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Trace fossils (ichnofossils) from the Lower Jurassic Moenave Formation at the St. George
Dinosaur Discovery Site at Johnson Farm (SGDS) are relatively well understood and
described, but new specimens, particularly of invertebrates, continue to expand the
ichnofauna at the site. A previously unstudied arthropod locomotory (walking) trace, SGDS
1290, comprises two widely spaced, thick, gently undulating paramedial impressions
flanked externally by small, tapered to elongate tracks with a staggered arrangement. The
specimen is not a variant of any existing ichnotaxon, but bears a striking resemblance to
modern, experimentally generated crayfish walking traces, suggesting a crayfish or
crayfish-like maker for the fossil. Because of its uniqueness, we place it in a new
ichnospecies, Siskemia eurypyge. It is the first fossil crayfish or crayfish-like locomotion
trace ever identified.
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15 Abstract
16 Trace fossils (ichnofossils) from the Lower Jurassic Moenave Formation at the St. 

17 George Dinosaur Discovery Site at Johnson Farm (SGDS) are relatively well understood and 

18 described, but new specimens, particularly of invertebrates, continue to expand the ichnofauna at 

19 the site. A previously unstudied arthropod locomotory (walking) trace, SGDS 1290, comprises 

20 two widely spaced, thick, gently undulating paramedial impressions flanked externally by small, 

21 tapered to elongate tracks with a staggered arrangement. The specimen is not a variant of any 

22 existing ichnotaxon, but bears a striking resemblance to modern, experimentally generated 

23 crayfish walking traces, suggesting a crayfish or crayfish-like maker for the fossil. Because of its 

24 uniqueness, we place it in a new ichnospecies, Siskemia eurypyge. It is the first fossil crayfish or 

25 crayfish-like locomotion trace ever identified.

26

27 Introduction
28 Ichnology, the study of fossil traces (ichnites), contributes a substantial body of 

29 paleobiological information to the understanding of extinct organisms. This is because trace 

30 fossils are direct results of ancient animal behavior (Osgood, 1975) that could only otherwise be 

31 inferred from body fossils. Furthermore, the global commonness of ichnites compared to body 

32 fossils means that the ichnological record often can preserve evidence of the presence of 

33 organisms not otherwise represented in the body fossil record (Osgood, 1975), especially of 

34 invertebrates that lack hard parts and therefore fossilize only under exceptional conditions. 

35 Except for conchostracans (sensu Kozur & Weems, 2010) and ostracods, which have 

36 biomineralized carapaces, arthropods are among the less commonly preserved body-fossil 

37 components of terrestrial (including freshwater) paleoecosystems except in various Konservat-

38 Lagerstätten (fossiliferous sites of exceptional preservational quality) (e.g., Charbonnier et al., 

39 2010; Luque et al., 2019; Selden & Nudds, 2012; Smith, 2012). Yet from the mid-Paleozoic 

40 through the Cenozoic, arthropods—especially insects and chelicerates—were certainly the most 

41 populous and diverse metazoan components of most terrestrial ecosystems (Labandeira & Beall, 

42 1990), and their paleoecological importance cannot be underestimated.

43 Arthropod ichnites can be more common and abundant than arthropod body fossils, and 

44 indicate the presences of various arthropod taxa in paleoecosystems for which body fossils may 

45 be entirely absent. Locomotory tracks (repichnia) of arthropods have an extensive geological 

46 history, spanning from the Cambrian (and possibly latest Precambrian [Chen et al., 2018]) 

47 through the Holocene. They constitute some of the earliest evidence of metazoan life venturing 

48 onto land (reviewed in Minter et al., 2016a; Minter et al., 2016b) and are known from virtually 

49 every paleoenvironment, from near shore and shallow marine environments (e.g., Collette, 

50 Hagadorn & Lacelle, 2010; MacNaughton et al., 2002; Pirrie, Feldmann & Buatois, 2004; 

51 Shillito & Davies, 2018; Trewin & McNamara, 1994) and, terrestrially, from proglacial systems 

52 (e.g., Anderson, 1981; Lima, Minter & Netto, 2017; Lima et al., 2015; Uchman, Kazakauskas & 
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53 Gaigalas, 2009; Walter, 1985) to desert ergs (e.g., Gilmore, 1927; Good & Ekdale, 2014; Sadler, 

54 1993). 

55 The St. George Dinosaur Discovery Site at Johnson Farm (SGDS) in St. George, 

56 Washington County, Utah (Fig. 1) has been called a Konzentrat-Ichnolagerstätte (Hunt & Lucas, 

57 2006a) because of its exceptional concentration of well-preserved ichnites from a broad spectrum 

58 of terrestrial organisms. The site preserves a detailed “snapshot” of an earliest Jurassic ecosystem 

59 from on- and offshore portions of a freshwater, lacustrine paleoenvironment. The “Dinosaur 

60 Discovery” part of the name of the site indicates the concentration of dinosaur tracks at this 

61 locality (Milner, Lockley & Johnson, 2006; Milner, Lockley & Kirkland, 2006; Milner et al., 

62 2009), but tracks of other vertebrates (Lockley, Kirkland & Milner, 2004; Milner, Lockley & 

63 Johnson, 2006) and a moderately diverse invertebrate ichnofauna (Lucas et al., 2006a) are also 

64 preserved. Among the latter are many locomotory trackways made by arthropods, some of which 

65 have been referred to cf. Bifurculapes, Diplichnites, and cf. Kouphichnium (Lucas et al., 2006a). 

66 Ichnospecies of Bifurculapes have been variably attributed to insects, possibly beetles, and to 

67 crustaceans (Getty, 2016, 2018; Hitchcock, 1858, 1865); ichnospecies of Diplichnites have been 

68 attributed to myriapods (Briggs, Rolfe & Brannan, 1979; Davis, Minter & Braddy, 2007; Pollard, 

69 Selden & Watts, 2008; Shillito & Davies, 2018), notostracans (Lucas et al., 2006a; Minter et al., 

70 2007), and other arthropods (Melchor & Cardonatto, 2014; Minter et al., 2007); and ichnospecies 

71 of Kouphichnium have been attributed to limulids (Caster, 1944; King, Stimson & Lucas, 2019; 

72 Lomax & Racay, 2012). 

73 A previously unstudied SGDS specimen, SGDS 1290, is an arthropod locomotory trace 

74 that differs markedly from any other SGDS specimen, indicating the presence of a heretofore 

75 unrecognized component of the SGDS ichnofauna. SGDS 1290 is an arthropod locomotory trace 

76 because it includes distinct footprints in a discernible cycle, but lacks any features of vertebrate 

77 tracks, such as distinct toes (sensu Seilacher, 2007). The trace thus resembles numerous other 

78 fossil traces attributed to arthropods, as well as those generated experimentally. The fossil was 

79 discovered and collected March 11, 2010 by SGDS volunteer Jon Cross.

80

81 Geological Setting
82 Most of the fossils preserved at the SGDS, including the trace described below, occur in 

83 the Whitmore Point Member of the Moenave Formation (Kirkland & Milner, 2006; Kirkland et 

84 al., 2014), which conformably overlies the Dinosaur Canyon Member of the Moenave Formation 

85 and disconformably underlies the Springdale Sandstone Member, which itself has been assigned 

86 as both the lowest member of the Kayenta Formation (Lucas & Tanner, 2006) and the uppermost 

87 member of the Moenave Formation (Steiner, 2014a). The richest source of the trace fossils at the 

88 SGDS, again including the trace described below, occur within a fine-grained sandstone near the 

89 base of the Whitmore Point Member initially called the “Main Track Layer” (Kirkland & Milner, 

90 2006; Milner, Lockley & Johnson, 2006; Milner, Lockley & Kirkland, 2006) and, later and more 

91 formally, the Johnson Farm Sandstone Bed (unit 40 of Kirkland et al., 2014) (Fig. 2). SGDS 

92 1290 comes from the uppermost strata of this unit, specifically one of several thinly bedded, 
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93 apparently conformable, fine-grained-sandstone “Top Surface Tracksite” horizons (sensu 

94 Kirkland et al., 2014; Milner, Lockley & Johnson, 2006; Milner, Lockley & Kirkland, 2006). 

95 The Whitmore Point Member preserves sediments deposited in and around the large, freshwater 

96 Lake Whitmore (formerly called Lake Dixie) (Kirkland & Milner, 2006; Kirkland et al., 2014); 

97 at the SGDS itself, the Johnson Farm Sandstone Bed preserves ichnites and sedimentary 

98 structures made in both subaerial and subaqueous conditions, indicating a shoreline 

99 paleoenvironment (Milner, Lockley & Kirkland, 2006). Ichnologically, invertebrate trace fossils 

100 in this paleoenvironment pertain to the Scoyenia ichnofacies (Buatois & Mángano, 2004; Lucas 

101 et al., 2006a), while the associated vertebrate ichnofauna pertains to the Eubrontes ichnocoenosis 

102 of the Grallator ichnofacies (Hunt & Lucas, 2006b; Hunt & Lucas, 2006c).

