

# Genome-wide identification and analysis of cystatin family genes in Sorghum (Sorghum bicolor L.)

Jie Li <sup>Corresp., 1</sup>, Xinhao Liu <sup>2</sup>, Jingmei Wang <sup>2</sup>, Junyan Sun <sup>1</sup>, Dexian He <sup>Corresp. 3</sup>

Corresponding Authors: Jie Li, Dexian He Email address: IjIjlxh123@126.com, hedexian@126.com

To set a systematic study of the Sorghum cystatins (SbCys) gene family, a comprehensive genome-wide analysis of the SbCys family genes was performed by bioinformatics-based methods. In total, 18 SbCys genes were identified in Sorghum, which distributed unevenly on chromosomes, and two genes were involved in tandem duplication event. All SbCys genes had similar exon/intron structure and motifs, indicating their high evolutionary conservation. Transcriptome analysis showed that 16 SbCys genes were expressed in at least one tested tissues, and most genes displayed higher expression levels in reproductive tissues than in vegetable tissues, indicating that the SbCys genes participated in the regulation of seed formation. Furthermore, the expressions of 7 SbCys genes were induced by *Bipolaris sorghicola* infection, while only 2 genes were responsive to aphid infestation. In addition, quantitative real-time polymerase chain reaction (gRT-PCR) confirmed that 17 SbCys genes were induced by one or two abiotic stresses (dehydration, salt shock and ABA stresses). In addition, the interaction network indicated that SbCys proteins were associated with several biological processes, including seed development and stress responses. Notably, the expression of SbCys4 was up-regulated under biotic and abiotic stresses, suggesting its potential roles in mediating the response of Sorghum to adverse environmental impact. Our results provide new insights into the structural and functional characteristics of SbCys gene family, which laid the foundation for better understanding the roles and regulatory mechanism of Sorghum cystatins in seed development and responses to different stress conditions.

<sup>&</sup>lt;sup>1</sup> College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, China

<sup>&</sup>lt;sup>2</sup> Central Laboratory, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, China

<sup>&</sup>lt;sup>3</sup> Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, China



### Genome-wide identification and analysis of cystatin family genes

| 2  | in Sorghum (Sorghum bicolor L.)                                                                                               |
|----|-------------------------------------------------------------------------------------------------------------------------------|
| 3  | Jie Li <sup>1</sup> , Xinhao Liu <sup>2</sup> , Jingmei Wang <sup>2</sup> , Junyan Sun <sup>1</sup> , Dexian He <sup>3*</sup> |
| 4  |                                                                                                                               |
| 5  | Author affiliation:                                                                                                           |
| 6  | 1 College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang, Henan 464001,                                    |
| 7  | China                                                                                                                         |
| 8  | 2 Central Laboratory, Xinyang Agriculture and Forestry University, Xinyang, Henan 464001,                                     |
| 9  | China                                                                                                                         |
| 10 | 3 Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and                                   |
| 11 | Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, Henan,                                     |
| 12 | 450002, China                                                                                                                 |
| 13 |                                                                                                                               |
| 14 | *Corresponding author: Dexian He                                                                                              |
| 15 | College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, 450002, China                                           |
| 16 | E-mail: <u>hedexian@126.com</u>                                                                                               |
| 17 |                                                                                                                               |
| 18 |                                                                                                                               |
| 19 |                                                                                                                               |
| 20 |                                                                                                                               |
| 21 |                                                                                                                               |
| 22 |                                                                                                                               |



24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

#### **ABSTRACT**

To set a systematic study of the Sorghum cystatins (SbCys) gene family, a comprehensive genome-wide analysis of the SbCys family genes was performed by bioinformatics-based methods. In total, 18 SbCvs genes were identified in Sorghum, which distributed unevenly on chromosomes, and two genes were involved in tandem duplication event. All SbCvs genes had similar exon/intron structure and motifs, indicating their high evolutionary conservation. Transcriptome analysis showed that 16 SbCys genes were expressed in at least one tested tissues, and most genes displayed higher expression levels in reproductive tissues than in vegetable tissues, indicating that the SbCys genes participated in the regulation of seed formation. Furthermore, the expressions of 7 SbCys genes were induced by Bipolaris sorghicola infection, while only 2 genes were responsive to aphid infestation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) confirmed that 17 SbCys genes were induced by one or two abiotic stresses (dehydration, salt shock and ABA stresses). In addition, the interaction network indicated that SbCys proteins were associated with several biological processes, including seed development and stress responses. Notably, the expression of SbCvs4 was upregulated under biotic and abiotic stresses, suggesting its potential roles in mediating the response of Sorghum to adverse environmental impact. Our results provide new insights into the structural and functional characteristics of SbCys gene family, which laid the foundation for better understanding the roles and regulatory mechanism of Sorghum cystatins in seed development and responses to different stress conditions.

