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ABSTRACT
New invertebrate trace fossils from the Lower Jurassic Moenave Formation at the
St. George Dinosaur Discovery Site at Johnson Farm (SGDS) continue to expand
the ichnofauna at the site. A previously unstudied arthropod locomotory trace,
SGDS 1290, comprises two widely spaced, thick, gently undulating paramedial
impressions flanked externally by small, tapered to elongate tracks with a staggered to
alternating arrangement. The specimen is not a variant of any existing ichnospecies,
but bears a striking resemblance to modern, experimentally generated crayfish
walking traces, suggesting a crayfish or crayfish-like maker for the fossil. Because of
its uniqueness, we place it in a new ichnospecies, Siskemia eurypyge. It is the first
fossil crayfish or crayfish-like locomotion trace ever recorded.

Subjects Animal Behavior, Evolutionary Studies, Paleontology, Taxonomy, Zoology
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INTRODUCTION
Paleoichnology, the study of ichnofossils (fossil tracks and traces), contributes a substantial
body of paleobiological information to the understanding of extinct organisms. This is
because ichnofossils are direct results of ancient animal behavior (Osgood, 1975) that could
only otherwise be inferred from body fossils. Furthermore, the global commonness of
ichnofossils compared to body fossils means that the ichnological record often can
preserve evidence of the presence of organisms not otherwise or poorly represented in the
body fossil record (Osgood, 1975), especially of invertebrates that lack hard parts and
therefore fossilize only under exceptional conditions. Except for conchostracans (sensu
Kozur & Weems, 2010) and ostracods, which have biomineralized carapaces, arthropods,
when compared to their evolutionary diversity, are among the less commonly preserved
body-fossil components of terrestrial (including freshwater) paleoecosystems except in
various Konservat-Lagerstätten (fossiliferous sites of exceptional preservational quality)
(Charbonnier et al., 2010; Luque et al., 2019; Selden & Nudds, 2012; Smith, 2012). Yet from
the mid-Paleozoic through the Cenozoic, arthropods—especially insects and arachnids—
were certainly the most populous and diverse metazoan components of most terrestrial
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ecosystems (Labandeira & Beall, 1990), and their paleoecological importance cannot be
underestimated.

Arthropod ichnofossils can be more common and abundant than arthropod
body fossils, and may indicate the presences of various arthropod taxa in terrestrial
paleoecosystems for which body fossils may be entirely absent. Burrows (domichnia)
made by arthropods comprise one such body of evidence. For example, several burrow
ichnotaxa in eolian sandstones have been attributed to arthropods (Ekdale, Bromley &
Loope, 2007). SomeMacanopsis, Psilonichnus, and Skolithos burrows may have been made
by spiders (Uchman, Vrenozi & Muceku, 2018); other Psilonichnus have been attributed to
crabs (Curran, Savarese & Glumac, 2016). Camborygma burrows, attributed to crayfish
(Hasiotis & Mitchell, 1993), are the primary body of evidence for crayfish in the fossil
record. Perhaps more familiarly, walking tracks (repichnia) of arthropods have an
extensive geological history, spanning from the Cambrian (and possibly latest Precambrian
(Chen et al., 2018)) through the Holocene (Eiseman & Charney, 2010). They constitute
some of the earliest evidence of metazoan life venturing onto land (reviewed in Minter
et al. (2016a, 2016b)) and are known from virtually every paleoenvironment, from
near shore and shallow marine environments (Collette, Hagadorn & Lacelle, 2010;
MacNaughton et al., 2002; Pirrie, Feldmann & Buatois, 2004; Shillito & Davies, 2018;
Trewin & McNamara, 1994) and, terrestrially, from proglacial systems (Anderson, 1981;
Lima, Minter & Netto, 2017; Lima et al., 2015; Uchman, Kazakauskas & Gaigalas, 2009;
Walter, 1985) to desert ergs (Gilmore, 1927; Good & Ekdale, 2014; Sadler, 1993).

The St. George Dinosaur Discovery Site at Johnson Farm (SGDS) in St. George,
Washington County, Utah (Fig. 1) has been called a Konzentrat-Ichnolagerstätte (Hunt &
Lucas, 2006a) because of its exceptional concentration of well-preserved ichnofossils
from a broad spectrum of terrestrial organisms. The site preserves a detailed “snapshot” of
an earliest Jurassic ecosystem from on- and offshore portions of a freshwater, lacustrine
paleoenvironment. The “Dinosaur Discovery” part of the name of the site indicates the
concentration of dinosaur tracks at this locality (Milner, Lockley & Johnson, 2006; Milner,
Lockley & Kirkland, 2006; Milner et al., 2009), but tracks of other vertebrates (Lockley,
Kirkland & Milner, 2004; Milner, Lockley & Johnson, 2006) and a moderately diverse
invertebrate ichnofauna (Lucas et al., 2006a) are also preserved. Burrows pertaining
to Helminthoidichnites, Palaeophycus and Skolithos are abundant at the site, but
locomotory trackways made by arthropods, referred to cf. Bifurculapes, Diplichnites and
cf. Kouphichnium, are also present. Ichnospecies of Bifurculapes have been variably
attributed to insects, possibly beetles, and to crustaceans (Getty, 2016, 2018; Hitchcock,
1858, 1865); ichnospecies of Diplichnites have been attributed to myriapods (Briggs,
Rolfe & Brannan, 1979; Davis, Minter & Braddy, 2007; Pollard, Selden & Watts, 2008;
Shillito & Davies, 2018), notostracans (Lucas et al., 2006a; Minter et al., 2007), and other
arthropods (Melchor & Cardonatto, 2014; Minter et al., 2007); and ichnospecies of
Kouphichnium have been attributed to limulids (Caster, 1944; King, Stimson & Lucas,
2019; Lomax & Racay, 2012).

A previously unstudied SGDS specimen, SGDS 1290, is an arthropod locomotory trace
that differs markedly from any other SGDS specimen, indicating the presence of a
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heretofore unrecognized component of the SGDS ichnofauna. SGDS 1290 is an arthropod
locomotory trace because it includes distinct footprints in a discernible cycle, but lacks
any features of vertebrate tracks, such as distinct toes (sensu Seilacher, 2007). The trace
thus resembles numerous other fossil traces attributed to arthropods, as well as those
generated experimentally. The fossil was discovered and collected 11 March 2010 by SGDS
volunteer Jon Cross.

GEOLOGICAL SETTING
Most of the fossils preserved at the SGDS, including the ichnofossil described below,
occur in the Whitmore Point Member of the Moenave Formation (Kirkland & Milner,
2006; Kirkland et al., 2014), which conformably overlies the Dinosaur Canyon Member of
the Moenave Formation and disconformably underlies the Springdale Sandstone Member,
which itself has been assigned as both the lowest member of the Kayenta Formation
(Lucas & Tanner, 2006) and the uppermost member of the Moenave Formation (Steiner,
2014a). The richest source of the ichnofossils at the SGDS, again including the trace
described below, occurs within a fine-grained sandstone near the base of the Whitmore
Point Member initially called the “Main Track Layer” (Kirkland & Milner, 2006; Milner,
Lockley & Johnson, 2006; Milner, Lockley & Kirkland, 2006) and, later and more formally,

Figure 1 Location of the St. George Dinosaur Discovery Site at Johnson Farm. (A) Map showing the
location of the St. George Dinosaur Discovery Site in St. George, Utah. (B) The museum at the St. George
Dinosaur Discovery Site. Photograph by Jerald D. Harris. Figure modified from Harris & Milner (2015);
reproduced with permission from The University of Utah Press.

Full-size DOI: 10.7717/peerj.10640/fig-1
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the Johnson Farm Sandstone Bed (unit 40 of Kirkland et al., 2014) (Fig. 2). SGDS 1290
comes from the uppermost strata of this unit, specifically one of several thinly bedded,
apparently conformable, fine-grained-sandstone “Top Surface Tracksite” horizons
(sensu Kirkland et al., 2014; Milner, Lockley & Johnson, 2006; Milner, Lockley & Kirkland,
2006). The Whitmore Point Member preserves sediments deposited in and around the
large, freshwater Lake Whitmore (formerly called Lake Dixie) (Kirkland & Milner, 2006,
2014); at the SGDS itself, the Johnson Farm Sandstone Bed preserves ichnofossils and
sedimentary structures made in both subaerial and subaqueous conditions, indicating
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Figure 2 Stratigraphic section at and immediately around the St. George Dinosaur Discovery
Site (SGDS) in St. George, Utah. Arthropod locomotory trackway SGDS 1290 comes from the
“Top Surface Tracksite” layers of the Johnson Farm Sandstone Bed (red arrows). Figure modified from
Harris & Milner (2015); reproduced with permission from The University of Utah Press.