103 Age determinations for the Whitmore Point Member have varied. The unit typically has 

104 been placed entirely within the Hettangian (earliest Jurassic) largely on biostratigraphic grounds 

105 (see discussions in Kirkland et al., 2014; Milner et al., 2012; Parrish et al., 2019; and Tanner & 

106 Lucas, 2009), but was also determined to straddle the Triassic–Jurassic boundary (201.3 ± 0.2 

107 Ma) on magnetostratigraphic grounds (Donohoo-Hurley, Geissman & Lucas, 2010), in which 

108 system the Johnson Farm Sandstone Bed would be Rhaetian (latest Triassic) in age. However, 

109 Steiner (2014b) recovered Hettangian paleomagnetic sequences from the Whitmore Point 

110 Member, and Suarez et al. (2017) calibrated the magnetostratigraphic data of Donohoo-Hurley, 

111 Geissman & Lucas (2010) with high-precision U–Pb dates to re-situate the Triassic–Jurassic 

112 boundary stratigraphically farther down in the Dinosaur Canyon Member of the Moenave 

113 Formation, also making the Whitmore Point Member entirely earliest Jurassic in age. The 

114 Johnson Farm Sandstone Bed and its fossils therefore are Hettangian in age, approximately 200 

115 million years old.

116

117 Materials & Methods
118 Measurements of SGDS 1290 were taken using digital calipers. Ichnological terminology 

119 for arthropod locomotory traces used herein follows Minter, Braddy & Davis (2007) and Genise 

120 (2017). Minter, Braddy & Davis (2007) defined “tracks” as discrete marks made by locomotory 

121 appendages, “impressions” as continuous traces made by another portion of the anatomy of a 

122 trace maker, and “imprints” as discontinuous such traces; they also provided terms for trackway 

123 arrangement and measurements. Genise (2017) outlined various descriptive terms for individual 

124 track morphologies.

125 The electronic version of this article in Portable Document Format (PDF) will represent a 

126 published work according to the International Commission on Zoological Nomenclature (ICZN), 

127 and hence the new names contained in the electronic version are effectively published under that 

128 Code from the electronic edition alone. This published work and the nomenclatural acts it 

129 contains have been registered in ZooBank, the online registration system for the ICZN. The 

130 ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed 

131 through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The 

132 LSID for this publication is: urn:lsid:zoobank.org:pub:D78963CE-11C8-4447-8E26-

Figure : Labeling of the top, bottom and sides of the fossil trace for description 
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133 BBCCF0E37143. The LSID for the herein described Siskemia eurypyge isp. nov. is: 

134 urn:lsid:zoobank.org:act:769B0815-8991-4F0E-B32C-99C87A9D293B. The online version of 

135 this work is archived and available from the following digital repositories: PeerJ, PubMed 

136 Central and CLOCKSS.

137

138 Description of SGDS 1290
139 SGDS 1290, a natural cast (convex hyporelief), consists of two parallel, undulating, 

140 paramedial ridges flanked externally by eight closely appressed sets of small tracks that range in 

141 shape from ovoid to tapered (teardrop-shaped) to elongate (Fig. 3). The track sets are oriented 

142 perpendicular to the trackway axis, though tapered and elongate individual tracks within each set 

143 have long axes that parallel or are oblique to the trackway axis. Track sets average 4.5 mm long 

144 craniocaudally (anteroposteriorly) and 5.4 mm wide mediolaterally (Table 1). Left (L) and right 

145 (R) sets of tracks are arranged in a staggered pattern such that there is half a cycle displacement 

146 between each step. Based on Fairchild & Hasiotis (2011), the tapering ends of the tapered tracks 

147 are presumed to be cranial (anterior) reflectures, indicating the direction of movement. Most 

148 tracks have long axes oriented parallel to the trackway axis; a few (such as in sets L1, L4, and 

149 R2) are oblique to the axis. Track R1 is markedly elongate rather than tapered, but also parallel 

150 to the trackway axis. Track sets L1, L3, and R4 consist of three distinct but appressed tracks; sets 

151 L2, L4, and R2 consist of pairs of appressed tracks, and R1 and R3 appear to consist of single 

152 tracks, although the possibility that each comprises multiple, conjoined tracks cannot be ruled 

153 out.

154 The paramedial impressions typically are thick mediolaterally, though they vary and taper 

155 briefly to nothingness in a few places (being more continuous than repeating, we consider them 

156 “impressions” and not “imprints”). The impressions follow gently undulating (non-linear and 

157 low amplitude) pathways. They span approximately 7.5 cm along the slab of rock. Overprints of 

158 short segments of the paramedial impressions that are not accompanied by tracks are visible 

159 behind the main trace segment on a slightly higher stratum. The impressions vary in width along 

160 their lengths, ranging from 0–3.1 mm (mean = 2.0 mm) for the left impressions and 0–3.0 mm 

161 (mean = 1.6 mm) for the right (Table 1). The width of the trace from impression to impression 

162 averages 9.4 mm when measured from the lateral (external) edges and 5.6 mm when measured 

163 between the medial (internal) edges (Table 1). The distances between the impressions thus are 

164 greater than the distances between the impressions and their flanking tracks (mean = 1.6 mm). 

165 The impressions taper slightly: they are wider at their bases and narrower at their rounded apices. 

166

167 Comparisons to Arthropod Repichnial Ichnotaxa
168 Arthropod repichnia lacking medial or paramedial impressions

169 Several arthropod locomotory (walking) ichnotaxa are readily distinguished from SGDS 

170 1290 by (usually) lacking medial or paramedial impressions, but are worth comparing to SGDS 

171 1290 to ascertain whether or not it might be a morphological variant of such ichnotaxa. These 
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172 ichnotaxa are Acanthichnus (Hitchcock, 1858), Asaphoidichnus (Miller, 1880), Bifurculapes 

173 (Hitchcock, 1858), Coenobichnus (Walker, Holland & Gardiner, 2003), Copeza (Hitchcock, 

174 1858), Danstairia congesta (Smith, 1909), Diplichnites (Dawson, 1873), Eisenachichnus (Kozur, 

175 1981), Foersterichnus (Pirrie, Feldmann & Buatois, 2004), Hamipes (Hitchcock, 1858), 

176 Lithographus (Hitchcock, 1858), Hornburgichnium (Kozur, 1989), Maculichna (Anderson, 

177 1975a), Merostomichnites (Packard, 1900), Mirandaichnium (Aceñolaza, 1978), Octopodichnus 

178 (Gilmore, 1927), Petalichnus (Miller, 1880), Pterichnus (Hitchcock, 1865), Tasmanadia 

179 (Chapman, 1929), and Umfolozia (Savage, 1971). Most of these ichnotaxa further differ from 

180 SGDS 1290 in the shapes and configurations of their tracks.

181 Acanthichnus tracks (Fig. 4A), attributed to a chelicerate such as a solifugid, are 

182 oppositely arranged, short, elongate impressions in two (or four, per Dalman & Lucas, 2015) 

183 parallel rows; tracks either are parallel to or angle slightly away from the trackway axis (Dalman 

184 & Lucas, 2015; Hitchcock, 1858). This morphology and organization are both unlike those of 

185 SGDS 1290.

186 Asaphoidichnus tracks (Fig. 4B), attributed to trilobites, are elongate to crescentic, 

187 possess 3–4 crescentic branches at one end, and are oriented oblique to the trackway axis (Miller, 

188 1880). They are far more complex in structure than the tracks of SGDS 1290.

189 Bifurculapes (Fig. 4C), attributed to an insect, possibly a beetle (Getty, 2016), comprises 

190 adjacent pairs (rarely triplets) of slightly staggered, elongate, straight to crescentic tracks that lie 

191 parallel or slightly oblique to the trackway axis, unlike the tracks of SGDS 1290. Tracks in each 

192 pair sometimes converge toward one end in Bifurculapes. This ichnotaxon typically does not 

193 possess paramedial impressions, but a specimen described by Getty (2016: fig. 1) possess two 

194 such traces, albeit faintly, that lie closer to the tracks than to the trackway axis, as in SGDS 1290. 

195 These impressions are far less pronounced than their associated tracks, unlike those of SGDS 

196 1290. Getty (2020) ascertained that Bifurculapes traces were made subaqueously and may have 

197 been made by a terrestrial insect that would have left different tracks subaerially.

198 Coenobichnus tracks (Fig. 4D), attributed to a hermit crab, are thick, crescentic to 

199 ellipsoidal, roughly parallel and closely appressed to the trackway axis, and asymmetrical, with 

200 the left tracks larger than the right tracks (Walker, Holland & Gardiner, 2003), all of which 

201 differentiate this ichnotaxon from SGDS 1290.

202 Copeza (possibly a variant and synonym of Lithographus [Lull, 1953; Rainforth, 2005]; 

203 Fig. 4E) consists of triplets of roughly oppositely arranged, linear, elongate tracks in which the 

204 cranialmost lies roughly perpendicular to the trackway axis while the caudalmost pairs lie 

205 parallel or oblique to the trackway axis (Lull, 1953). This rare ichnotaxon is thus unlike SGDS 

206 1290.

207 Danstairia congesta (Fig. 4F) comprises circular to crescentic tracks in closely appressed 

208 sets of up to six that are oriented oblique to the trackway axis; tracks often overlap to form V-

209 shaped structures (Walker, 1985), unlike in SGDS 1290.