44

45



47

#### INTRODUCTION

Cystatins are competitive and reversible inhibitors of cysteins proteases from families C1A and 48 C13, which have been identified in many plant species (Martinez and Diaz, 2008; Zhao et al. 49 2014). Based on their primary sequence homology, three signature motifs include a QxVxG 50 51 reactive site, a tryptophan residue (W) located downstream of the reactive site, and one or two glycine (G) residues in the flexible N terminus of the protein. These three motifs are important 52 for the cystatin inhibitory mechanism (Jenko et al. 2003; Stubbs et al. 1990). In addition, a 53 consensus sequence ([LVI]-[AGT]-[RKE]-[FY]-[AS]-[VI]-x-[EDQV]-[HYFQ]-N) in cystatins is 54 conformed to a predicted secondary α-helix structure (Margis et al. 1998). Most plant cystatins 55 are small proteins with a molecular mass in the 12- to 16-kD range (Margis et al. 1998). Some 56 plant cystatins contain a C-terminal extension that raises their molecular weights up to 23 kDa, 57 are thought to be involved in the inhibition of cysteine protease activities in the peptidase C13 58 59 family (Martinez et al. 2007; Martinez and Diaz, 2008). The principal functions of plant cystatins are related to the regulation of endogenous 60 cysproteases during plant growth and development, senescence, and programmed cell death 61 62 (Belenghi et al. 2010; Díazmendoza et al. 2014; Zhao et al. 2014). Additionally, Plant cystatins have been used as effective molecules against different pests and pathogens (Martinez et al. 63 2016). For example, several publications reported the inhibition of recombinant cystatins on the 64 65 growth of some pests and fungi (Martinez et al. 2005; Lima et al. 2015). Tomato plants overexpressing the wheat cystatin *TaMDC1* displayed a broad stress resistance for bacterial pathogen, 66 and the defense responses were mediated by methyl jasmonate and salicylic acid (Christova et al. 67 68 2018). The inhibition of amaranth cystatin on the digestive insect cysteine endopeptidases was



observed by Valdés-Rodríguez et al. (2015). Plant cystatins are also involved in the responses to 69 abiotic stresses, such as over-expression of MpCYS4 in apple delayed natural and stress-induced 70 leaf senescence (Tan et al. 2017). Song et al. (2017) found that the expression of AtCYS5 was 71 induced by heat stress (HS) and exogenous ABA treatment in germinating seed, furthermore, 72 over expression of AtCYS5 enhanced HS tolerance in transgenic Arabidopsis. 73 To date, plant cystatin family genes had been well described in several plant species such as 74 Arabidopsis, rice, soybean, wheat, and Populus trichocarpa (Martinez and Diaz, 2008; Wang et 75 al. 2015; Yuan et al. 2016; Dutt et al. 2016). However, a genome-wide study of cystatins family 76 genes in Sorghum (Sorghum bicolor L.) has not yet been performed. Sorghum is the world's fifth 77 biggest crop (after rice, wheat, maize, and barley), belonging to a C4 grass that grows in arid and 78 semi-arid regions (Taylor et al. 2010). Its drought tolerance is a consequence of morphological 79 and anatomical characteristics (i.e., thick leaf wax, deep root system) and physiological 80 responses (i.e., stay-green, osmotic adjustment), is considered as a plant model for drought 81 tolerance in genomic research (Sunita et al. 2011). Recently, the completion of the whole 82 genome assembly of Sorghum (Sorghum bicolor L.) makes it possible to identify and analyze 83 cystatin family genes in Sorghum (Paterson et al. 2009). In this study, we aimed to perform a 84 85 genome-wide identification of SbCys family genes in Sorghum and analyze their phylogeny, conserved motifs, structure, cis-elements, and expression profile in different tissues. We also 86 87 explored the expression patterns of SbCys genes in response to biotic and abiotic stresses. The 88 results may lay a foundation for further functional analyses of cystatin genes.

