l−1 (Tiankao & Chotpantarat, 2018). High
concentration of As3+ in SW possibly provided an energy source for arsenite-oxidizing
bacteria. Long-term arsenic contamination would be expected to enhance the abundance
of arsenite-oxidizing bacteria in the impacted aquifers. The samples (i.e., mat, sinter, and
water) from geothermal areas, with the exception of one particular sample belonging to
the highest temperature, harbored the aioA gene copies in the range of less than 0.10 to
19.50% (Jiang et al., 2014).

The analysis of aioA gene suggested that arsenite-oxidizing bacteria belonging to
Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were present at low
abundance, while the analysis of 16S rRNA gene revealed that Alphaproteobacteria,
Betaproteobacteria, and Gammaproteobacteria were the major microbial assemblages found
in the analyzed aquifers. Based on the analysis of 16S rRNA, the microbial taxa capable of
arsenite oxidation were rarely identified. One possible explanation is that arsenite-oxidizing
bacteria constitute a minor assemblage in groundwater and surface water microbiomes.
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Limitations of the16S rRNA database for taxonomic assignment of uncultured arsenite-
oxidizing bacteria could be another explanation for unidentified arsenite-oxidizing bacteria
through the 16S rRNA gene analysis. However, the heatmap analysis demonstrated that
Burkholderiaceae were dominant in particular groundwaters (Fig. 4). A comprehensive
study of Burkholderiales bacterial genomes revealed that their members harbor As-related
genes, including the aioA gene (Li, Zhang & Wang, 2014). Another dominant taxon
involved in the presence of arsenic in groundwater is Gallionellaceae. Members of the
Gallionellaceae, well-known iron-oxidizing bacteria, are able to produce iron oxides which
subsequently adsorb arsenic in groundwater. The co-dominance of Burkholderiaceae and
Gallionellaceae has the potential to impact arsenic immobilization in groundwater. A
previous study also suggested that Betaproteobacteria, including Burkholderiaceae and
Gallionellaceae, played a role in mediating arsenic cycling in As-contaminated groundwater
(Chakraborty, DasGupta & Bhadury, 2020).

The diversity and abundance of arsenite-oxidizing bacteria retrieved from this study
were affected by the combination of ORP and the concentration of NO3

−-N (r = 0.521, p
= 0.019). Previous study also showed the effect of NO3

−-N concentration on groundwater
microbial communities (Ben Maamar et al., 2015). In environments under reducing
conditions, arsenite-oxidizing bacteria are able to anaerobically oxidize As3+to As5+,
using As3+ as an electron donor and NO3

− as an electron acceptor. Sources of NO3
−-N

groundwater contaminations, analyzed by isotopic signatures, were soil organic nitrogen,
fertilizer leaching, and manure/household waste (Nikolenko et al., 2018). Addition of
NO3

− enhanced the abundance of aioA gene and stimulated the activity of anaerobic
arsenite-oxidizing bacteria in flooded paddy soils and a laboratory-scale reactor (Sun et al.,
2009; Zhang et al., 2017).

CONCLUSION
The microbial community structures in deep and shallow groundwaters from an
agricultural area were examined through the analysis of 16S rRNA and aioA genes. Surface
water from the old tailing pond within the same locality of the groundwater sampling site
was also included in the analysis. Microbial community structures were likely distributed
according to the aquifer types, resulting from different physicochemical properties and
hydrogeological characteristics of each aquifer type. In addition to the aquifer types,
the microbial community structures in deep groundwaters, shallow groundwaters, and
surface water were influenced by the concentrations of DO and TP. Consequently, both
geological and physicochemical factors shaped the microbial community structures in the
analyzed aquifers. Dominant taxa found in the analyzed aquifers appeared to be unique.
They play crucial roles in mediating biogeochemical cycles (e.g., N, C, As, and Fe) and
in degrading toxic substances. The co-dominance of Burkholderiaceae and Gallionellaceae
potentially controlled arsenic immobilization in groundwaters. Analysis of the aioA gene
suggested that arsenite-oxidizing bacteria were found at higher frequency in the shallow
aquifers. The arsenite-oxidizing bacteria recovered from this study were associated with
Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. External inputs from
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anthropogenic activities, especially through ferlilizer leaching, and aquifer conditions may
enhance the abundance and activity of anaerobic arsenite-oxidizing bacteria. This study
provides insights into microbiomes in deep and shallow aquifers, including surface water,
and suggests further exploration of gene expression within groundwater, representing a
unique microbial niche, using shotgun metatranscriptomic analysis.
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