210 Diplichnites (possibly including Acripes per Häntzschel [1975] and Hammersburg, 

211 Hasiotis & Robison [2018]; also see below) tracks span a range of morphologies. D. aenigma 
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212 (Fig. 4G), ostensibly the ichnogenoholotype except that no specimen was designated as such 

213 (Stimson et al., 2018), typically comprises elongate, closely packed tracks in parallel rows on 

214 either side of the trackway axis; the tracks lie perpendicular to the trackway axis (Dawson, 

215 1873). D. gouldi Type A (Fig. 4H) comprises parallel rows of closely spaced, oppositely 

216 arranged, simple, roughly circular to oblong to comma-shaped or irregular tracks with varying 

217 orientations to the trackway axis; D. gouldi Type B comprises closely spaced, elongate 

218 impressions oriented perpendicular, or nearly so, to the trackway axis, matching the general 

219 description of D. aenigma; D. gouldi Type C is similar to Type B, but the tracks are oriented 

220 oblique (~ 45°) to the trackway axis (Trewin & McNamara, 1994). D. cuithensis, attributed to 

221 large arthropleurid myriapods, is similar to both D. aenigma and D. gouldi Type B, but is very 

222 large and has widely spaced rows of tracks (Briggs, Rolfe & Brannan, 1979). D. binatus tracks 

223 often occur as closely appressed pairs of imprints (Webby, 1983). D. triassicus tracks are small 

224 and circular to ovoid rather than elongate, and frequently paired on either side of the trackway 

225 axis (e.g., Pollard, Selden & Watts, 2008); this ichnospecies has been alternately suggested to be 

226 a synonym of D. gouldi (e.g., Lucas et al., 2006b) or to pertain to Acripes (e.g., Machalski & 

227 Machalska, 1994; Pollard, 1985). D. metzi possesses a midline impression that is sometimes 

228 interrupted by connections between tracks in the closely appressed rows (Fillmore et al., 2017). 

229 The ichnogenus is in need of thorough review (Smith et al., 2003), but in all cases, the tracks are 

230 of different morphologies and arrangements than those of SGDS 1290.

231 Eisenachichnus tracks (Fig. 4I) are elongate, paired, and oblique to the trackway axis 

232 (rarely perpendicular), but the patterns of the pairs on either side of the trackway axis normally 

233 are asymmetrical: on one side, the paired tracks lie end to end, while on the other, they are more 

234 adjacent (Kozur, 1981). This morphology and arrangement are unlike those of SGDS 1290.

235 Foersterichnus (Fig. 4J), attributed to a crab, consists of widely spaced, paired rows of 

236 elongate tracks in sets of 3–4; rows are parallel to oblique to the trackway axis, and tracks in 

237 each set frequently overlap (Pirrie, Feldmann & Buatois, 2004). The wide spacing, clustering of 

238 tracks, and orientations of the tracks are unlike those of SGDS 1290.

239 Hamipes tracks (Fig. 4K) consist of closely spaced, paired, elongate to crescentic 

240 impressions oriented parallel to the trackway axis; the outer tracks are longer than their 

241 accompanying inner tracks, and the tracks are staggered or alternately arranged (Getty, 2018; 

242 Hitchcock, 1858). Track morphology readily differentiates Hamipes from SGDS 1290.

243 Lithographus (including Permichnium sensu Minter & Braddy, 2009) tracks (Fig. 4L), 

244 which match those made by pterygote insects, especially extant cockroaches (Davis, Minter & 

245 Braddy, 2007), comprise trios (or pairs, in the case of the Permichnium variant) of elongate to 

246 comma-shaped, rather than circular or tapering, tracks that are arranged at different angles to one 

247 another, some of which are oriented perpendicular to the trackway axis, and others of which are 

248 oblique to the trackway axis (Guthörl, 1934; Hitchcock, 1858; Minter & Braddy, 2009). These 

249 track morphologies and arrangements are distinct from those of SGDS 1290. Hornburgichnium 

250 reportedly is similar to Permichnium, but has three tracks on either side of the midline instead of 

251 two, and at least one of each set is oriented parallel to the trackway axis (Kozur, 1989); it may 
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252 also be a variant of Lithographus (Lucas et al., 2005a). Trackways of Lithographus can transition 

253 into trackways that Hitchcock (1858) called Hexapodichnus (Davis, Minter & Braddy, 2007; 

254 Minter, Braddy & Davis, 2007), so the latter may be considered a behavioral and/or substrate-

255 consistency variant of the former, and also unlike SGDS 1290.

256 Maculichna (including Guandacolichnus and Paganzichnus of Pazos [2000] per Buatois 

257 & Mángano [2003]) tracks (Fig. 4M) comprise pairs (sometimes more) of small, circular to 

258 slightly elongate tracks arranged in closely appressed, slightly staggered rows. Pairings are 

259 oriented virtually parallel to the trackway axis (Anderson, 1975a); occasionally, short segments 

260 of linear, singular medial or closely spaced, paired paramedial imprints are also preserved that 

261 can be offset to one side of the trackway axis (Anderson, 1975a: fig. 8b, d, e). The pairing of 

262 Maculichna tracks differs from that of SGDS 1290. Aceñolaza & Buatois (1991, 1993) and 

263 Archer & Maples (1984) described Maculichna traces that exhibit the pairing of classic 

264 Maculichna from South Africa, but in which tracks are more ellipsoidal to shaped like slightly 

265 inflated isosceles triangles; the long axes of the triangles are oriented close to perpendicular to 

266 the trackway axis. Pazos (2000) recognized this morphology as the separate ichnotaxon 

267 Paganzichnus. This morphology is also unlike that of SGDS 1290.

268 The ichnogenoholotype of Merostomichnites narragansettensis (Fig. 4N) consists of 

269 parallel rows of roughly oppositely arranged circular to elongate to comma-shaped tracks whose 

270 long axes are perpendicular to the trackway axis (Packard, 1900). Merostomichnites beecheri 

271 tracks are circular and connected across the trackway axis by curvilinear, shallow, M-shaped 

272 imprints, creating a sort of segmented midline impression (Packard, 1900: fig. 4). These track 

273 and trace morphologies do not match those of SGDS 1290.

274 Mirandaichnium (Fig. 4O) consists of two rows of elongate, linear tracks that terminate 

275 laterally in small, circular impressions. Tracks are oriented perpendicular or oblique to the 

276 trackway axis, oppositely situated, and often grouped into series of eight (Aceñolaza & Buatois, 

277 1993; Buatois et al., 1998), unlike those of SGDS 1290. 

278 Octopodichnus (Fig. 4P) ichnospecies, attributed to arachnids, have different 

279 morphologies. O. didactylus tracks are circular to crescentic to bifurcate or trifurcate oriented 

280 parallel to the trackway axis in alternating, arcuate sets of four (Sadler, 1993). O. minor tracks 

281 have a similar organization, but the tracks are more amorphous; O. raymondi tracks consist of 

282 clusters of four circular to crescentic marks arranged in checkmark-like patterns (Sadler, 1993). 

283 These track morphologies and distinctive arrangements are substantially unlike those of SGDS 

284 1290.

285 Petalichnus (Fig. 4Q), attributed to trilobites (Braddy & Almond, 1999), comprises sets 

286 of 2–3 elongate to crescentic tracks oriented perpendicular to the trackway axis (Miller, 1880). 

287 Anderson (1975b) and Braddy & Almond (1999) diagnosed Petalichnus tracks as sometimes 

288 bifurcate and occurring in series of 9–12; they further noted that the ichnotaxon needs review. 

289 Both track morphology and organization are unlike those of SGDS 1290.

290 Pterichnus tracks (Fig. 4R), attributed to isopods, frequently are segmented and are more 

291 linear and elongate than any in SGDS 1290. Tracks (or series of segments) are oriented oblique 
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292 (Types 1 and 2 of Gaillard et al., 2005) or parallel (Types 3 and 4 of Gaillard et al., 2005) to the 

293 trackway axis, and approximately symmetrically arranged in two parallel rows (Gaillard et al., 

294 2005; Hitchcock, 1865) that are somewhat closer together than are those of the morphologically 

295 similar Diplichnites. Types 3 and 4 of Gaillard et al. (2005) morphologically grade into 

296 Diplopodichnus (Uchman et al., 2011). Hammersburg, Hasiotis & Robison (2018) suggested that 

297 Pterichnus comprises undertracks of Lithographus and is thus a junior synonym of that 

298 ichnotaxon. In any case, Pterichnus tracks are readily distinguished from SGDS 1290.

299 Tasmanadia traces (Fig. 4S) consist of two rows of closely packed, elongate, linear tracks 

300 oriented generally perpendicular to the trackway axis; occasionally, tracks overlap at one end, 

301 creating narrow, V-shaped structures (Chapman, 1929; Glaessner, 1957). Morphologically, this 

302 ichnotaxon resembles Diplichnites gouldi Type B and Umfolozia (but lacks the organization of 

303 the latter), and differs from SGDS 1290 for the same reasons as those ichnotaxa.