89

90

91

#### MATERIALS AND METHODS

#### Identification of SbCys family members in Sorghum genome



The identification of SbCys candidates was conducted according to the methods of Lozano et al. 92 (2015) with some modification. The cystatin sequences of Arabidopsis, rice, and barely were 93 94 downloaded from TAIR (http://www.Arabidopsis.org), the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/index.shtml), and Ensembl database (http://plants.ensembl.org), 95 respectively. The whole-genome sequence of Sorghum was downloaded from Ensembl database 96 database versions missing!! (<a href="http://plants.ensembl.org">http://plants.ensembl.org</a>). Then predicted proteins from Sorghum genome were scanned using 97 HMMER v3 (http://hmmer.org/) using the Hidden Markov Model (HMM) profile of cystatin 98 (PF00031) from Pfam protein family database (http://pfam.xfam.org/) (Finn et al. 2011). From 99 the proteins obtained using the raw cystatin HMM, a high-quality protein set with a cut-off e-100 value < 1 × 10<sup>-10</sup> was aligned and used to construct a Sorghum specific cystatin HMM using 101 hmmbuild from the HMMER v3 suite. Then all proteins with e-value < 0.01 were selected by the 102 new Sorghum specific HMM. Cystatin sequences were further filtered based on the closest 103 homolog from Arabidopsis, rice and barely using ClustalW and the UNIREF100 sequence 104 105 database. Proteins without typical domain (Aspartic acid proteinase inhibitor) and reactive site motif (QxVxG) were removed from posterior analysis. 106 107 Sequence alignment, structure analysis, and phylogenetic tree construction 108 The Multiple Expectation for Motif Elicitation (MEME) program was used to identify conserved motifs shared among SbCys proteins. The parameters of MEME were as follows: maximum 109 110 number of motifs, 10; optimum width, between 6 and 50; and number of repetitions, any. The three-dimensional structures of Sorghum cystatins were modelled by the automated SWISS-111 112 MODEL program (http://swissmodel.expasy.org/interactive) (Peitsch 1996). The known crystal structure of rice oryzacystatin I (OC-I) (Nagata et al. 2000) and SiCYS (Hu et al. 2015) were 113 114 used to construct the homology-based models. Structure analysis was conducted by the RasMol



- 2.7 program (Sayle and Milner-White 1995).
- A phylogenetic tree was constructed using MEGA X with the maximum likelihood method
- according to the Whelan and Goldman + freq. Model. Bootstrap analysis was performed by 1000
- 118 replicates with the p-distance model. The phylogenetic tree was visualized and optimized in
- Figtree (http://tree.bio.ed.ac.uk/software/figtree/).

#### 120 Transcript structures, chromosomal location and gene duplication

- 121 The genomic structure of each SbCys gene was derived from the alignment of their coding
- sequence to their corresponding genome full-length sequence. The diagrams of these SbCys
- genes were drawn by the Gene Structure Display Server (GSDS, http://gsds.cbi.-pku.edu.cn/)
- 124 (Hu et al. 2014). The chromosomal locations of SbCys genes were retrieved from the
- Sorghum bicolor NCBIv3 map. The genes were plotted on chromosomes using the Map
- Gene2chromosome (MG2C, version 2.0) tool (http://mg2c.iask.in/). Gene duplication events of
- 127 SbCys family genes were investigated according to the following two criteria: (1) the alignment
- covered > 75% of the longer gene, (2) the aligned region had an identity > 75%, (3) located in
- less than 100 kb single region or separated by less than five genes (Gu et al. 2002). For
- microsynteny analysis, the CDS sequence of every cystatin from Arabidopsis, barley, rice, and
- Sorghum was used as the query to search against all other cystatins using NCBI blast software
- with e-value  $\leq 1e^{-10}$ . The Circos software was used to display the results of collinearity gene
- pairs (Krzywinski et al. 2009).