Full-size DOI: 10.7717/peerj.10640/fig-2
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a shoreline paleoenvironment (Milner, Lockley & Kirkland, 2006). Ichnologically,
invertebrate ichnofossils in this paleoenvironment pertain to the Scoyenia ichnofacies
(Buatois & Mángano, 2004; Lucas et al., 2006a), while the associated vertebrate ichnofauna
pertains to the Eubrontes ichnocoenosis of the Grallator ichnofacies (Hunt & Lucas, 2006b,
2006c).

Age determinations for the Whitmore Point Member have varied. The unit
typically has been placed entirely within the Hettangian (earliest Jurassic) largely on
biostratigraphic grounds (see discussions in Kirkland et al. (2014), Milner et al. (2012),
Parrish et al. (2019) and Tanner & Lucas (2009)), but was also determined to straddle the
Triassic–Jurassic boundary (201.3 ± 0.2 Ma) on magnetostratigraphic grounds (Donohoo-
Hurley, Geissman & Lucas, 2010), in which system the Johnson Farm Sandstone
Bed would be Rhaetian (latest Triassic) in age. However, Steiner (2014b) recovered
Hettangian paleomagnetic sequences from the Whitmore Point Member, and Suarez et al.
(2017) calibrated the magnetostratigraphic data of Donohoo-Hurley, Geissman & Lucas
(2010) with high-precision U–Pb dates to re-situate the Triassic–Jurassic boundary
stratigraphically farther down in the Dinosaur Canyon Member of the Moenave
Formation, also making the Whitmore Point Member entirely earliest Jurassic in age.
The Johnson Farm Sandstone Bed and its fossils therefore are Hettangian in age,
approximately 200 million years old.

MATERIALS AND METHODS
Ichnological terminology for arthropod locomotory traces used herein follows Minter,
Braddy & Davis (2007) and Genise (2017). Minter, Braddy & Davis (2007) defined
“tracks” as discrete marks made by locomotory appendages, “impressions” as continuous
traces made by another portion of the anatomy of a trace maker, and “imprints” as
discontinuous such traces; they also provided terms for trackway arrangement and
measurements. Genise (2017) outlined various descriptive terms for individual track
morphologies. Measurements of SGDS 1290 (Fig. 3C; Table 1) were taken using digital
calipers. The measurements were: track length and width, internal and external widths
between paramedial impressions, distances between tracks and adjacent paramedial
impressions, and widths of left and right paramedial impressions. Measurements
pertaining to the paramedial impressions were taken adjacent to individual tracks/
track sets.

The electronic version of this article in Portable Document Format will represent
a published work according to the International Commission on Zoological Nomenclature
(ICZN), and hence the new names contained in the electronic version are effectively
published under that Code from the electronic edition alone. This published work and the
nomenclatural acts it contains have been registered in ZooBank, the online registration
system for the ICZN. The ZooBank Life Science Identifiers can be resolved and the
associated information viewed through any standard web browser by appending the
LSID to the prefix http://zoobank.org/. The LSID for this publication is: urn:lsid:
zoobank.org:pub:D78963CE-11C8-4447-8E26-BBCCF0E37143. The LSID for the herein
described Siskemia eurypyge isp. nov. is: urn:lsid:zoobank.org:act:769B0815-8991-4F0E-
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Table 1 Measurements (in mm) of arthropod locomotory trace fossil SGDS 1290.

Track
Position

Length Width Impression
internal
width

Impression
external
width

Track to
impression
distance

Left
impression
width

Right
impression
width

L1 4.3 6.4 4.7 9.1 1.8 3.1 2.5

L2 4.2 5.7 5.9 9.5 1.5 2.6 2.2

L3 5.2 5.8 5.8 9.7 0.0 1.6 1.6

L4 3.2 5.6 (8.1) (11.2) 0.0 1.9 0.0

R1 6.8 2.5 4.2 9.2 3.0 3.0 2.4

R2 4.6 5.3 5.4 8.8 4.2 2.7 0.0

R3 4.5 6.4 6.5 9.2 2.4 1.3 1.3

R4 3.0 5.8 6.9 10.6 0.0 0.0 3.0

Note:
Measurements in parentheses are approximated based on faint portions of paramedial impressions.

Figure 3 Arthropod locomotory ichnofossil SGDS 1290. (A) Photograph of specimen; scale in mm.
(B) Schematic diagram of specimen. Arrow indicates direction of movement. L, left track; R, right track;
Ov, overtracks. Numbers indicate position of tracks in sequence from posterior to anterior. Photograph
by Andrew R.C. Milner. (C) Schematic diagram of specimen, showing examples of how measurements
were taken. IEW, external width between paramedial impressions; IIW, internal width between para-
medial impressions; IW, paramedial impression width; TL, track length; TTI, distance between track and
adjacent paramedial impression; TW, track width. (D) Photograph of extant crayfish walking trace made
in saturated, very fine sand for comparison to fossil in (A); scale in cm. Arrow indicates direction of
travel; photograph rotated to have the same orientation as (A). Modified from Fairchild & Hasiotis (2011:
fig. 4E); reproduced with permission from SEPM. Full-size DOI: 10.7717/peerj.10640/fig-3
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B32C-99C87A9D293B. The online version of this work is archived and available from the
following digital repositories: PeerJ, PubMed Central, and CLOCKSS.

Description of SGDS 1290
SGDS 1290, a natural cast (convex hyporelief), consists of two parallel, undulating,
paramedial ridges flanked externally by eight sets of small tracks that range in shape from
ovoid to tapered (teardrop-shaped) to elongate (Figs. 3A and 3B). Tracks within each set
are closely appressed; track sets are, however, spaced well apart from one another.
The track sets are oriented perpendicular to the trackway axis, though tapered and
elongate individual tracks within each set have long axes that parallel or are oblique to the
trackway axis. Track sets average 4.5 mm long anteroposteriorly and 5.4 mm wide
mediolaterally (Table 1). Left (L) and right (R) sets of tracks are arranged in an alternating
pattern. Based on Fairchild & Hasiotis (2011), the tapering ends of the tapered tracks
are presumed to be anterior reflectures, indicating the direction of movement. Most
tracks have long axes oriented parallel to the trackway axis; a few (such as in sets L1, L4 and
R2) are oblique to the axis. Track R1 is markedly elongate rather than tapered, but also
parallel to the trackway axis. Track sets L1, L3 and R4 consist of three distinct but
appressed tracks; sets L2, L4 and R2 consist of pairs of appressed tracks, and R1 and R3
appear to consist of single tracks, although the possibility that each comprises multiple,
conjoined tracks cannot be ruled out.

The paramedial impressions typically are thick mediolaterally, though they vary and
taper briefly to nothingness in a few places (being more continuous than repeating,
we consider them “impressions” and not “imprints”). The impressions follow gently
undulating (non-linear and low amplitude) pathways. They span approximately 7.5 cm
along the slab of rock. Overprints of short segments of the paramedial impressions that are
not accompanied by tracks are visible behind the main trace segment on a slightly higher
stratum. The impressions vary in width along their lengths, ranging from 0 to 3.1 mm
(mean = 2.0 mm) for the left impressions and 0–3.0 mm (mean = 1.6 mm) for the
right (Table 1). The width of the trace from left impression to right impression averages
9.4 mm when measured from the lateral (external) edges and 5.6 mm when measured
between the medial (internal) edges (Table 1). The distances between the impressions
thus are greater than the distances between the impressions and their flanking tracks
(mean = 1.6 mm); the ratio of the distance between a paramedial impression and its
flanking track to the distance between the medial edges of the paramedial impressions
ranges from 0 to 0.78 (mean = 0.31; see Supplemental Material), so on average, the
paramedial impressions are roughly three times farther apart from each other than either is
from its flanking tracks. The impressions taper slightly in cross sectional view: they are
wider at their bases and narrower at their rounded apices.

Comparisons to Arthropod Repichnial Ichnotaxa
Arthropod repichnia lacking medial or paramedial impressions
Several arthropod locomotory (walking) ichnotaxa are readily distinguished from SGDS
1290 by (usually) lacking medial or paramedial impressions, but are worth comparing to
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SGDS 1290 to ascertain whether or not it might be a morphological variant of such
ichnotaxa. These ichnotaxa are Acanthichnus (Hitchcock, 1858), Asaphoidichnus (Miller,
1880), Bifurculapes (Hitchcock, 1858), Coenobichnus (Walker, Holland & Gardiner, 2003),
Copeza (Hitchcock, 1858), Danstairia congesta (Smith, 1909), Diplichnites (Dawson, 1873),
Eisenachichnus (Kozur, 1981), Foersterichnus (Pirrie, Feldmann & Buatois, 2004),
Hamipes (Hitchcock, 1858), Laterigradus (De Carvalho et al., 2016), Lithographus
(Hitchcock, 1858), Hornburgichnium (Kozur, 1989), Maculichna (Anderson, 1975a),
Merostomichnites (Packard, 1900), Mirandaichnium (Aceñolaza, 1978), Octopodichnus
(Gilmore, 1927), Petalichnus (Miller, 1880), Pterichnus (Hitchcock, 1865), Tasmanadia
(Chapman, 1929) and Umfolozia (Savage, 1971). Most of these ichnotaxa further
differ from SGDS 1290 in the shapes and configurations of their tracks. The comparisons
below specify track-making taxa only when one or more have been proposed for the
ichnotaxon.