304 Umfolozia (Fig. 4T), attributed to syncarid and peracarid crustaceans (Lima, Minter & 

305 Netto, 2017; Savage, 1971), consists of parallel rows of irregularly shaped to crescentic tracks 

306 oriented perpendicular or oblique to the trackway axis that follow a unique repeating pattern 

307 (Anderson, 1981; Savage, 1971) unlike anything discernible in SGDS 1290. Aceñolaza & 

308 Buatois (1993) noted morphological similarities between Mirandaichnium, Tasmanadia, and 

309 Umfolozia and postulated similar track makers.

310 In summary, SGDS 1290 is not a variant of any of these ichnotaxa.

311

312 Arthropod repichnia possessing one medial impression

313 Several other arthropod locomotory (walking) ichnotaxa are also readily distinguished 

314 from SGDS 1290 by possessing singular medial, rather than paired paramedial, impressions; 

315 again, comparison is warranted to ascertain whether or not SGDS 1290 is a morphological 

316 variant of such ichnotaxa. These ichnotaxa are Kouphichnium (Caster, 1938; Nopcsa, 1923), 

317 “Merostomichnites isp.” (Hanken & Stormer, 1975), Oniscoidichnus (Brady, 1947, 1949), 

318 Palmichnium (Richter, 1954), Paleohelcura (Gilmore, 1926), Protichnites (Owen, 1852), 

319 Robledoichnus (Kozur & Lemone, 1995), Shalemichnus (Kozur & Lemone, 1995), Stiallia 

320 (Smith, 1909), and Stiaria (Smith, 1909). As with traces lacking any medial impressions, these 

321 ichnotaxa further differ from SGDS 1290 in track morphology.

322 Kouphichnium traces (Fig. 4U) are attributed to limulids and occur in a variety of 

323 configurations. Tracks in clear Kouphichnium walking traces that possess singular medial 

324 impressions (e.g., many K. lithographicum, but not, for example, K. minkinensis [King, Stimson 

325 & Lucas, 2019; q.v. Gaillard, 2011a; Shu et al., 2018]) typically occur in sets of up to five in 

326 rows oriented oblique to the medial impression and trackway axis; individual tracks range from 

327 circular and ellipsoidal to elongate, and can split into anywhere from 2–5 branches at their ends 

328 (Caster, 1938, 1944; King, Stimson & Lucas, 2019; Shu et al., 2018). Well-preserved 

329 Kouphichnium tracks are dissimilar to those of SGDS 1290.

330 Traces referred to as “Merostomichnites” (Fig. 4V) and attributed to the eurypterid 

331 Mixopterus by Hanken & Stormer (1975) consist of three elongate and crescentic tracks in 
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332 oblique rows on either side of an intermittent medial impression; the tracks increase in size 

333 laterally, and some split into two or more branches on one end. In any of these cases, however, 

334 the tracks are substantially more complex than those of SGDS 1290.

335 Oniscoidichnus tracks (Fig. 4W) are elongate to crescentic, oriented perpendicular or 

336 oblique to the trackway axis, closely packed and closely appressed to the single midline 

337 impression (Brady, 1947; Davies, Sansom & Turner, 2006). In all these details, Oniscoidichnus 

338 traces differ markedly from SGDS 1290.

339 Ichnospecies of Palmichnium (Fig. 4X), also attributed to eurypterids, vary in 

340 morphology. Generally, they comprise complex sets of tracks lying lateral to a medial 

341 impression that can be either continuous or discontinuous. Tracks range in shape from elongate 

342 to crescentic to ovoid to chevron shaped, and they generally parallel the trackway axis. The 

343 tracks occur in oblique rows in sets of up to four; in some traces, the lateralmost tracks are 

344 elongate and curved, while the more medial tracks are linear and oriented parallel to the 

345 trackway axis (Braddy & Milner, 1998; Minter & Braddy, 2009; Poschmann & Braddy, 2010; 

346 Richter, 1954). Tracks are both more numerous and differently shaped than those of SGDS 1290.

347 Paleohelcura (including Mesichnium per Braddy [1995] and Triavestigia per Kozur, 

348 Löffler & Sittig [1994]; possibly a junior synonym of Stiaria; Fig. 4Y) traces, attributed to 

349 scorpions (Brady, 1947; Davis, Minter & Braddy, 2007), comprise small, circular tracks in sets 

350 of three in either rows, triangular arrangements, or checkmark-like patterns that lie external and 

351 oblique to the medial impression (Gilmore, 1926; Lagnaoui et al., 2015; Sadler, 1993). This 

352 distinctive layout is unlike that of SGDS 1290. Peixoto et al. (2020) attributed traces lacking a 

353 medial impression and comprising closely appressed pairs or triplets of mostly elliptical tracks 

354 from the Upper Jurassic or Lower Cretaceous of Brazil to a new ichnospecies of Paleohelcura 

355 and attributed them to a pterygote insect track maker. Tracks in this ichnospecies are arranged in 

356 rows oriented oblique to the trackway axis, and track sets in this ichnospecies lie close to the 

357 midline. This morphology is also unlike that of SGDS 1290.

358 Protichnites traces (Fig. 4Z) comprise thick, often segmented medial impressions 

359 (sometimes absent except on trackway turns) flanked by oppositely arranged, subcircular to 

360 ellipsoidal to irregularly shaped tracks with varying orientations to the trackway axis (Burton-

361 Kelly & Erickson, 2010; Collette, Gass & Hagadorn, 2012; Hagadorn & Seilacher, 2009). They 

362 differ substantially from the tracks of SGDS 1290.

363 Robledoichnus tracks (Fig. 4AA), attributed to flying insects, resemble tracks of 

364 Eisenachichnus but possess a discontinuous, faint medial trace consisting entirely of periodic, V-

365 shaped marks flanked by asymmetrical pairs of tracks. On one side, the tracks are short, tapered, 

366 and oriented oblique to the trackway axis; on the other side, the tracks are longer and crescentic, 

367 oriented closer to perpendicular to the trackway axis (Kozur & Lemone, 1995). Lucas et al. 

368 (2005b) considered Robledoichnus a probable junior synonym of Paleohelcura or Stiaria, and 

369 the ichnotaxon differs from SGDS 1290 for similar reasons as those ichnotaxa, in addition to the 

370 asymmetry.
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371 Shalemichnus traces (Fig. 4BB), for which only half a trackway is known, consist of a 

372 straight medial impression punctuated at intervals by V-shaped marks. This impression is 

373 flanked by sets of three tapered tracks in straight rows oriented perpendicular to the trackway 

374 axis; individual tracks have their long axes parallel to the trackway axis (Kozur & Lemone, 

375 1995). Minter & Braddy (2009) considered Shalemichnus a junior synonym of Stiaria. The 

376 tracks of Shalemichnus bear some similarity to those of SGDS 1290, but the paramedial 

377 impressions of SGDS 1290 lack the V-shaped markings of the medial impression of 

378 Shalemichnus.

379 Stiallia traces (Fig. 4CC) consist of paired rows of long, linear impressions parallel or 

380 slightly oblique to the trackway axis and that frequently overlap. Stiallia pilosa lacks any medial 

381 or paramedial impressions, but Stiallia (Carrickia of Smith [1909]) berriana possesses a medial 

382 row of crescentic to chevron-shaped marks (Smith, 1909; Walker, 1985). Pollard (1995) 

383 suggested that Stiallia could be an arthropod swimming, rather than a walking, trace, though it 

384 also resembles traces made by bristletail insects walking in highly saturated mud (Getty et al., 

385 2013: fig. 6F, G). Stiallia tracks are markedly unlike those of SGDS 1290.

386 Stiaria tracks (including some ichnospecies of Danstairia of Smith [1909]; Fig. 4DD)), 

387 attributed to scorpionids (Braddy, 2003; Lucas, Lerner & Voigt, 2013) and monuran insects 

388 (Genise, 2017; Kopaska-Merkel & Buta, 2013), are oppositely situated groups of 2–4 generally 

389 circular to tapered tracks in a linear to crescentic arrangement lying roughly perpendicular to the 

390 trackway axis (Walker, 1985). In some specimens and ichnospecies of Stiaria, the singular 

391 medial impression actually varies in position, meandering from medial to almost lateral to their 

392 tracks (Fillmore, Lucas & Simpson, 2012: fig. 26d; Walker, 1985: fig. 5b, c). In some 

393 Mississippian specimens from Pennsylvania, the medial impression is flanked by thin, 

394 discontinuous, but closely appressed paramedial imprints (Fillmore, Lucas & Simpson, 2012: fig. 

395 26d-g). Track arrangement alone differentiates Stiaria from SGDS 1290. Genise (2017) asserted 

396 that Stiaria should be considered a junior synonym of Siskemia (the latter has page priority over 

397 the former).

398 As with locomotory traces lacking medial impressions, SGDS 1290 is not a variant of 

399 any of these ichnotaxa.

400

401 Arthropod repichnia possessing three or more medial and paramedial impressions

402 Mitchellichnus (Fig. 4EE), attributed to archaeognathan insects (Getty et al., 2013), is 

403 distinguished from SGDS 1290 by possessing three medial impressions (Walker, 1985). 

404 Mitchellichnus tracks are complex, comprising two distinct types and arrangements. An inner 

405 set, lying close to the medial impressions, consists of apparently elongate tracks in sets of up to 

406 six that lie parallel to slightly oblique to the trackway axis; an outer set consists of larger, 

407 amorphous impressions (Walker, 1985). Tracks are thus more numerous in Mitchellichnus than 

408 in SGDS 1290, and the tracks differ in arrangement and morphology. Like Stiaria, Genise (2017) 

409 asserted that Mitchellichnus should be considered a junior synonym of Siskemia.
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410 Keircalia (Fig. 4FF) is distinguished from SGDS 1290 by possessing four medial 

411 impressions (Smith, 1909; Walker, 1985). Keircalia tracks are crescentic to irregularly shaped, 

412 generally are oriented perpendicular to the trackway axis, and have no discernible arrangement 

413 (Walker, 1985). Both track morphology and organization are unlike those of SGDS 1290.