#### Calculation of Ka and Ks

134

- To assess the degree of natural selection on SbCys genes, the rate ratio of Ka (nonsynonymous
- substitution rate) to Ks (synonymous substitution rate) was calculated using KaKs Calculator 2.0
- 137 (Zhang et al. 2006). The Ka/Ks ratio > 1, < 1, or = 1 indicates positive, negative, or neutral



- evolution, respectively (Yadav et al. 2015).
- 139 Promoter analysis of SbCys genes
- To investigate the *cis*-regulatory elements in a promoter region, the upstream sequences (1.5 kb)
- 141 of the start codon in each SbCys gene were scanned in the PlantCARE database
- 142 (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) and New PLACE
- 143 (https://www.dna.affrc.go.jp/PLACE/?action=newplace).
- 144 Analysis of interaction networks of the SbCys proteins
- 145 The functional interacting network models of SbCys proteins were integrated using the web
- STRING program (http://strin g-db.org/) based on an Arabidopsis association model; the
- 147 confidence parameters were set at a 0.40 threshold, the number of interactors was set to five
- interactors. Arabidopsis AtCys proteins were mapped to Sorghum SbCys proteins based on their
- 149 homologous relationship, and the interaction network of SbCys proteins was drawn by
- 150 Cytoscape v3.6.0.
- 151 Expression analysis of *SbCvs* genes under biotic stresses
- 152 The RNA-Seq data used for investigating the expression patterns of SbCys genes in various
- tissues were downloaded from NCBI SRA (Sequence Read Archive) database (ERP024508)
- 154 (Wang et al. 2018). Root, shoot, and whole organism were collected at 14 days after germination.
- Embryo, endosperm and pericarp were collected at 20 days after pollination. Pollen samples
- were collected at booting stage. Inflorescences were collected according to the sizes: 1-5 mm, 5-
- 157 10 mm, and 1-2 cm. Three biological replicates were performed for each plant tissue. RNA was
- sequenced using the Illumina HiSeq 2500 system to generate 250 bp pair-end reads.
- 159 RNA-seq data of biotic stresses were obtained from two experiments. The first experiment
- measured the transcriptome response of a resistant Sorghum (Sorghum bicolor L. Moench)



infected with *Bipolaris sorghicola* (DRP 000986) (Yazawa et al. 2013). RNA samples were collected at 0, 12 and 24 hours post-inoculation with one biological replicate. RNA-seq was run using Illumina technology to give 100-base-pair single-end reads on a HiSeq2000 system. The second study measured changes in the transcriptome of Sorghum leaves infested by sugarcane aphid (Tetreault et al. 2019). The RNA-seq data were downloaded from the NCBI SRA database (SRP162227). In this study, two treatments (infested and control) were arranged and two Sorghum genotypes (resistant cultivar RTx2783 and susceptible cultivar BCK60) were used. Leaf samples were collected from treated and control plants at 5, 10 and 15 days post sugarcane aphid infestation. Three biological replicates were performed for all treatment and time combinations. RNA was sequenced using the Illumina Hiseq 2500 platform to generate 100 bp single end reads. The accession numbers and sample information were listed in Table S1. The differential expression of *SbCys* genes were investigated by Hisat2 (http://kim-lab.org/), Htseq (http://www.htseq.org/), and DESeq2 (R package) based on the RNA-seq data (Wen, 2017). The  $p \le 0.05$  and  $|\log FC| \ge 1.5$  were set as the cut-off criterion.

#### Plant materials and treatments

Seed of Sorghum (*Sorghum bicolor* L. cv. Jinza 35) were surface sterilized (15 min in 4% NaClO), washed with distilled water several times, and transferred to moist germination paper for 3 days in an incubator at 25 °C. These seedlings were grown in holes of foam floating plastic containers (30 seedlings per container) with constant aeration in Hoagland solution in a growth room with 14 h/30 °C light and 10 h/22 °C dark regime. The nutrient solution was routinely changed every 3 days. At the three-leaf stage (the juvenile phase (Hashimoto et al. 2019)), abiotic stresses including ABA, salinity, and dehydration treatments were initiated according to the procedures described in previous reports (Dugas et al. 2011; Wang et al. 2012; Yan et al.