Acanthichnus tracks (Fig. 4A), attributed to a chelicerate such as a solifugid, are
oppositely arranged, short, elongate impressions in two (or four, per Dalman & Lucas,
2015) parallel rows; tracks either are parallel to or angle slightly away from the trackway
axis (Dalman & Lucas, 2015;Hitchcock, 1858). This morphology and organization are both
unlike those of SGDS 1290.

Asaphoidichnus tracks (Fig. 4B), attributed to trilobites, are elongate to crescentic,
possess 3–4 crescentic branches at one end, and are oriented oblique to the trackway axis
(Miller, 1880). They are far more complex in structure than the tracks of SGDS 1290.

Bifurculapes (Fig. 4C), attributed to an insect, possibly a beetle (Getty, 2016), comprises
adjacent pairs (rarely triplets) of slightly staggered, elongate, straight to crescentic
tracks that lie parallel or slightly oblique to the trackway axis, unlike the tracks of
SGDS 1290. Tracks in each pair sometimes converge toward one end in Bifurculapes.
This ichnotaxon typically does not possess paramedial impressions, but a specimen
described by Getty (2016: fig. 1) possess two such traces, albeit faintly, that lie closer to
the tracks than to the trackway axis, as in SGDS 1290. These impressions are far less
pronounced than their associated tracks, unlike those of SGDS 1290. Getty (2020)
ascertained that Bifurculapes traces were made subaqueously and may have been made by
a terrestrial insect that would have left different tracks subaerially.

Coenobichnus tracks (Fig. 4D), attributed to a hermit crab, are thick, crescentic to
ellipsoidal, roughly parallel and closely appressed to the trackway axis, and asymmetrical,
with the left tracks larger than the right tracks (Walker, Holland & Gardiner, 2003), all of
which differentiate this ichnotaxon from SGDS 1290.

Copeza (possibly a variant and synonym of Lithographus (Lull, 1953; Rainforth, 2005;
Fig. 4E)) consists of triplets of roughly oppositely arranged, linear, elongate tracks in
which the anteriormost lies roughly perpendicular to the trackway axis while the
posteriormost pairs lie parallel or oblique to the trackway axis (Lull, 1953). This rare
ichnotaxon is thus unlike SGDS 1290.

Danstairia congesta (Fig. 4F) comprises circular to crescentic tracks in closely appressed
sets of up to six that are oriented oblique to the trackway axis; tracks often overlap to form
V-shaped structures (Walker, 1985), unlike in SGDS 1290.
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Figure 4 Schematic diagrams of locomotory (presumably walking) ichnofossils attributed to
arthropods (A–MM) and extant walking traces made by arthropods (NN–OO) compared to SGDS
1290 (PP). Diagrams not to scale. (A) Acanthichnus cursorius (traced from Hitchcock, 1858). (B) Asa-
phoidichnus trifidus (traced from Miller, 1880). (C) Bifurculapes laqueatus (traced from Getty, 2016).
(D) Coenobichnus currani (traced from Walker, Holland & Gardiner, 2003). (E) Copeza triremis (traced
from Hitchcock, 1858). (F) Danstairia congesta (traced from Walker, 1985). (G) Diplichnites aenigma
(traced from Dawson, 1873). (H) Diplichnites gouldi Type A (traced from Trewin & McNamara, 1994).
(I) Eisenachichnus inaequalis (traced from Kozur, 1981). (J) Foersterichnus rossensis (traced
from Pirrie, Feldmann & Buatois, 2004). (K) Hamipes didactylus (traced from Getty, 2018). (L) Lateri-
gradus lusitanicus (traced from De Carvalho et al., 2016). (M) Lithographus hieroglyphicus (traced from
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Diplichnites (possibly including Acripes per Häntzschel (1975) and Hammersburg,
Hasiotis & Robison (2018); also see below) tracks span a range of morphologies.
D. aenigma (Fig. 4G), ostensibly the ichnospecies lectotype except that no specimen was
designated as such (Stimson et al., 2018), typically comprises elongate, closely packed
tracks in parallel rows on either side of the trackway axis; the tracks lie perpendicular to the
trackway axis (Dawson, 1873). D. gouldi Type A (Fig. 4H) comprises parallel rows of
closely spaced, oppositely arranged, simple, roughly circular to oblong to comma-shaped
or irregular tracks with varying orientations to the trackway axis; D. gouldi Type B
comprises closely spaced, elongate impressions oriented perpendicular, or nearly so, to the
trackway axis, matching the general description of D. aenigma; D. gouldi Type C is similar
to Type B, but the tracks are oriented oblique (~ 45�) to the trackway axis (Trewin &
McNamara, 1994). D. cuithensis, attributed to large arthropleurid myriapods, is similar to
both D. aenigma and D. gouldi Type B, but is very large and has widely spaced rows
of tracks (Briggs, Rolfe & Brannan, 1979).D. binatus tracks often occur as closely appressed
pairs of imprints (Webby, 1983). D. triassicus tracks are small and circular to ovoid
rather than elongate, and frequently paired on either side of the trackway axis (Pollard,
Selden &Watts, 2008); this ichnospecies has been alternately suggested to be a synonym of
D. gouldi (Lucas et al., 2006b) or to pertain to Acripes (Machalski & Machalska, 1994;
Pollard, 1985). D. metzi possesses a midline impression that is sometimes interrupted
by connections between tracks in the closely appressed rows (Fillmore et al., 2017).
The ichnogenus is in need of thorough review (Smith et al., 2003), but in all cases, the
tracks are of different morphologies and arrangements than those of SGDS 1290.

Eisenachichnus tracks (Fig. 4I) are elongate, paired, and oblique to the trackway axis
(rarely perpendicular), but the patterns of the pairs on either side of the trackway axis
normally are asymmetrical: on one side, the paired tracks lie end to end, while on the other,
they are more adjacent (Kozur, 1981). This morphology and arrangement are unlike those
of SGDS 1290.

Figure 4 (continued)
Hitchcock, 1858). (N) Maculichna varia (traced from Anderson, 1975a). (O) Merostomichnites narran-
gansettensis (traced from Packard, 1900). (P) Mirandaichnium famatinense (traced from Aceñolaza,
1978). (Q) Octopodichnus didactylus (traced from Gilmore, 1927). (R) Petalichnus multipartatus
(traced from Miller, 1880). (S) Pterichnus centipes (traced from Hitchcock, 1865). (T) Tasmanadia
twelvetreesi (traced from Glaessner, 1957). (U) Umfolozia sinuosa (traced from Anderson, 1981).
(V) Kouphichnium lithographicum (traced from Gaillard, 2011a). (W) “Merostomichnites isp.” (traced
from Hanken & Stormer, 1975). (X) Oniscoidichnus filiciformis (traced from Brady, 1947). (Y) Pal-
michnium antarcticum (traced from Braddy & Milner, 1998). (Z) Paleohelcura tridactyla (traced from
Gilmore, 1926). (AA) Protichnites septemnotatus (traced from Owen, 1852). (BB) Robledoichnus lucasi
(traced from Kozur & Lemone, 1995). (CC) Shalemichnus sittigi, half of trackway (traced from Kozur &
Lemone, 1995). (DD) Stiallia berriana (traced from Smith, 1909). (EE) Stiaria quadripedia (traced from
Walker, 1985). (FF) Mitchellichnus ferrydenensis (traced from Walker, 1985). (GG) Keircalia multipedia
(traced from Walker, 1985). (HH) Danstairia vagusa (traced from Walker, 1985). (II) Glaciichnium
liebegastensis (traced from Walter, 1985). (JJ) Warvichnium ulbrichi (traced from Walter, 1985). (KK)
Siskemia bipediculus (traced from Walker, 1985). (LL) Siskemia elegans (traced from Walker, 1985).
(MM) Siskemia latavia (traced fromWalker, 1985). (NN) Extant notostracan traces (traced from Knecht
et al., 2009). (OO) Extant crayfish trace in saturated, very fine sand (traced from Fairchild & Hasiotis,
2011). (PP) SGDS 1290. Full-size DOI: 10.7717/peerj.10640/fig-4
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Foersterichnus (Fig. 4J), attributed to a crab, consists of widely spaced, paired rows of
elongate tracks in sets of 3–4; rows are parallel to oblique to the trackway axis, and tracks in
each set frequently overlap (Pirrie, Feldmann & Buatois, 2004). The wide spacing,
clustering of tracks, and orientations of the tracks are unlike those of SGDS 1290.