414

415 Arthropod repichnia possessing paired paramedial impressions

416 A few ichnotaxa, as well as some experimentally produced tracks of extant arthropods, 

417 resemble SGDS 1290 by possessing paired paramedial impressions in at least some specimens. 

418 Such ichnotaxa are Danstairia vagusa (Smith, 1909), Glaciichnium (Walter, 1985), 

419 Warvichnium (Walter, 1985), and Siskemia (Smith, 1909); similar extant traces include those 

420 made by notostracans (Trusheim, 1931) and crayfish (Fairchild & Hasiotis, 2011).

421 Danstairia vagusa (Fig. 4GG) possesses intermittent, thin, linear imprints that do not 

422 always parallel their accompanying trackways. Tracks are circular to triangular, generally have 

423 their long axes perpendicular to the trackway axis, and lack any coherent layout (Walker, 1985), 

424 unlike those of SGDS 1290. D. vagusa somewhat resembles Keircalia traces, but its tracks are 

425 spaced more widely apart.

426 Glaciichnium traces (Fig. 4HH), which resemble traces made by isopods (Gibbard & 

427 Stuart, 1974; Lima, Minter & Netto, 2017; Uchman, Kazakauskas & Gaigalas, 2009; Uchman et 

428 al., 2011), comprise 1–3 elongate, linear tracks (“bars” that are divided into segments [Uchman, 

429 Kazakauskas & Gaigalas, 2009]) that lie oblique to the trackway axis and are staggered on either 

430 side of that axis, unlike the tracks of SGDS 1290; their linear, serial but discontinuous 

431 paramedial imprints are widely spaced, abutting the medial ends of the tracks (Walter, 1985), 

432 farther apart than those of SGDS 1290. Walter (1985) and Lima et al. (2015) described the 

433 paramedial imprints in Brazilian specimens as comprising successive pairs of C-shaped imprints 

434 rather than strictly linear structures, further unlike SGDS 1290. Some Glaciichnium traces also 

435 possess a medial imprint as well (Uchman, Kazakauskas & Gaigalas, 2009; Walter, 1985).

436 Warvichnium traces (Fig. 4II) are complex, comprising pairs to multiple sets of linear, 

437 discontinuous medial and paramedial imprints flanked by varying numbers of linear to crescentic 

438 tracks in two or more sets: an inner set, close to the medial imprints, that are oriented slightly 

439 oblique to the trackway axis, and an outer set oriented closer to perpendicular to the trackway 

440 axis (Walter, 1985), quite unlike SGDS 1290. Getty (2020) noted similarities between 

441 Warvichnium and subaqueous Bifurculapes.

442 Among described arthropod repichnia, SGDS 1290 most closely resembles Siskemia 

443 bipediculus (Fig. 4JJ) and S. elegans (Fig. 4KK), which have been attributed to archaeognathan 

444 insects (Getty et al., 2013). These two ichnospecies differ primarily in the orientations of their 

445 track rows to the trackway axis and the continuities and thicknesses of their paramedial 

446 impressions (Walker, 1985), though these easily could be behavioral and/or substrate-driven 

447 variants. Siskemia tracks comprise pairs (in S. bipediculus) or trios (in some S. elegans) of 

448 roughly circular tracks in rows oriented oblique or perpendicular to a pair of paramedial 

449 impressions; the tracks of SGDS 1290 vary more in morphology, but share this general layout. 
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450 Siskemia tracks have a staggered distribution, similar to, but less pronounced than, in SGDS 

451 1290. However, in both of these Siskemia ichnospecies, the paramedial impressions are thin, 

452 linear (especially in S. bipediculus), and much closer together and to the trackway axis than those 

453 of SGDS 1290. In fact, all of the ichnospecies of Siskemia erected by Smith (1909), as well as 

454 both specimens later attributed to this ichnotaxon (e.g., Getty et al., 2013; McNamara, 2014; 

455 Pollard, Steel & Undersrud, 1982) and Siskemia-like traces made by extant, archaeognathan 

456 insects (Getty et al., 2013), have such thin, linear, closely appressed paramedial impressions 

457 (sometimes offset toward one side of the trackway). The only time when archaeognathan traces 

458 approach the paramedial impression spacing of SGDS 1290 is when both abdominal styli 

459 (laterally) and gonostyli (medially) of the trace makers register impressions and imprints in wet 

460 mud, producing two sets of paramedial traces (Getty et al., 2013: fig. 6K, L), but even then the 

461 linear, lateralmost paramedial impressions still do not resemble the thick, undulating impressions 

462 of SGDS 1290. Simultaneously, in such wet mud, archaeognathan tracks are elongate and 

463 oriented oblique to the trackway axis, unlike those in SGDS 1290. In total, SGDS 1290 does not 

464 fit neatly into any known Siskemia ichnospecies and does not seem to be an archaeognathan 

465 insect trace. 

466 Among traces made by extant arthropods, SGDS 1290 bears similarities to traces made 

467 by both notostracans and crayfish. Interpretive drawings of experimental traces made by 

468 notostracans figured by Trusheim (1931) depict elongate, crescentic, or tapered tracks oriented 

469 perpendicular to paramedial impressions; the tracks are arranged oppositely, unlike those of 

470 SGDS 1290. Additionally, the thin, linear paramedial impressions figured by Trusheim (1931) 

471 lie so far from the trackway axis that they often contact their accompanying tracks, a 

472 phenomenon that only occurs in SGDS 1290 near L4 and R4, where the lateral margins of its 

473 undulating paramedial impressions meander particularly far laterally. Tasch (1969) noted, 

474 though, that the drawings presented by Trusheim (1931) were misleading compared to his own 

475 experimentally generated notostracan traces. However, he described the morphologies of his 

476 notostracan tracks only as “minute en echelon stripes” (Tasch, 1969: 327), which does not 

477 adequately specify how they differed from those of Trusheim (1931); track details are impossible 

478 to discern in his lone photographic figure (Tasch, 1969: pl. 1.2). Gand et al. (2008) also 

479 conducted neoichnological experiments with notostracans, recovering locomotory traces that 

480 were less orderly than those illustrated by Trusheim (1931) (Gand et al., 2008: figs. 16.1, 16.2, 

481 17.1). Their extant notostracan tracks comprised multiple tracks with rather chaotic distributions 

482 lateral to their paramedial impressions, unlike the regular distribution seen in SGDS 1290. Gand 

483 et al. (2008) found their notostracan traces to fall within the “etho-morphotype” of Acripes, as 

484 exemplified by their novel ichnospecies A. multiformis from the Permian of France. (Linck 

485 [1943] and Pollard [1985] also referred Acripes [Merostomichnites of Linck, 1943] tracks to 

486 notostracans, but not based on neoichnological experiments.) A. multiformis traces, unlike classic 

487 Acripes (Matthew, 1910), possess paramedial imprints, albeit inconsistently. Hammersburg, 

488 Hasiotis & Robison (2018), Häntzschel (1975), Miller (1996), and Pemberton, MacEachern & 

489 Gingras (2007) all supported classic Acripes as a junior synonym of Diplichnites; the issue of 
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490 synonymy is beyond the scope of this paper, but we note at least that the tracks in fossils that 

491 Gand et al. (2008) called A. multiformis differ from SGDS 1290 in the same ways that 

492 Diplichnites tracks do (see above). Lastly, Knecht et al. (2009: figs. 5, 6) also illustrated extant 

493 notostracan traces (Fig. 4LL), which are “tidier” than those of Gand et al. (2008) and resemble 

494 those of classic Acripes and Diplichnites, albeit with discontinuous paramedial and curvilinear 

495 lateral (external) imprints. The tracks in these traces comprise irregular, ellipsoidal sets oriented 

496 oblique to the trackway axis, unlike those of SGDS 1290. In total, SGDS 1290 is unlikely to be a 

497 notostracan trace.

498 Fairchild & Hasiotis (2011) conducted neoichnological experiments with crayfish to 

499 examine their locomotory traces. Although extant crayfish traces vary in morphology depending 

500 on substrate conditions and slope, in general, when clear, they consist of sets of 1–4 circular, 

501 tapering, ellipsoidal, or elongate tracks, occasionally of different sizes, that are oriented parallel 

502 to the trackway axis and that lie lateral to a pair of undulating, variably thick paramedial 

503 impressions that lie closer to their flanking tracks than to each other (Fig. 4MM). 

504 Morphologically, the tracks and impressions match those of SGDS 1290, although the tracks 

505 made by extant crayfish often are larger than those of SGDS 1290, depending on the substrate. 