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

2017). The plants were transferred quickly to the nutrient solution containing 0.1 mM ABA (dissolved in ethanol), 5  $\mu$ L ethanol (control for ABA treatment), 250 mM sodium chloride (NaCl), or 15% (W/V) polyethylene glycol (PEG) 6,000. The central part of flag leaves from randomly selected Sorghum plants were harvested respectively at 0, 12 and 24 hours post-treatment per trial, and immediately frozen in liquid nitrogen and stored at -80 °C prior to RNA isolation. For each treatment at a given time, three biological replicates were used. The leaf samples of 10 plants came from the same container for one biological replicate. That is, three containers were used for three biological replicates respectively.

#### RNA extraction and qRT-PCR analysis

Total RNA of 100 mg leaf samples was isolated using the "TaKaRa MiniBEST Plant RNA Extraction" Kit (TaKaRa, Dalian, China) following the manufacturer's instructions. Purity and concentration of RNA samples were evaluated by measuring the A<sub>260</sub>/A<sub>230</sub> and A<sub>260</sub>/A<sub>280</sub> ratios. In order to digest the genomic DNA, the RNAs were treated with RNase-free DNase I. Reverse transcription was performed according to the kit instruction (Promega, Madison, USA). Primer pairs for qRT-PCR analysis designed by Primer3Plus program were (http://www.bioinformatics.nl), and shown in Table S2. A 20 µl reaction volume containing 0.4 μl of each primer (forward and reverse), 2 μl 10-fold diluted cDNA, 7.2 μl of nuclease-free water and 10 µl of GoTag® qPCR Master Mix (Perfect Real Time; Promega). PCR reaction included one cycle at 95 °C for 3 min, followed by 39 cycles of 95 °C for 15 s, 60 °C for 30s and 72 °C for 20s. The reactions were conducted using CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories, Inc.). Three independent biological replicates and two technical replicates of each sample were performed. Gene-specific amplification of both reference and cystatin genes were standardized by the presence of a single, dominant peak in the qRT-PCR dissociation curve



analyses. All data were analyzed by CFX Manager Software (Bio-Rad Laboratories, Inc.). The efficiency range of the qRT-PCR amplifications for all of the genes tested was between 91% and 100%. The average target (SbCys) cT (threshold cycle) values were normalized to reference ( $\beta$ -actin) cT values. The fold change between treated sample and control was calculated using the slightly modified  $2^{-(\Delta\Delta Ct)}$  method as described by Kebrom et al. (2010). A probability of  $p \le 0.05$  was considered to be significant.

#### **RESULTS**

#### Identification and analysis of SbCys genes

To extensively identify all of SbCys family members in Sorghum, we constructed a Sorghum-specific HMM for the SbCys domain to scan Sorghum genome, and 22 gene candidates were identified. After removing the repetitive and/or incomplete sequences, the rest of SbCys sequences were submitted to Pfam (http://pfam.xfam.org/) and SMART (http://smart.embl-heidelberg.de/) to confirm the conserved domain. Finally, a total of 18 non-redundant SbCys proteins were identified and were serially renamed from *SbCys1* to *SbCys17* according to their location and order in chromosomes. Gene names, gene IDs, chromosomal locations, amino acid numbers and protein sequences were listed in Table S3. The average length of these SbCys proteins was 148 amino acid residues and the length mainly centered on the range of 105 to 240 amino acid residues.

Chromosome distribution analysis showed that the number of *SbCys* genes on each chromosome is different (Fig. 1). Chromosome 1 had the greatest number of *SbCys* genes (9 genes), followed by chromosomes 9 and 3 (4 and 3 genes, respectively). Chromosomes 2 and 4 had just one *SbCys* gene, whereas chromosomes 5, 6, 7, 8 and 10 had no *SbCys* genes. Half of *SbCys* genes



were distributed on chromosome 1, suggesting that *SbCys* genes may have a chromosomal preference. proposed reason?