Hamipes tracks (Fig. 4K) consist of closely spaced, paired, elongate to crescentic
impressions oriented parallel to the trackway axis; the outer tracks are longer than their
accompanying inner tracks, and the tracks are staggered or alternately arranged (Getty,
2018;Hitchcock, 1858). Track morphology readily differentiatesHamipes from SGDS 1290.

Laterigradus tracks (Fig. 4L), attributed to sideways-walking crabs, comprises
asymmetrical trackways consisting of sets of up to four tracks (De Carvalho et al.,
2016). Individual tracks vary widely in shape, ranging from elongate to tapered to
comma-shaped to roughly circular. Track sets fall within a narrow trackway width and
exhibit different stride lengths along the course of a trackway. While some individual track
shapes resemble those of SGDS 1290, the overall arrangement and layout of the tracks is
distinct.

Lithographus (including Permichnium sensu Minter & Braddy, 2009) tracks (Fig. 4M),
which match those made by pterygote insects, especially extant cockroaches (Davis,
Minter & Braddy, 2007), comprise trios (or pairs, in the case of the Permichnium variant)
of elongate to comma-shaped, rather than circular or tapering, tracks that are arranged
at different angles to one another, some of which are oriented perpendicular to the
trackway axis, and others of which are oblique to the trackway axis (Guthörl, 1934;
Hitchcock, 1858; Minter & Braddy, 2009). These track morphologies and arrangements
are distinct from those of SGDS 1290. Hornburgichnium reportedly is similar to
Permichnium, but has three tracks on either side of the midline instead of two, and at least
one of each set is oriented parallel to the trackway axis (Kozur, 1989); it may also be a
variant of Lithographus (Lucas et al., 2005b). Trackways of Lithographus can transition into
trackways that Hitchcock (1858) called Hexapodichnus (Davis, Minter & Braddy, 2007;
Minter, Braddy & Davis, 2007), so the latter may be considered a behavioral and/or
substrate-consistency variant of the former, and also unlike SGDS 1290.

Maculichna (including Guandacolichnus and Paganzichnus of Pazos (2000) per
Buatois & Mángano (2003)) tracks (Fig. 4N) comprise pairs (sometimes more) of small,
circular to slightly elongate tracks arranged in closely appressed, slightly staggered
rows. Pairings are oriented virtually parallel to the trackway axis (Anderson, 1975a);
occasionally, short segments of linear, singular medial or closely spaced, paired paramedial
imprints are also preserved that can be offset to one side of the trackway axis (Anderson,
1975a: figs. 8b, 8d and 8e). The pairing of Maculichna tracks differs from that of
SGDS 1290. Aceñolaza & Buatois (1991, 1993) and Archer & Maples (1984) described
Maculichna traces that exhibit the pairing of classic Maculichna from South Africa, but
in which tracks are more ellipsoidal to shaped like slightly inflated isosceles triangles;
the long axes of the triangles are oriented close to perpendicular to the trackway axis.
Pazos (2000) recognized this morphology as the separate ichnotaxon Paganzichnus.
This morphology is also unlike that of SGDS 1290.
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The ichnospecies holotype of Merostomichnites narragansettensis (Fig. 4O) consists
of parallel rows of roughly oppositely arranged circular to elongate to comma-shaped
tracks, the long axes of which are perpendicular to the trackway axis (Packard, 1900).
Merostomichnites beecheri tracks are circular and connected across the trackway axis
by curvilinear, shallow, M-shaped imprints, creating a sort of segmented midline
impression (Packard, 1900: fig. 4). These track and trace morphologies do not match those
of SGDS 1290.

Mirandaichnium (Fig. 4P) consists of two rows of elongate, linear tracks that terminate
laterally in small, circular impressions. Tracks are oriented perpendicular or oblique to the
trackway axis, oppositely situated, and often grouped into series of eight (Aceñolaza &
Buatois, 1993; Buatois et al., 1998), unlike those of SGDS 1290.

Octopodichnus (Fig. 4Q) ichnospecies, attributed to arachnids, have different
morphologies. O. didactylus tracks are circular to crescentic to bifurcate or trifurcate
oriented parallel to the trackway axis in alternating, arcuate sets of four (Sadler, 1993).
O. minor tracks have a similar organization, but the tracks are more amorphous;
O. raymondi tracks consist of clusters of four circular to crescentic marks arranged in
checkmark-like patterns (Sadler, 1993). These track morphologies and distinctive
arrangements are substantially unlike those of SGDS 1290.

Petalichnus (Fig. 4R), attributed to trilobites (Braddy & Almond, 1999), comprises sets
of 2–3 elongate to crescentic tracks oriented perpendicular to the trackway axis (Miller,
1880). Anderson (1975b) and Braddy & Almond (1999) diagnosed Petalichnus tracks
as sometimes bifurcate and occurring in series of 9–12; they further noted that the
ichnotaxon needs review. Both track morphology and organization are unlike those of
SGDS 1290.

Pterichnus tracks (Fig. 4S), attributed to isopods, frequently are segmented and are more
linear and elongate than any in SGDS 1290. Tracks (or series of segments) are oriented
oblique (Types 1 and 2 of Gaillard et al., 2005) or parallel (Types 3 and 4 of Gaillard et al.,
2005) to the trackway axis, and approximately symmetrically arranged in two parallel
rows (Gaillard et al., 2005; Hitchcock, 1865) that are somewhat closer together than are
those of the morphologically similar Diplichnites. Types 3 and 4 of Gaillard et al. (2005)
morphologically grade into Diplopodichnus (Uchman et al., 2011). Hammersburg,
Hasiotis & Robison (2018) suggested that Pterichnus comprises undertracks of
Lithographus and is thus a junior synonym of that ichnotaxon. In any case, Pterichnus
tracks are readily distinguished from SGDS 1290.

Tasmanadia traces (Fig. 4T) consist of two rows of closely packed, elongate, linear
tracks oriented generally perpendicular to the trackway axis; occasionally, tracks overlap
at one end, creating narrow, V-shaped structures (Chapman, 1929; Glaessner, 1957).
Morphologically, this ichnotaxon resembles Diplichnites gouldi Type B and Umfolozia
(but lacks the organization of the latter), and differs from SGDS 1290 for the same reasons
as those ichnotaxa.

Umfolozia (Fig. 4U), attributed to syncarid and peracarid crustaceans (Lima, Minter &
Netto, 2017; Savage, 1971), consists of parallel rows of irregularly shaped to crescentic
tracks oriented perpendicular or oblique to the trackway axis that follow a unique
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repeating pattern (Anderson, 1981; Savage, 1971) unlike anything discernible in
SGDS 1290. Aceñolaza & Buatois (1993) noted morphological similarities between
Mirandaichnium, Tasmanadia, and Umfolozia and postulated similar track makers.

In summary, SGDS 1290 is not a variant of any of these ichnotaxa.

Arthropod repichnia possessing one medial impression

Several other arthropod locomotory (walking) ichnotaxa are also readily distinguished
from SGDS 1290 by possessing singular medial, rather than paired paramedial,
impressions; again, comparison is warranted to ascertain whether or not SGDS 1290 is
a morphological variant of such ichnotaxa. These ichnotaxa are Kouphichnium (Caster,
1938; Nopcsa, 1923), “Merostomichnites isp.” (Hanken & Stormer, 1975), Oniscoidichnus
(Brady, 1947, 1949), Palmichnium (Richter, 1954), Paleohelcura (Gilmore, 1926),
Protichnites (Owen, 1852), Robledoichnus (Kozur & Lemone, 1995), Shalemichnus (Kozur
& Lemone, 1995), Stiallia (Smith, 1909) and Stiaria (Smith, 1909). As with traces lacking
any medial impressions, these ichnotaxa further differ from SGDS 1290 in track
morphology. As before, possible track makers are specified only when available.

Kouphichnium traces (Fig. 4V) are attributed to limulids and occur in a variety of
configurations. Tracks in clear Kouphichnium walking traces that possess singular medial
impressions (e.g., many K. lithographicum, but not, for example, K. minkinensis (King,
Stimson & Lucas, 2019; q.v. Gaillard, 2011a; Shu et al., 2018)) typically occur in sets of up
to five in rows oriented oblique to the medial impression and trackway axis; individual
tracks range from circular and ellipsoidal to elongate, and can split into anywhere
from 2 to 5 branches at their ends (Caster, 1938, 1944; King, Stimson & Lucas, 2019;
Shu et al., 2018). Well-preserved Kouphichnium tracks are dissimilar to those of SGDS
1290.