506 Track sets in extant crayfish traces have complex arrangements: when comprised of multiple 

507 traces, they frequently are in rows oriented perpendicular to the trackway axis, but sometimes 

508 rows are oblique to the trackway axis. When fewer tracks are preserved, they can appear to lie in 

509 single, parallel rows on either side of the paramedial impressions. Track positions can be 

510 opposite to staggered, also as in SGDS 1290. In both track and paramedial impression 

511 morphology, as well as in overall trace architecture, SGDS 1290 strongly resembles crayfish 

512 traces made in damp silt and clay (Fairchild & Hasiotis, 2011: fig. 2e, f), dry and saturated, very 

513 fine-grained sand (Fairchild & Hasiotis, 2011: fig. 4a, b, e, f), dry and damp, fine-grained sand 

514 (Fairchild & Hasiotis, 2011: fig. 5a–d), and saturated medium sand (Fairchild & Hasiotis, 2011: 

515 fig. 6e, f). SGDS 1290 is preserved in, and was presumably registered in, a fine-grained 

516 sandstone, lithologically matching one set of experimental conditions in Fairchild & Hasiotis 

517 (2011). However, SGDS 1290 is not as detailed as many of the experimentally generated 

518 crayfish traces in comparable sediments. This could indicate one or more things: the fossil could 

519 be a slight overtrack (sensu Bertling et al., 2006) rather than a direct natural cast; the trace maker 

520 may have been partly buoyant; and/or trace-maker behavior and sediment consistency combined 

521 such that the lighter limbs did not impress as deeply as the heavier tail.

522

523 Discussion
524 Trace maker

525 The stronger resemblance of SGDS 1290 to experimental crayfish locomotion traces than 

526 to any known ichnotaxon, or other documented extant arthropod trace, implies a crayfish or 

527 crayfish-like maker for the fossil. Whether SGDS 1290 had a crayfish-like or an actual crayfish 

528 maker depends on whether the term “crayfish” is used to refer to members of a monophyletic 

529 clade (Parastacidae + (Astacidae + (Cambaridae + Cricoidoscelosidae)); Karasawa, Schweitzer 
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530 & Feldmann, 2013) of freshwater (and brackish water if Protastacus is included, sensu 

531 Karasawa, Schweitzer & Feldmann [2013]) lobsters, or, more broadly, to any freshwater, lobster-

532 like crustacean regardless of phylogenetic position, which presumes that more than one crayfish-

533 like lineage colonized terrestrial environments in the past. Here we use the term in the 

534 monophyletic sense: true crayfish comprise Astacida (sensu Karasawa, Schweitzer & Feldmann, 

535 2013; Schram & Dixon, 2004; Shen, Braband & Scholtz, 2015). Whether or not the maker of 

536 SGDS 1290 was a true crayfish is unclear: the oldest undisputed crayfish body fossils are from 

537 the Early Cretaceous (Garassino, 1997; Martin et al., 2008; Shen, 2003; Taylor, Schram & Shen, 

538 1999), although unnamed, Late Jurassic specimens from western Colorado also have been called 

539 crayfish (Hasiotis, Kirkland & Callison, 1998). Despite this, a Triassic or earlier origin for true 

540 crayfish has been hypothesized frequently (Breinholt, Pérez-Losada & Crandall, 2009; Crandall 

541 & Buhay, 2008; Porter, Pérez-Losada & Crandall, 2005; Schram, 2001; Schram & Dixon, 2004; 

542 Wolfe et al., 2019) and possibly substantiated by fossil burrows (domichnia) referred to crayfish 

543 from the Early Permian (Hembree & Swaninger, 2018) and Late Permian–Early Triassic 

544 (Baucon et al., 2014; Hasiotis & Mitchell, 1993). 

545 Several Late Triassic body-fossil specimens also have been reported as crayfish (Hasiotis, 

546 1995; Hasiotis & Mitchell, 1993; Miller & Ash, 1988; Olson & Huber, 1997; Santucci & 

547 Kirkland, 2010), but the identities of these specimens as true astacidans has not been established. 

548 Miller & Ash (1988) placed a Late Triassic specimen from Petrified Forest National Park, 

549 Arizona in Enoploclytia, which is an erymid lobster, not an astacidan, genus. That generic 

550 placement subsequently has been contested (Amati, Feldmann & Zonneveld, 2004; Schweitzer et 

551 al., 2010; Urreta, 1989), so the specimen needs detailed restudy, but if it pertains to Erymidae 

552 rather than Astacida, then it indicates that a lineage of erymid lobsters colonized terrestrial 

553 environments, possibly before true (monophyletic) crayfish. Some older analyses (reviewed in 

554 Rode & Babcock, 2003) postulated crayfish origins within Erymidae, but more recent 

555 phylogenetic analyses (Devillez, Charbonnier & Barreil, 2019; Karasawa, Schweitzer & 

556 Feldmann, 2013; Rode & Babcock, 2003; Schram & Dixon, 2004; Stern & Crandall, 2015) have 

557 recovered (a frequently paraphyletic) Erymidae with members at varying distances from 

558 Astacida. If those hypothesized phylogenetic relationships are correct, then no erymid can, in a 

559 monophyletic sense, be considered a crayfish, even if it was a freshwater taxon. But regardless of 

560 semantics or phylogenetic relationships, crayfish and erymid morphological similarities suggest 

561 that their locomotory traces might be indistinguishable, making a definitive attribution of SGDS 

562 1290 impossible.

563 A crayfish or crayfish-like trace maker for SGDS 1290 is tenable both chronologically 

564 and ecologically. As mentioned above, multiple crayfish or crayfish-like morphotypes have been 

565 found in the Upper Triassic Chinle Formation of Arizona and Utah (Hasiotis, 1995; Miller & 

566 Ash, 1988; Santucci & Kirkland, 2010). The Moenave Formation overlies the Chinle Formation 

567 in southwestern Utah, so crayfish or crayfish-like decapods plausibly could have been present in 

568 and around freshwater Lake Whitmore both geographically and stratigraphically. As-yet-

569 undescribed, crayfish or crayfish-like body fossils also have been recovered from lacustrine 
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570 sediments of the uppermost Triassic Chatham Group (Newark Supergroup) in North Carolina 

571 (Olsen & Huber, 1997), attesting to how widespread such arthropods were in terrestrial 

572 environments in North America even prior to the Jurassic.

573

574 Ichnotaxonomy

575 To date, no fossil arthropod locomotory ichnotaxon has been attributed definitively to a 

576 crayfish or crayfish-like trace maker. Several such ichnotaxa have been attributed, for various 

577 reasons, to crustaceans (e.g., Braddy, 2003; Gand et al., 2008; Lima, Minter & Netto, 2017; 

578 Pirrie, Feldmann & Buatois, 2004; Savage, 1971; Walker, Holland & Gardiner, 2003); 

579 additionally, some purported crustacean tracks have not been assigned to particular ichnotaxa 

580 (e.g., Imaizumi, 1967; Karasawa, Okamura & Naruse, 1990; Matsuoka et al., 1993), including 

581 mortichnial trackways leading to Eryma, Eryon, and Mecochirus lobster body fossils from the 

582 marine, Upper Jurassic lithographic limestones of Germany (Glaessner, 1969: fig. 243A; 

583 Seilacher, 2008: fig. 2; Viohl, 1998: fig. 6). None of these German taxa are crayfish, though 

584 morphological similarities of Eryma and Mecochirus to crayfish might mean that they would 

585 have produced indistinguishable locomotory trace fossils during normal, forward locomotion. 

586 None of their traces have been granted detailed description or ichnotaxonomic assignment.

587 Only three locomotory ichnotaxa have been attributed specifically to crayfish. First, 

588 Heidtke (1990) erected Pollichianum repichnum for Early Permian trace fossils from Germany 

589 that he attributed to the “crawfish” (in the English abstract; “Krebses” in the German abstract) 

590 Uronectes fimbriatus, also from the Early Permian of Germany. However, Uronectes has long 

591 been recognized as a syncarid (Brooks, 1962; Calman, 1934; Perrier et al., 2006), not an 

592 astacidan, or even a decapod, so the term appearing in the English abstract likely is a simple 

593 translation error. Furthermore, however, P. repichnum is not differentiable from the resting trace 

594 (cubichnion) P. cubichnum (O’Brien, Braddy & Radley, 2009) and therefore is a junior synonym 

595 and is not a locomotory trace. In any case, Pollichianum is morphologically quite unlike both 

596 SGDS 1290 and experimentally generated crayfish traces (Fairchild & Hasiotis, 2011). Second, 

597 Bolliger & Gubler (1997) hypothesized that their novel ichnospecies Hamipes molassicus was 

598 made by a buoyed (presumably swimming) crayfish. Getty (2018) referred these specimens to 

599 Conopsoides; later, Getty & Burnett (2019) suggested that at least some of the specimens may 

600 pertain to Acanthichnus. Third, de Gibert et al. (2000) attributed Early Cretaceous, Spanish 

601 specimens that they assigned to Hamipes didactylus to crayfish. Getty (2018) attributed these 

602 tracks to Bifurculapes and maintained a crustacean track maker for H. didactylus, but was not 

603 more specific. However, neither Bifurculapes nor Hamipes resemble experimentally generated 

604 crayfish traces (Fairchild & Hasiotis, 2011), or any of the mortichnial decapod traces, and thus 

605 are unlikely to have been made by a crayfish-like decapod, at least while walking.