#### Gene structure analysis of SbCys genes

The analysis of exon-intron structure can provide significant information about the gene function, organization and evolution of multiple gene families (Xu et al. 2012). Schematic structures of *SbCys* genes from Sorghum were obtained using the GSDS program (Fig. 2). Among the *SbCys* genes, more than half (12, 66.7%) were intronless, three genes (*SbCys11*, *SbCys15*, and *SbCys16*) had one intron, two genes (*SbCys14* and *SbCys17*) had two introns, and one gene (*SbCys10*) had three introns. These six *SbCys* genes with one or more introns were clustered into one clade, suggesting the evolutionary event may effect on the gene structure (Altenhoff et al. 2012).

#### Sequence alignment, protein motifs analysis, and structural predication of SbCys

Alignments of SbCys sequences were carried out to search for amino acid variants that could lead to differences in their inhibitory capability for cysteine proteases. The results were shown in Fig. 3a. N-terminal and C-terminal extensions with varying lengths that presented in several SbCys proteins were not displayed in the comparison. These predicted structures shared many identical residues including  $\alpha$ -helix and the four  $\beta$ -sheets ( $\beta$ 2-5) (Fig. 3a). Analysis of conserved motifs of SbCys proteins also revealed that some typical conserved motifs could be detected in most SbCys proteins, such as motif 1, 2, 3, and 4, form a fundamental structural combination (Fig. 3b and 3c). Motif 1 was conserved in the central loop region with a consensus sequence of "QxVxG" and could be detected in most SbCys proteins, which played an important role in the inhibitory capacity of cystatins towards their target cysteine proteases (Meriem et al. 2010). Motif 2 contained a particular consensus sequence ([LVI][GA][RQG][WF]AV) that conformed to a predicted secondary  $\alpha$ -helix structure (Martinez et al. 2009). The other two typical motifs for



SbCys proteins, motif 3 (V[WY][EVG]KPW) and motif 4 ([RK]xLxxF), were firstly described 253 in tobacco (Zhao et al. 2014), were also detected in most SbCys proteins, indicating their 254 conserved and common role in both dicots and monocots. Motif 5 existed only in 3 SbCys family 255 members (SbCys5, SbCys8, and SbCys15,). Details of the 5 conserved motifs were shown in Fig. 256 S1. 257 258 The predicted three-dimensional structures of the Sorghum cystatins were established using the SWISS-MODEL program based on the known crystal structure of OC-I and SiCYS (Fig. 4). 259 Although these structures were predicted with variable degrees of accuracy, all of Sorghum 260 cystatins shared similar protein structure with rice OC-I (Fig. 4a), excepting SbCys10 that shared 261 similar protein structure with SiCYS (Fig. 4b). In additon, SbCys14 showed a significant 262 variation in its predicted three-dimensional structures, an extra  $\alpha$ -helix occurred in the C-terminal 263 region, which probably due to the cystatin contained a C-terminal extension. Two important 264 motifs (the conserve QxVxG motif and W residue) of Sorghum cystatins involved in the 265 interaction with the target cysteine enzymes were also shown in Fig. 4. The predicted structure of 266 SbCys13 showed some distortions in the region of the β2 sheet, probably due to the insertion of a 267 methionine in the first position of the conserved QxVxG motif. 268

#### Phylogenetic analysis of SbCys genes

269

270

271

272

273

274

275

Cystatin gene family is highly conserved in both monocots and dicotyledons (Martinez and Diaz, 2008). To investigate the phylogenic relationships of SbCys proteins to other known plant cystatins, a multiple sequence alignment of SbCys sequences to the sequences from *Arabidopsis*, rice, and barley was conducted by the ClustalW program. As showed in Fig. 5, these cystatins were categorized into three groups, including Group I, Group II, and Group III. A total of 21 cystatins were classified to Group I and 6 cystatins from Sorghum. Group II contained 7



cystatins, only one cystatin from Sorghum. The remaining 21 proteins were assigned to Group III and 11 SbCys proteins fell into this group. In addition, some bootstrap values in the phylogenetic tree were low, suggesting that high sequence differentiation in these cystatins occurred. Microsynteny analysis indicated that one orthologous gene pair was identified in the cross of barley and Sorghum, rice and Sorghum, respectively, while no orthologous gene pair between *Arabidopsis* and Sorghum was found (Fig. S2). These data indicated that *SbCys* genes were more closely to those of rice and barley than that of *Arabidopsis*. Interestingly, a pair of *SbCys* genes (*SbCys2-1* and *SbCys2-2*) was confirmed to be tandem duplication in Sorghum (Fig. S2). Analysis of duplicated *SbCys* genes showed that the *Ka/Ks* ratios far less than 1, varying from 0.0976 to 0.5679 (Table S4), indicating that negative selection occurred in the duplication event.