Traces referred to as “Merostomichnites” (Fig. 4W) and attributed to the eurypterid
Mixopterus by Hanken & Stormer (1975) consist of three elongate and crescentic tracks in
oblique rows on either side of an intermittent medial impression; the tracks increase in size
laterally, and some split into two or more branches on one end. In any of these cases,
however, the tracks are substantially more complex than those of SGDS 1290.

Oniscoidichnus tracks (Fig. 4X) are elongate to crescentic, oriented perpendicular or
oblique to the trackway axis, closely packed and closely appressed to the single midline
impression (Brady, 1947; Davies, Sansom & Turner, 2006). In all these details,
Oniscoidichnus traces differ markedly from SGDS 1290.

Ichnospecies of Palmichnium (Fig. 4Y), also attributed to eurypterids, vary in
morphology. Generally, they comprise complex sets of tracks lying lateral to a medial
impression that can be either continuous or discontinuous. Tracks range in shape
from elongate to crescentic to ovoid to chevron shaped, and they generally parallel the
trackway axis. The tracks occur in oblique rows in sets of up to four; in some traces, the
lateralmost tracks are elongate and curved, while the more medial tracks are linear and
oriented parallel to the trackway axis (Braddy & Milner, 1998; Minter & Braddy, 2009;
Poschmann & Braddy, 2010; Richter, 1954). Tracks are both more numerous and
differently shaped than those of SGDS 1290.
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Paleohelcura (including Mesichnium per Braddy (1995) and Triavestigia per Kozur,
Löffler & Sittig (1994); possibly a junior synonym of Stiaria; Fig. 4Z) traces, attributed
to scorpions (Brady, 1947; Davis, Minter & Braddy, 2007), comprise small, circular
tracks in sets of three in either rows, triangular arrangements, or checkmark-like patterns
that lie external and oblique to the medial impression (Gilmore, 1926; Lagnaoui et al.,
2015; Sadler, 1993). This distinctive layout is unlike that of SGDS 1290. De Peixoto et al.
(2020) attributed traces lacking a medial impression and comprising closely appressed
pairs or triplets of mostly elliptical tracks from the Upper Jurassic or Lower Cretaceous
of Brazil to a new ichnospecies of Paleohelcura and attributed them to a pterygote insect
track maker. Tracks in this ichnospecies are arranged in rows oriented oblique to the
trackway axis, and track sets in this ichnospecies lie close to the midline. This morphology
is also unlike that of SGDS 1290.

Protichnites traces (Fig. 4AA) comprise thick, often segmented medial impressions
(sometimes absent except on trackway turns) flanked by oppositely arranged, subcircular
to ellipsoidal to irregularly shaped tracks with varying orientations to the trackway
axis (Burton-Kelly & Erickson, 2010; Collette, Gass & Hagadorn, 2012; Hagadorn &
Seilacher, 2009). They differ substantially from the tracks of SGDS 1290.

Robledoichnus tracks (Fig. 4BB), attributed to flying insects, resemble tracks of
Eisenachichnus but possess a discontinuous, faint medial trace consisting entirely of
periodic, V-shaped marks flanked by asymmetrical pairs of tracks. On one side, the tracks
are short, tapered, and oriented oblique to the trackway axis; on the other side, the
tracks are longer and crescentic, oriented closer to perpendicular to the trackway axis
(Kozur & Lemone, 1995). Lucas et al. (2005a) considered Robledoichnus a probable junior
synonym of Paleohelcura or Stiaria, and the ichnotaxon differs from SGDS 1290 for
similar reasons as those ichnotaxa, in addition to the asymmetry.

Shalemichnus traces (Fig. 4CC), for which only half a trackway is known, include a
straight medial impression punctuated at intervals by V-shaped marks. This impression is
flanked by sets of three tapered tracks in straight rows oriented perpendicular to the
trackway axis; individual tracks have their long axes parallel to the trackway axis (Kozur &
Lemone, 1995). Minter & Braddy (2009) considered Shalemichnus a junior synonym of
Stiaria. The tracks of Shalemichnus bear some similarity to those of SGDS 1290, but the
paramedial impressions of SGDS 1290 lack the V-shaped markings of the medial
impression of Shalemichnus.

Stiallia traces (Fig. 4DD) consist of paired rows of long, linear impressions parallel or
slightly oblique to the trackway axis and that frequently overlap. Stiallia pilosa lacks any
medial or paramedial impressions, but Stiallia (Carrickia of Smith (1909)) berriana
possesses a medial row of crescentic to chevron-shaped marks (Smith, 1909;Walker, 1985).
Pollard (1995) suggested that Stiallia could be an arthropod swimming, rather than a
walking, trace, though it also resembles traces made by bristletail insects walking in highly
saturated mud (Getty et al., 2013: figs. 6F and 6G). Stiallia tracks are markedly unlike those
of SGDS 1290.

Stiaria tracks (including some ichnospecies of Danstairia of Smith (1909); Fig. 4EE),
attributed to scorpionids (Braddy, 2003; Lucas, Lerner & Voigt, 2013) and monuran insects
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(Genise, 2017; Kopaska-Merkel & Buta, 2013), are oppositely situated groups of 2–4
generally circular to tapered tracks in a linear to crescentic arrangement lying roughly
perpendicular to the trackway axis (Walker, 1985). In some specimens and ichnospecies
of Stiaria, the singular medial impression actually varies in position, meandering from
medial to almost lateral to their tracks (Fillmore, Lucas & Simpson, 2012: fig. 26d;
Walker, 1985: figs. 5b and 5c). In some Mississippian specimens from Pennsylvania, the
medial impression is flanked by thin, discontinuous, but closely appressed paramedial
imprints (Fillmore, Lucas & Simpson, 2012: figs. 26d–26g). Track arrangement alone
differentiates Stiaria from SGDS 1290. Genise (2017) asserted that Stiaria should be
considered a junior synonym of Siskemia (the latter has page priority over the former).

As with locomotory traces lacking medial impressions, SGDS 1290 is not a variant of
any of these ichnotaxa.

Arthropod repichnia possessing three or more medial and paramedial
impressions
Mitchellichnus (Fig. 4FF), attributed to archaeognathan insects (Getty et al., 2013), is
distinguished from SGDS 1290 by possessing three medial impressions (Walker, 1985).
Mitchellichnus tracks are complex, comprising two distinct types and arrangements.
An inner set, lying close to the medial impressions, consists of apparently elongate tracks
in sets of up to six that lie parallel to slightly oblique to the trackway axis; an outer
set consists of larger, amorphous impressions (Walker, 1985). Tracks are thus more
numerous in Mitchellichnus than in SGDS 1290, and the tracks differ in arrangement and
morphology. Like Stiaria, Genise (2017) asserted thatMitchellichnus should be considered
a junior synonym of Siskemia.

Keircalia (Fig. 4GG) is distinguished from SGDS 1290 by possessing four medial
impressions (Smith, 1909; Walker, 1985). Keircalia tracks are crescentic to irregularly
shaped, generally are oriented perpendicular to the trackway axis, and have no discernible
arrangement (Walker, 1985). Both track morphology and organization are unlike those of
SGDS 1290.

Arthropod repichnia possessing paired paramedial impressions
A few ichnotaxa, as well as some experimentally produced tracks of extant arthropods,
resemble SGDS 1290 by possessing paired paramedial impressions in at least some
specimens. Such ichnotaxa are Danstairia vagusa (Smith, 1909), Glaciichnium (Walter,
1985), Warvichnium (Walter, 1985), and Siskemia (Smith, 1909); similar extant traces
include those made by notostracans (Trusheim, 1931) and crayfish (Fairchild & Hasiotis,
2011).

Danstairia vagusa (Fig. 4HH) possesses intermittent, thin, linear imprints that do not
always parallel their accompanying trackways. Tracks are circular to triangular, generally
have their long axes perpendicular to the trackway axis, and lack any coherent layout
(Walker, 1985), unlike those of SGDS 1290. D. vagusa somewhat resembles Keircalia
traces, but its tracks are spaced more widely apart.
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Glaciichnium traces (Fig. 4II), which resemble traces made by isopods (Gibbard &
Stuart, 1974; Lima, Minter & Netto, 2017; Uchman, Kazakauskas & Gaigalas, 2009;
Uchman et al., 2011), comprise 1–3 elongate, linear tracks (“bars” that are divided into
segments (Uchman, Kazakauskas & Gaigalas, 2009)) that lie oblique to the trackway
axis and are staggered on either side of that axis, unlike the tracks of SGDS 1290; their
linear, serial but discontinuous paramedial imprints are widely spaced, consistently
abutting the medial ends of the tracks (Walter, 1985), farther apart than those of SGDS
1290. Lima et al. (2015) described the paramedial imprints in Brazilian specimens as
comprising successive pairs of C-shaped imprints rather than strictly linear structures,
further unlike SGDS 1290. Some Glaciichnium traces also possess a medial imprint as well
(Uchman, Kazakauskas & Gaigalas, 2009; Walter, 1985).