606 As detailed above, SGDS 1290 does not fit neatly into any existing ichnotaxon. Whether 

607 or not to place it in a novel ichnotaxon is, therefore, an open question. Bertling et al. (2006), 

608 Gaillard (2011b), and Minter, Braddy & Davis (2007) provided solid criteria for the erection of 

609 new ichnotaxa, the latter particularly for arthropods. One criterion is that a new ichnotaxon 
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610 ideally should be represented by a substantial number of specimens that demonstrate behavioral 

611 and substrate-based morphological variation; this prevents erecting several ichnotaxa for minor, 

612 readily explained variations in trace morphology. SGDS 1290, as a singular specimen, certainly 

613 does not meet that criterion, but Minter, Braddy & Davis (2007) also allowed that truly unique 

614 morphologies exhibited by singular specimens can support an ichnotaxon. In terms of 

615 uniqueness, another criterion is whether or not a new morphotype falls onto a continuum, 

616 established or hypothetical, of morphologies within an established ichnotaxon. SGDS 1290 is 

617 closest morphologically to ichnospecies of Siskemia, but has several distinctions from any 

618 established ichnospecies therein, particularly the thick and undulating paramedial impressions 

619 and the wider spacing between the paramedial impressions and consequent closer appression of 

620 the paramedial impressions to the tracks. No published specimen of Siskemia demonstrates these 

621 features; nor do Siskemia-like traces made by archaeognathan insects in experimental conditions 

622 (Getty et al., 2013). Thus, SGDS 1290 does not appear to fall within the established Siskemia 

623 continuum. The greater prominence (depth) of the paramedial impressions of SGDS 1290 than 

624 their associated tracks suggests either a trace maker with heavier tail elements than the gonostyli 

625 of an archaeognathan insect or an archaeognathan trace maker with unusually large styli 

626 adopting an unusual posture (possibly partly buoyant), flexing its caudal region downward to 

627 create deep styli impressions but not deep track impressions. We consider the latter unlikely; 

628 thus, SGDS 1290 does not appear to fall within a hypothetical Siskemia continuum, either. 

629 However, SGDS 1290 falls within the continuum of trace morphologies made by extant crayfish 

630 in experimental conditions (Fairchild & Hasiotis, 2011). No philosophical basis has been 

631 established for the recognition of novel ichnotaxa on the basis of comparison with traces made 

632 by extant organisms; only by comparison with fossil ichnotaxa because extant traces cannot be 

633 the basis for an ichnotaxon (Bertling et al., 2006; International Commission on Zoological 

634 Nomenclature, 1999). 

635 SGDS 1290 clearly is morphologically distinctive. Lacking a sufficient number of 

636 specimens with which to determine ranges of morphological variation, however, erecting a new 

637 ichnogenus for it clearly is unwarranted. Yet we feel that its unique morphology warrants 

638 ichnotaxonomic distinction. Given its distant similarity to Siskemia ichnospecies, we therefore 

639 herein place it in a new ichnospecies of that ichnogenus. 

640

641 Systematic Ichnology

642

643 Ichnofamily Protichnidae Uchman, Gaździcki & Błażejowski 2018

644

645 Ichnogenus Siskemia Smith 1909

646

647 Type Ichnospecies Siskemia elegans Smith 1909

648 Diagnosis. Trace consisting of parallel rows of grouped tracks on either side of two parallel, 

649 paramedial impressions. Each group of tracks consists of up to four imprints arranged in series, 
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650 transversely or obliquely to the midline of the trackway (following Walker, 1985). Walker 

651 (1985) further specified that Siskemia was diagnosed by paramedial impressions with maximum 

652 widths of 0.5 mm, but following Bertling et al. (2006), size is not a suitable ichnotaxobase.

653

654 Ichnospecies Siskemia eurypyge isp. nov.

655 Figure 3

656

657 Diagnosis. Two parallel, undulating, paramedial impressions flanked externally by closely 

658 appressed sets of 1–3 small, ovoid to tapered to elongate tracks; tapered and elongate tracks have 

659 long axes parallel or oblique to the trackway axis. Track sets are oriented perpendicular to the 

660 trackway axis. Left and right tracks are arranged in a staggered pattern. Paramedial impressions 

661 are mediolaterally thick, but discontinuous, tapering out of existence briefly in some places. 

662 Impressions are gently undulating (low amplitude). The paramedial impressions lie far from the 

663 trackway axis, generally closer to (and sometimes in contact with) the tracks than to the midline 

664 axis or each other.

665 Holotype. Natural cast specimen SGDS 1290, St. George Dinosaur Discovery Site, St. George, 

666 Utah, USA.

667 Type locality. “Bug Crossing Quarry,” SGDS Loc. 87, St. George Dinosaur Discovery Site, St. 

668 George, Washington County, Utah, USA (Fig. 1).

669 Stratigraphy. “Top Surface” of Johnson Farm Sandstone Bed (unit 40 of Kirkland et al., 2014), 

670 Whitmore Point Member, Moenave Formation (Fig. 2). Hettangian, Lower Jurassic.

671 Derivation of name. From the Greek ευρυς (eurys), meaning “broad” or “wide,” and πυγή 

672 (pyge), meaning “rump.” The ichnospecies name refers to the wider spacing between the 

673 paramedial impressions, made by the rear end of the trace maker, than those of other Siskemia 

674 ichnospecies.

675

676 Conclusions
677 SGDS 1290, from the Lower Jurassic (Hettangian) Whitmore Point Member of the 

678 Moenave Formation, consists of two paramedial impressions that are flanked by alternating sets 

679 of tapered or elongate tracks. The traces closely resemble those made by extant crayfish 

680 (Fairchild & Hasiotis, 2011) and are similar in components to traces placed in the ichnogenus 

681 Siskemia (Smith 1909; Walker, 1985). In previously recognized Siskemia ichnospecies, the 

682 paramedial impressions are thin, relatively linear, and closely appressed to the trackway axis. But 

683 in SGDS 1290, paramedial impressions have the opposite morphology and arrangement: they are 

684 thick and undulating, and lie closer to their tracks than the medial axis of the trackway. Thus, we 

685 erect a new ichnospecies, Siskemia eurypyge, to house SGDS 1290 and as-yet undiscovered 

686 traces with this morphology and arrangement.

687 Placing SGDS 1290 in Siskemia extends the known range of the ichnogenus into the 

688 Early Mesozoic. All other reported occurrences of the ichnogenus are Paleozoic in age: Early 

689 Silurian (McNamara, 2014; Trewin & McNamara, 1994), Late Silurian (Davies, Sansom & 
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690 Turner, 2006), Early Devonian (Pollard, Steel & Undersrud, 1982; Pollard & Walker, 1984; 

691 Smith, 1909; Walker, 1985), and Pennsylvanian (Getty et al., 2013). Age should not be a factor 

692 in ichnotaxonomy, however (Bertling et al., 2006). Paleozoic Siskemia traces likely were made 

693 by archaeognathan insects (Getty et al., 2013), for which body fossils are known as early as the 

694 Devonian and which are extant. Based on their similarity to traces made by extant crayfish 

695 (Fairchild and Hasiotis, 2011), S. eurypyge likely was made by a crayfish or crayfish-like 

696 crustacean, for which body fossils are known as early as the Late Triassic and which also are 

697 extant. Thus, Siskemia ispp. traces would be expected to occur from Early Silurian to Recent, but 

698 thus far have not been documented except for the occurrences noted above.

699 SGDS 1290 expands the ichnological record of crayfish and crayfish-like animals to 

700 include repichnia in addition to domichnia. Fossil burrows (Camborygma ispp.), usually 

701 attributed to crayfish, are well known at some sites and in some formations (e.g., Hasiotis, 1995; 

702 Hasiotis & Bown, 1996; Hasiotis & Honey, 1995; Hasiotis & Mitchell, 1993; Hasiotis, Kirkland 

703 & Callison, 1998; see Schram & Dixon [2004] concerning pre-Cretaceous examples), attesting to 

704 the presences—and, in some places, abundances—of crayfish and/or crayfish-like taxa in 

705 Mesozoic–Cenozoic freshwater paleoecosystems. Yet locomotion traces made by these 

706 burrowers oddly have never before been documented as ichnofossils, possibly because they 

707 infrequently venture far from their burrows in substrates suitable for registering locomotory 

708 traces, as with modern crayfish (Martin, 2013). SGDS 1290 is the first documented locomotory 

709 trace fossil made by a freshwater crayfish or crayfish-like organism, as well as the first fossil 

710 evidence of such a taxon in the Lower Jurassic Moenave Formation and indeed the Early Jurassic 

711 of the southwestern US. The absence of Camborygma burrows in the Moenave Formation that 

712 would have been made by the SGDS 1290 trace maker is puzzling, and may be a consequence of 

713 a lack of recognition; alternatively, the producer of SGDS 1290 was not a burrower.

714
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1273 FIGURE CAPTIONS

1274

1275 Figure 1: Location of the St. George Dinosaur Discovery Site at Johnson Farm. (A) Map 

1276 showing the location of the St. George Dinosaur Discovery Site in St. George, Utah. (B) 

1277 The museum at the St. George Dinosaur Discovery Site. Photograph by Jerald D. Harris.

1278 Figure 2: Stratigraphic section at and immediately around the St. George Dinosaur 

1279 Discovery Site (SGDS) in St. George, Utah. Arthropod locomotory trackway SGDS 

1280 1290 comes from the “Top Surface Tracksite” layers of the Johnson Farm Sandstone Bed 

1281 (red arrow). 