Warvichnium traces (Fig. 4JJ) are complex, comprising pairs to multiple sets of linear,
discontinuous medial and paramedial imprints flanked by varying numbers of linear to
crescentic tracks in two or more sets: an inner set, close to the medial imprints, that
are oriented slightly oblique to the trackway axis, and an outer set oriented closer to
perpendicular to the trackway axis (Walter, 1985), quite unlike SGDS 1290. Getty (2020)
noted similarities between Warvichnium and subaqueous Bifurculapes.

Among described arthropod repichnia, SGDS 1290 architecturally most closely
resembles ichnospecies of Siskemia by possessing discreet, compact (not linear) tracks and
track sets flanking paired paramedial impressions. Three ichnospecies of Siskemia are
presently recognized (Walker, 1985):

� S. bipediculus (Fig. 4KK) comprises small, circular tracks in closely appressed pairs
(occasionally trios) in rows oriented perpendicular or slightly oblique to the trackway
axis; the pairs are spaced apart at approximately regular intervals and evenly distant
from the uniformly straight and narrow paramedial impressions (Walker, 1985).
The paramedial impressions lie close to the midline axis, well away from their adjacent
tracks (the average ratio of the distance between a paramedial impression and its
flanking track to the distance between the medial edges of the paramedial impressions is
1.34; see Supplemental Material).

� S. elegans (Fig. 4LL) has similarly shaped tracks in sets of up to four; the sets similarly lie
well away from the likewise straight, narrow, and closely appressed paramedial
impressions (the average ratio of the distance between a paramedial impression and its
flanking track to the distance between the medial edges of the paramedial impressions is
1.75; see Supplemental Material). S. bipediculus and S. elegans differ primarily in the
orientations of their track rows to the trackway axis and the continuities and thicknesses
of their paramedial impressions (Walker, 1985), though these could be behavioral
and/or substrate-driven variants.

� Siskemia latavia (Fig. 4MM; called “lata-via” by Smith (1909) and Walker (1985),
but the ICZN does not permit hyphens in genus or species names) tracks comprise
tapered or ovoid tracks arranged in roughly triangular sets of three. Most individual
tracks have their long axes oriented oblique to the trackway axis; track sets have varying
orientations to the trackway axis. Tracks in individual S. latavia sets usually are spaced
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well apart from each other; rarely do two individual tracks in a set contact one
another. S. latavia tracks lack the regular spacing and arrangements of those of S. elegans
and S. bipediculus, and occasional individual tracks lie close to the paramedial
impressions, farther medially than in either of the other two Siskemia ichnospecies
(the average ratio of the distance between a paramedial impression and its flanking track
to the distance between the medial edges of the paramedial impressions is 0.80; see
Supplemental Material). Each paramedial impression of S. latavia is slightly wider
than those of the other two Siskemia ichnospecies (probably a function of the larger
overall size of specimens attributed to this ichnospecies), but retain the close appression
to the trackway midline and the uniform straightness.

The tracks of SGDS 1290 vary more in morphology than those of any known Siskemia
ichnospecies, but grossly share their layout. Tracks in all three Siskemia ichnospecies
have a staggered distribution, similar to, but less pronounced than, that of SGDS 1290.
SGDS 1290 differs most markedly from any of the three Siskemia ichnospecies in the
morphology and positions of the paramedial impressions: in SGDS 1290, the impressions
vary in thickness along their lengths and undulate, in contrast to the thin, straight
impressions of all three Siskemia ichnospecies. Additionally, the impressions in SGDS
1290 lie farther apart than those of the three Siskemia ichnospecies. In fact, all of the
ichnospecies of Siskemia erected by Smith (1909), as well as both specimens later attributed
to this ichnogenus (Getty et al., 2013; McNamara, 2014; Pollard, Steel & Undersrud,
1982) and Siskemia-like traces made by extant, archaeognathan insects (Getty et al., 2013),
have such thin, linear, closely appressed paramedial impressions (sometimes offset toward
one side of the trackway). The only time when archaeognathan traces approach the
paramedial impression spacing of SGDS 1290 is when both abdominal styli (laterally) and
gonostyli (medially) of the trace makers register impressions and imprints in wet mud,
producing two sets of paramedial traces (Getty et al., 2013: figs. 6K and 6L), but even
then the linear, lateralmost paramedial impressions still do not resemble the thick,
undulating impressions of SGDS 1290. Simultaneously, in such wet mud, archaeognathan
tracks are elongate and oriented oblique to the trackway axis, unlike those in SGDS
1290. In total, SGDS 1290 does not fit neatly into any known Siskemia ichnospecies and
does not seem to be an archaeognathan insect trace.

Among traces made by extant arthropods, SGDS 1290 bears similarities to traces made
by both notostracans and crayfish. Interpretive drawings of experimental traces made by
notostracans figured by Trusheim (1931) depict elongate, crescentic, or tapered tracks
oriented perpendicular to paramedial impressions; the tracks are arranged oppositely,
unlike those of SGDS 1290. Additionally, the thin, linear paramedial impressions figured
by Trusheim (1931) lie so far from the trackway axis that they often contact their
accompanying tracks, a phenomenon that only occurs in SGDS 1290 near L4 and R4,
where the lateral margins of its undulating paramedial impressions meander particularly
far laterally. Tasch (1969) noted, though, that the drawings presented by Trusheim (1931)
were misleading compared to his own experimentally generated notostracan traces.
However, he described the morphologies of his notostracan tracks only as “minute en
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echelon stripes” (Tasch, 1969: 327), which does not adequately specify how they
differed from those of Trusheim (1931); track details are impossible to discern in his
lone photographic figure (Tasch, 1969: pl. 1.2). Gand et al. (2008) also conducted
neoichnological experiments with notostracans, recovering locomotory traces that were
less orderly than those illustrated by Trusheim (1931) (Gand et al., 2008: figs. 16.1, 16.2 and
17.1). Their extant notostracan tracks comprised multiple tracks with rather chaotic
distributions lateral to their paramedial impressions, unlike the regular distribution
seen in SGDS 1290. Gand et al. (2008) found their notostracan traces to fall within
the “etho-morphotype” of Acripes, as exemplified by their novel ichnospecies
A. multiformis from the Permian of France. (Linck (1943) and Pollard (1985) also referred
Acripes (Merostomichnites of Linck (1943)) tracks to notostracans, but not based on
neoichnological experiments.) A. multiformis traces, unlike classic Acripes (Matthew,
1910), possess paramedial imprints, albeit inconsistently. Hammersburg, Hasiotis &
Robison (2018), Häntzschel (1975), Miller (1996) and Pemberton, MacEachern & Gingras
(2007) all supported classic Acripes as a junior synonym of Diplichnites; the issue of
synonymy is beyond the scope of this paper, but we note at least that the tracks in
fossils that Gand et al. (2008) called A. multiformis differ from SGDS 1290 in the same
ways that Diplichnites tracks do (see above). Lastly, Knecht et al. (2009: figs. 5 and 6) also
illustrated traces made by extant notostracans (Fig. 4NN), which are “tidier” than those of
Gand et al. (2008) and resemble those of classic Acripes and Diplichnites, albeit with
discontinuous paramedial and curvilinear lateral (external) imprints. The tracks in these
traces comprise irregular, ellipsoidal sets oriented oblique to the trackway axis, unlike
those of SGDS 1290. In total, SGDS 1290 is unlikely to be a notostracan trace.

Fairchild & Hasiotis (2011) conducted neoichnological experiments with crayfish to
examine their locomotory traces. These traces varied in morphology depending on
substrate conditions (sediment grain size and saturation) and slope; in general, when
clearest, they consist of sets of 1–4 circular, tapering, ellipsoidal, or elongate tracks,
occasionally of different sizes, that are oriented parallel to the trackway axis and that lie
lateral to a pair of undulating, variably thick paramedial impressions that lie closer to
their flanking tracks than to each other (Figs. 3D and 4OO). Morphologically, the tracks
and impressions match those of SGDS 1290, although the tracks made by extant crayfish
often are larger than those of SGDS 1290 when produced in dry substrate (Fairchild &
Hasiotis, 2011: fig. 9). Track sets in extant crayfish traces have complex arrangements:
when comprised of multiple traces, they frequently are in rows oriented perpendicular
to the trackway axis, but sometimes rows are oblique to the trackway axis. When fewer
tracks are preserved, sets can appear to lie in single, parallel rows on either side of the
paramedial impressions. Track positions can be opposite to staggered to alternating,
also as in SGDS 1290. In both track and paramedial impression morphology, as well as
in overall trace architecture, SGDS 1290 strongly resembles crayfish traces made in
damp silt and clay (Fairchild & Hasiotis, 2011: figs. 2e and 2f), dry and saturated, very
fine-grained sand (Fig. 3D; Fairchild & Hasiotis, 2011: figs. 4a, 4b, 4e and 4f), dry and
damp, fine-grained sand (Fairchild & Hasiotis, 2011: figs. 5a–5d), and saturated medium
sand (Fairchild & Hasiotis, 2011: figs. 6e and 6f). SGDS 1290 is preserved in, and was
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presumably registered in, a fine-grained sand, lithologically matching one set of
experimental conditions in Fairchild & Hasiotis (2011). However, SGDS 1290 is not as
detailed as many of the experimentally generated crayfish traces in comparable sediments.
This could indicate one or more things: the fossil could be a slight overtrack (sensu Bertling
et al., 2006) rather than a direct natural cast; the trace maker may have been partly
buoyant; and/or trace-maker behavior and sediment consistency combined such that the
lighter limbs did not impress as deeply as the heavier tail.

DISCUSSION
Trace maker
The stronger resemblance of SGDS 1290 to experimental crayfish locomotion traces
than to any known ichnotaxon, or other documented extant arthropod trace, implies a
crayfish or crayfish-like maker for the fossil. Whether SGDS 1290 had a crayfish-like or
an actual crayfish maker depends on whether the term “crayfish” is used to refer to
members of a monophyletic clade (Parastacidae + (Astacidae + (Cambaridae +
Cricoidoscelosidae)); Karasawa, Schweitzer & Feldmann, 2013) of freshwater (and
brackish water if Protastacus is included, sensu Karasawa, Schweitzer & Feldmann, 2013)
lobsters, or, more broadly, to any freshwater, lobster-like crustacean regardless of
phylogenetic position, which presumes that more than one crayfish-like lineage colonized
terrestrial environments in the past. Here we use the term in the monophyletic sense:
true crayfish comprise Astacida (sensu Karasawa, Schweitzer & Feldmann, 2013; Schram&
Dixon, 2004; Shen, Braband & Scholtz, 2015). Whether or not the maker of SGDS
1290 was a true crayfish is unclear: the oldest undisputed crayfish body fossils are from
the Early Cretaceous (Garassino, 1997; Martin et al., 2008; Shen, 2003; Taylor, Schram &
Shen, 1999), although unnamed, Late Jurassic specimens from western Colorado also
have been called crayfish (Hasiotis, Kirkland & Callison, 1998). Despite this, a Triassic
or earlier origin for true crayfish has been hypothesized frequently (Breinholt, Pérez-
Losada & Crandall, 2009; Crandall & Buhay, 2008; Porter, Pérez-Losada & Crandall, 2005;
Schram, 2001; Schram & Dixon, 2004; Wolfe et al., 2019) and possibly substantiated by
fossil burrows referred to crayfish from the Early Permian (Hembree & Swaninger, 2018)
and Late Permian–Early Triassic (Baucon et al., 2014; Hasiotis & Mitchell, 1993).

Several Late Triassic body-fossil specimens also have been reported as crayfish (Hasiotis,
1995; Hasiotis & Mitchell, 1993; Miller & Ash, 1988; Olsen & Huber, 1997; Santucci &
Kirkland, 2010), but the identities of these specimens as true astacidans has not been
established. Miller & Ash (1988) placed a Late Triassic specimen from Petrified Forest
National Park, Arizona in Enoploclytia, which is an erymid lobster, not an astacidan,
genus. That generic placement subsequently has been contested (Amati, Feldmann &
Zonneveld, 2004; Schweitzer et al., 2010; Urreta, 1989), so the specimen needs detailed
restudy, but if it pertains to Erymidae rather than Astacida, then it indicates that a
lineage of erymid lobsters colonized terrestrial environments, possibly before true
(monophyletic) crayfish. Some older analyses (reviewed in Rode & Babcock, 2003)
postulated crayfish origins within Erymidae, but more recent phylogenetic analyses
(Devillez, Charbonnier & Barreil, 2019; Karasawa, Schweitzer & Feldmann, 2013;
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Rode & Babcock, 2003; Schram & Dixon, 2004; Stern & Crandall, 2015) have
recovered (a frequently paraphyletic) Erymidae with members at varying distances
from Astacida. If those hypothesized phylogenetic relationships are correct, then no
erymid can, in a monophyletic sense, be considered a crayfish, even if it was a freshwater
taxon. But regardless of semantics or phylogenetic relationships, crayfish and erymid
morphological similarities suggest that their locomotory traces might be indistinguishable,
making a definitive attribution of SGDS 1290 impossible.

A crayfish or crayfish-like trace maker for SGDS 1290 is tenable both chronologically
and ecologically. As mentioned above, multiple crayfish-like morphotypes have been
found in the Upper Triassic Chinle Formation of Arizona and Utah (Hasiotis, 1995;Miller
& Ash, 1988; Santucci & Kirkland, 2010). The Moenave Formation overlies the Chinle
Formation in southwestern Utah, so crayfish or crayfish-like decapods plausibly could
have been present in and around freshwater Lake Whitmore both geographically and
stratigraphically. As-yet-undescribed, crayfish or crayfish-like body fossils also have
been recovered from lacustrine sediments of the uppermost Triassic Chatham Group
(Newark Supergroup) in North Carolina (Olsen & Huber, 1997), attesting to how
widespread such arthropods were in terrestrial environments in North America even prior
to the Jurassic.

Ichnotaxonomy
To date, no fossil arthropod locomotory ichnotaxon has been attributed definitively to a
crayfish or crayfish-like trace maker. Several such ichnotaxa have been attributed, for
various reasons, to crustaceans (Braddy, 2003; Gand et al., 2008; Lima, Minter & Netto,
2017; Pirrie, Feldmann & Buatois, 2004; Savage, 1971;Walker, Holland & Gardiner, 2003);
additionally, some purported crustacean tracks have not been assigned to particular
ichnotaxa (Imaizumi, 1967; Karasawa, Okumura & Naruse, 1990; Matsuoka et al., 1993),
including mortichnial trackways leading to Eryma, Eryon, and Mecochirus lobster body
fossils from the marine, Upper Jurassic lithographic limestones of Germany (Glaessner,
1969: fig. 243A; Seilacher, 2008: fig. 2; Viohl, 1998: fig. 6). None of these German taxa
are crayfish, though morphological similarities of Eryma and Mecochirus to crayfish
might mean that they would have produced indistinguishable locomotory ichnofossils
during normal, forward locomotion. None of their traces have been granted detailed
description or ichnotaxonomic assignment.

Only three locomotory ichnotaxa have been attributed specifically to crayfish. First,
Heidtke (1990) erected Pollichianum repichnum for Early Permian ichnofossils from
Germany that he attributed to the “crawfish” (in the English abstract; “Krebses” in the
German abstract) Uronectes fimbriatus, also from the Early Permian of Germany.
However, Uronectes has long been recognized as a syncarid (Brooks, 1962; Calman, 1934;
Perrier et al., 2006), not an astacidan, or even a decapod, so the term appearing in the
English abstract likely is a simple translation error. Furthermore, however, P. repichnum is
not differentiable from the resting trace (cubichnion) P. cubichnum (O’Brien, Braddy &
Radley, 2009) and therefore is a junior synonym and is not a locomotory trace. In any case,
Pollichianum is morphologically quite unlike both SGDS 1290 and experimentally
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generated crayfish traces (Fairchild & Hasiotis, 2011). Second, Bolliger & Gubler (1997)
hypothesized that their novel, early Miocene ichnospecies Hamipes molassicus was
made by a buoyed (presumably swimming) crayfish. Getty (2018) referred these specimens
to Conopsoides; later, Getty & Burnett (2019) suggested that at least some of the specimens
may pertain to Acanthichnus, and they differ from SGDS 1290 for the same reasons
outlined above for Acanthichnus. Third,De Gibert et al. (2000) attributed Early Cretaceous,
Spanish specimens that they assigned to Hamipes didactylus to crayfish. Getty (2018)
attributed these tracks to Bifurculapes and maintained a crustacean track maker for
H. didactylus, but was not more specific. However, neither Bifurculapes nor Hamipes
resemble experimentally generated crayfish traces (Fairchild & Hasiotis, 2011), or any
of the mortichnial decapod traces, and thus are unlikely to have been made by a
crayfish-like decapod, at least while walking. Lastly, we also note that unnamed
trackways attributed to crayfish from the Upper Triassic Chinle Formation of Utah
were mentioned, but not described, by Hasiotis (1991); Fairchild & Hasiotis (2011) did
not note whether or not these were similar to their experimentally generated traces.
Additionally, an unnamed “crayfish locomotion trace” was figured, but not described,
by Rainforth & Lockley (1996: fig. 1b); it does not resemble either SGDS 1290 or
experimentally generated crayfish traces (Fairchild & Hasiotis, 2011).