1282 Figure 3: Arthropod locomotory trace fossil SGDS 1290. (A) Photograph of specimen; scale 

1283 in mm. (B) Schematic diagram of specimen. Arrow indicates direction of movement. L = 

1284 left track; R = right track; Ov = overtracks. Numbers indicate position of tracks in 

1285 sequence from caudal (posterior) to cranial (anterior). Photograph by Andrew R.C. 

1286 Milner.

1287 Figure 4: Schematic diagrams of locomotory (presumably walking) trace fossils attributed 

1288 to arthropods (A–KK) and extant walking traces made by arthropods (LL–MM) in 

1289 comparison to SGDS 1290 (NN). Diagrams not to scale. (A) Acanthichnus cursorius 

1290 (traced from Hitchcock, 1858). (B) Asaphoidichnus trifidus (traced from Miller, 1880). 

1291 (C) Bifurculapes laqueatus (traced from Getty, 2016). (D) Coenobichnus currani (traced 

1292 from Walker, Holland & Gardiner, 2003). (E) Copeza triremis (traced from Hitchcock, 

1293 1858). (F) Danstairia congesta (traced from Walker, 1985). (G) Diplichnites aenigma 

1294 (traced from Dawson, 1873). (H) Diplichnites gouldi Type A (traced from Trewin and 

1295 McNamara, 1994). (I) Eisenachichnus inaequalis (traced from Kozur, 1981). (J) 

1296 Foersterichnus rossensis (traced from Pirrie, Feldmann & Buatois, 2004). (K) Hamipes 

1297 didactylus (traced from Getty, 2018). (L) Lithographus hieroglyphicus (traced from 

1298 Hitchcock, 1858). (M) Maculichna varia (traced from Anderson, 1975a). (N) 

1299 Merostomichnites narrangansettensis (traced from Packard, 1900). (O) Mirandaichnium 

1300 famatinense (traced from Aceñolaza, 1978). (P) Octopodichnus didactylus (traced from 

1301 Gilmore, 1927). (Q) Petalichnus multipartatus (Miller, 1880). (R) Pterichnus centipes 

1302 (traced from Hitchcock, 1865). (S) Tasmanadia twelvetreesi (traced from Glaessner, 

1303 1957). (T) Umfolozia sinuosa (traced from Anderson, 1981). (U) Kouphichnium 

1304 lithographicum (traced from Gaillard, 2011). (V) “Merostomichnites isp.” (traced from 

1305 Hanken & Stormer, 1975). (W) Oniscoidichnus filiciformis (traced from Brady, 1947). 

1306 (X) Palmichnium antarcticum (traced from Braddy & Milner, 1998). (Y) Paleohelcura 

1307 tridactyla (traced from Gilmore, 1926). (Z) Protichnites septemnotatus (traced from 

1308 Owen, 1852). (AA) Robledoichnus lucasi (traced from Kozur & Lemone, 1995). (BB) 

1309 Shalemichnus sittigi, half of trackway (traced from Kozur & Lemone, 1995). (CC) 

1310 Stiallia berriana (traced from Smith, 1909). (DD) Stiaria quadripedia (traced from 

1311 Walker, 1985). (EE) Mitchellichnus ferrydenensis (traced from Walker, 1985). (FF) 

1312 Keircalia multipedia (traced from Walker, 1985). (GG) Danstairia vagusa (traced from 

PeerJ reviewing PDF | (2020:09:52634:0:1:NEW 9 Sep 2020)

Manuscript to be reviewed



1313 Walker, 1985). (HH) Glaciichnium liebegastensis (traced from Walter, 1985). (II) 

1314 Warvichnium ulbrichi (traced from Walter, 1985). (JJ) Siskemia bipediculus (traced from 

1315 Walker, 1985). (KK) Siskemia elegans (traced from Walker, 1985). (LL) Extant 

1316 notostracan traces (traced from Knecht et al., 2009). (MM) Extant crayfish traces in very 

1317 fine sand (traced from Fairchild & Hasiotis, 2011). (NN) SGDS 1290.

1318  
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1319 TABLE CAPTIONS

1320

1321 Table S1: Measurements (in mm) of arthropod locomotory trace fossil SGDS 1290. 

1322 Measurements in parentheses are approximated based on faint portions of paramedial 

1323 impressions.
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Figure 1
Location of the St. George Dinosaur Discovery Site at Johnson Farm.

(A) Map showing the location of the St. George Dinosaur Discovery Site in St. George, Utah.
(B) The museum at the St. George Dinosaur Discovery Site. Photograph by Jerald D. Harris.
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Figure 2
Stratigraphic section at and immediately around the St. George Dinosaur Discovery Site
(SGDS) in St. George, Utah.

Arthropod locomotory trackway SGDS 1290 comes from the “Top Surface Tracksite” layers of
the Johnson Farm Sandstone Bed (red arrow).
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Figure 3
Arthropod locomotory trace fossil SGDS 1290.

(A) Photograph of specimen; scale in mm. (B) Schematic diagram of specimen. Arrow
indicates direction of movement. L = left track; R = right track; Ov = overtracks. Numbers
indicate position of tracks in sequence from caudal (posterior) to cranial (anterior).
Photograph by Andrew R.C. Milner.
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Figure 4
Schematic diagrams of locomotory (presumably walking) trace fossils attributed to
arthropods (A–KK) and extant walking traces made by arthropods (LL–MM) in
comparison to SGDS 1290 (NN).

Diagrams not to scale. (A) Acanthichnus cursorius (traced from Hitchcock, 1858). (B)
Asaphoidichnus trifidus (traced from Miller, 1880). (C) Bifurculapes laqueatus (traced from
Getty, 2016). (D) Coenobichnus currani (traced from Walker, Holland & Gardiner, 2003). (E)
Copeza triremis (traced from Hitchcock, 1858). (F) Danstairia congesta (traced from Walker,
1985). (G) Diplichnites aenigma (traced from Dawson, 1873). (H) Diplichnites gouldi Type A
(traced from Trewin and McNamara, 1994). (I) Eisenachichnus inaequalis (traced from Kozur,
1981). (J) Foersterichnus rossensis (traced from Pirrie, Feldmann & Buatois, 2004). (K)
Hamipes didactylus (traced from Getty, 2018). (L) Lithographus hieroglyphicus (traced from
Hitchcock, 1858). (M) Maculichna varia (traced from Anderson, 1975a). (N) Merostomichnites

narrangansettensis (traced from Packard, 1900). (O) Mirandaichnium famatinense (traced
from Aceñolaza, 1978). (P) Octopodichnus didactylus (traced from Gilmore, 1927). (Q)
Petalichnus multipartatus (Miller, 1880). (R) Pterichnus centipes (traced from Hitchcock,
1865). (S) Tasmanadia twelvetreesi (traced from Glaessner, 1957). (T) Umfolozia sinuosa

(traced from Anderson, 1981). (U) Kouphichnium lithographicum (traced from Gaillard, 2011).
(V) “Merostomichnites isp.” (traced from Hanken & Stormer, 1975). (W) Oniscoidichnus

filiciformis (traced from Brady, 1947). (X) Palmichnium antarcticum (traced from Braddy &
Milner, 1998). (Y) Paleohelcura tridactyla (traced from Gilmore, 1926). (Z) Protichnites

septemnotatus (traced from Owen, 1852). (AA) Robledoichnus lucasi (traced from Kozur &
Lemone, 1995). (BB) Shalemichnus sittigi, half of trackway (traced from Kozur & Lemone,
1995). (CC) Stiallia berriana (traced from Smith, 1909). (DD) Stiaria quadripedia (traced from
Walker, 1985). (EE) Mitchellichnus ferrydenensis (traced from Walker, 1985). (FF) Keircalia
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multipedia (traced from Walker, 1985). (GG) Danstairia vagusa (traced from Walker, 1985).
(HH) Glaciichnium liebegastensis (traced from Walter, 1985). (II) Warvichnium ulbrichi (traced
from Walter, 1985). (JJ) Siskemia bipediculus (traced from Walker, 1985). (KK) Siskemia

elegans (traced from Walker, 1985). (LL) Extant notostracan traces (traced from Knecht et
al., 2009). (MM) Extant crayfish traces in very fine sand (traced from Fairchild & Hasiotis,
2011). (NN) SGDS 1290.
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Table 1(on next page)

Measurements (in mm) of arthropod locomotory trace fossil SGDS 1290.

Measurements in parentheses are approximated based on faint portions of paramedial
impressions.
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1 Table 1: Measurements (in mm) of arthropod locomotory trace fossil SGDS 1290. 

2 Measurements in parentheses are approximated based on faint portions of paramedial 

3 impressions.

4

Track 

Position Length Width

Impression 

Internal 

Width

Impression 

External 

Width

Track to 

Impression 

Distance

Left 

Impression 

Width

Right 

Impression 

Width

L1 4.3 6.4 4.7 9.1 1.8 3.1 2.5

L2 4.2 5.7 5.9 9.5 1.5 2.6 2.2

L3 5.2 5.8 5.8 9.7 0.0 1.6 1.6

L4 3.2 5.6 (8.1) (11.2) 0.0 1.9 0.0

R1 6.8 2.5 4.2 9.2 3.0 3.0 2.4

R2 4.6 5.3 5.4 8.8 4.2 2.7 0.0

R3 4.5 6.4 6.5 9.2 2.4 1.3 1.3

R4 3.0 5.8 6.9 10.6 0.0 0.0 3.0

5

6
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