As detailed above, SGDS 1290 does not fit neatly into any existing ichnospecies of
Siskemia. Whether or not to place it in a novel ichnospecies, or even ichnogenus, is,
therefore, an open question. Bertling et al. (2006), Gaillard (2011b) and Minter, Braddy &
Davis (2007) provided solid criteria for the erection of new ichnotaxa, the latter particularly
for arthropods. One criterion is that a new ichnotaxon ideally should be represented by a
substantial number of specimens that demonstrate behavioral and substrate-based
morphological variation; this prevents erecting several ichnotaxa for minor, readily
explained variations in trace morphology. SGDS 1290, as a singular specimen, certainly
does not meet that criterion, but Minter, Braddy & Davis (2007) also allowed that truly
unique morphologies exhibited by singular specimens can support an ichnotaxon.
In terms of uniqueness, another criterion is whether or not a new morphotype falls onto a
continuum, established or hypothetical, of morphologies within an established ichnotaxon.
SGDS 1290 is closest morphologically to ichnospecies of Siskemia, but has several
distinctions from any established ichnospecies therein, particularly the thick and
undulating paramedial impressions and the wider spacing between the paramedial
impressions and consequent closer appression of the paramedial impressions to the tracks:
the average ratios of the distance between a paramedial impression and its flanking track
to the distance between the medial edges of the paramedial impressions are 1.34 for
S. bipediculus, 1.75 for S. elegans, and 0.80 for S. latavia compared to 0.31 for SGDS 1290
(see Supplemental Material). No published specimen of Siskemia demonstrates the
features of SGDS 1290; nor do Siskemia-like traces made by archaeognathan insects in
experimental conditions (Getty et al., 2013). Thus, SGDS 1290 does not appear to fall
within the established Siskemia continuum. The greater prominence (depth) of the
paramedial impressions of SGDS 1290 than their associated tracks suggests either a trace
maker with heavier tail elements than the gonostyli of an archaeognathan insect or an
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archaeognathan trace maker with unusually large styli adopting an unusual posture
(possibly partly buoyant), flexing its caudal region downward to create deep styli
impressions but not deep track impressions. We consider the latter unlikely; thus,
SGDS 1290 does not appear to fall within a hypothetical Siskemia continuum, either.
However, SGDS 1290 falls within the continuum of trace morphologies made by extant
crayfish in experimental conditions (Fairchild & Hasiotis, 2011). No philosophical basis
has been established for the recognition of novel ichnotaxa on the basis of comparison
with traces made by extant organisms; only by comparison with fossil ichnotaxa because
extant traces cannot be the basis for an ichnotaxon (Bertling et al., 2006; International
Commission on Zoological Nomenclature, 1999).

SGDS 1290 clearly is morphologically distinctive. Lacking a sufficient number of
specimens with which to determine ranges of morphological variation, however, erecting a
new ichnogenus for it clearly is unwarranted. Yet we feel that its unique morphology
warrants ichnotaxonomic distinction. Given its distant similarity to Siskemia ichnospecies,
we therefore herein place it in a new ichnospecies of that ichnogenus.

SYSTEMATIC ICHNOLOGY
Ichnofamily Protichnidae Uchman, Gaździcki & Błażejowski, 2018

Ichnogenus Siskemia Smith, 1909

Type Ichnospecies Siskemia elegans Smith, 1909

Diagnosis. Trace consisting of parallel rows of grouped tracks on either side of two
parallel, paramedial impressions. Each group of tracks consists of up to four imprints
arranged in series, transversely or obliquely to the midline of the trackway (following
Walker, 1985).Walker (1985) further specified that Siskemia was diagnosed by paramedial
impressions with maximum widths of 0.5 mm, but following Bertling et al. (2006), size is
not a suitable ichnotaxobase.

Ichnospecies Siskemia eurypyge isp. nov.
Figures 3A and 3B

Diagnosis. Two parallel, undulating, paramedial impressions flanked externally by
closely appressed sets of 1–3 small, ovoid to tapered to elongate tracks; tapered and
elongate tracks have long axes parallel or oblique to the trackway axis. Track sets are
oriented perpendicular to the trackway axis. Left and right tracks are arranged in a
staggered to alternating pattern. Paramedial impressions are mediolaterally thick, but
discontinuous, tapering out of existence briefly in some places. Impressions are gently
undulating (low amplitude). The paramedial impressions lie far from the trackway axis,
generally closer to (and sometimes in contact with) the tracks than to the midline axis or
each other.

Holotype. Natural cast specimen SGDS 1290, St. George Dinosaur Discovery Site, St.
George, Utah, USA.
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Type locality. “Bug Crossing Quarry,” SGDS Loc. 87, St. George Dinosaur Discovery Site,
St. George, Washington County, Utah, USA (Fig. 1).

Stratigraphy. “Top Surface” of Johnson Farm Sandstone Bed (unit 40 of Kirkland et al.,
2014), Whitmore Point Member, Moenave Formation (Fig. 2). Hettangian, Lower Jurassic.

Derivation of name. From the Greek εyρyς (eurys), meaning “broad” or “wide,” and πyγή
(pyge), meaning “rump.” The ichnospecies name refers to the wider spacing between the
paramedial impressions, made by the rear end of the trace maker, than those of other
Siskemia ichnospecies.

CONCLUSIONS
SGDS 1290, from the Lower Jurassic (Hettangian) Whitmore Point Member of the
Moenave Formation, consists of two paramedial impressions that are flanked by staggered
to alternating sets of tapered or elongate tracks. The traces closely resemble those made
by extant crayfish (Fairchild & Hasiotis, 2011) and are similar in components to traces
placed in the ichnogenus Siskemia (Smith, 1909; Walker, 1985). In previously recognized
Siskemia ichnospecies, the paramedial impressions are thin, relatively straight, and closely
appressed to the trackway axis. But in SGDS 1290, paramedial impressions have the
opposite morphology and arrangement: they are thick and lie closer to their tracks than
the medial axis of the trackway. SGDS 1290 paramedial impressions also undulate,
which is not seen in any previously known Siskemia ichnospecies. Thus, we erect a new
ichnospecies, Siskemia eurypyge, to house SGDS 1290 and as-yet undiscovered traces with
this morphology and arrangement.

Placing SGDS 1290 in Siskemia extends the known range of the ichnogenus into the
Early Mesozoic. All other reported occurrences of the ichnogenus are Paleozoic in age:
Early Silurian (McNamara, 2014; Trewin & McNamara, 1994), Late Silurian (Davies,
Sansom & Turner, 2006), Early Devonian (Pollard, Steel & Undersrud, 1982; Pollard &
Walker, 1984; Smith, 1909; Walker, 1985), and Pennsylvanian (Getty et al., 2013).
However, age should not be a factor in ichnotaxonomy (Bertling et al., 2006). At least
some Paleozoic Siskemia traces likely were made by archaeognathan insects (Getty et al.,
2013), which are extant and for which body fossils are known as early as the Devonian.
Based on their similarity to traces made by extant crayfish (Fairchild & Hasiotis, 2011),
S. eurypyge likely was made by a crayfish or crayfish-like crustacean, for which body fossils
are known as early as the Late Triassic and which also are extant. Thus, Siskemia ispp.
traces would be expected to occur from Early Silurian to Recent, but thus far have not been
documented except for the occurrences noted above.

SGDS 1290 expands the ichnological record of crayfish and crayfish-like animals to
include repichnia in addition to domichnia. Fossil burrows (Camborygma ispp.), usually
attributed to crayfish, are well known at some sites and in some formations (Hasiotis, 1995;
Hasiotis & Bown, 1996; Hasiotis & Honey, 1995; Hasiotis & Mitchell, 1993; Hasiotis,
Kirkland & Callison, 1998; see Schram & Dixon (2004) concerning pre-Cretaceous
examples), attesting to the presences—and, in some places, abundances—of crayfish
and/or crayfish-like taxa in Mesozoic–Cenozoic freshwater paleoecosystems.
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Yet locomotion traces made by these burrowers oddly have never before been documented
as ichnofossils, possibly because they infrequently venture far from their burrows in
substrates suitable for registering locomotory traces, as with modern crayfish (Martin,
2013). SGDS 1290 is the first documented locomotory ichnofossil made by a freshwater
crayfish or crayfish-like organism, as well as the first fossil evidence of such a taxon in
the Lower Jurassic Moenave Formation and indeed the Early Jurassic of the southwestern
US. The absence of Camborygma burrows in the Moenave Formation that would have
been made by the SGDS 1290 trace maker is puzzling, and may be a consequence of a lack
of recognition; alternatively, the producer of SGDS 1290 was not a burrower.
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