#### Promoter analysis of SbCys genes

In order to obtain useful information on the regulatory mechanism of cystatin gene expression, the 1.5 kb upstream sequences from the translation start sites of *SbCys* genes were submitted into PlantCARE database to detect the *cis*-elements. Various putative plant regulatory elements in the promoter region of *SbCys* genes were shown in Fig. 6 and Table S5. Several potential regulatory elements involved in stress-related transcription factor-binding sites were found, including G-box, W-box, TC-rich repeats, MBS, heat shock elements (HSEs), and ABA-response element (ABRE). The identified *SbCys* genes possessed at least 1 stress-response-related *cis*-element, suggesting that the expressions of *SbCys* genes were related to these abiotic stresses. All of *SbCys* genes had one or more G-box with the exception of *SbCys9*, implying that these *SbCys* genes could be induced by light stress. 14 *SbCys* genes possessed MBS element, ABRE element was found in 12 *SbCys* genes, and HSE element was located in 10 *SbCys* genes. TC-rich repeats and W-boxes were located in 8 genes, respectively. In addition, Skn-1 motif was conserved in



the promoter regions of most *SbCys* genes, indicating these genes were associated with the regulation of seed storage protein gene expression (Strömvik and Fauteux, 2009). The high diversity of the *cis*-acting elements suggested that these *SbCys* genes might have a wide range of functional roles and could be involved in multiple stress responses and growth and development progress (Zhang et al. 2008).

#### Protein interaction network of SbCys proteins

In this study, the interactions of the SbCys proteins were investigated in an *Arabidopsis* association model using STRING software. As shown in Fig. 7, the interaction network of cystatins showed a complex functional relationship. AtCys2 (corresponding to SbCys12) interacted with stress related proteins (AT1G56280, AT3G19580, AT5G67450, and AtCys1) and growth and development related proteins (AT1G63100 and AT5G04340), AtCys1 (corresponding to SbCys11, 15, 16, and 17) interacted with some vacuolar-processing enzyme which involved in processing of vacuolar seed protein precursors into the mature forms, and AtCys5 (corresponding to SbCys1, 2-1, 3, 4, 5, 6, 7, 8, 9, and 13) interacted with several lipid-transfer proteins (AT1G07747, AT1G52415, AT2G16592, AT3G29152, and AT4G12825). The results suggested that cystatins might be associated with many biological processes by protein interactions, such as pollen development, stress responses, and seed maturation (Wang et al. 2012).

#### Expression profile of SbCys genes in different Sorghum tissues

To obtain the spatial and temporal expression patterns of all *SbCys* genes, RNA-seq data (ERP024508) were downloaded to explore the expression levels of *SbCys* genes in different tissues including root, stem, whole organism, pollen, endosperm, embryo, inflorescence (1-5mm, 1-10mm, and 1-2cm), and pericarp. As shown in Fig. 8 and S3, most *SbCys* genes were



expressed in one tissue at least, except for SbCvs13, which were barely expressed in any tissue. The expression patterns of SbCys genes in reproductive tissues were significantly difference from vegetable tissues. Such as SbCvs2-1, SbCvs3, SbCvs4, SbCvs5, SbCvs7, SbCvs9, SbCvs12, and SbCys17 showed relatively higher expression levels in reproductive tissues including pollen, endosperm, embryo, and pericarp than in vegetable tissues, while the expression of SbCvs7 and SbCvs15 were higher in vegetable tissues than in reproductive tissues. It was worth noting that majority of SbCys genes had lower expression levels during inflorescence development excepting for SbCys17 which displayed higher expression pattern. 

#### Expression of SbCys genes under biotic stresses

To gain insight into the potential roles of *SbCys* genes in response to *Bipolaris sorghicola* infection and sugarcane aphid infestation, their relative expression patterns were investigated by using the public transcription data from NCBI SRA database (DRP000986 and SRP162227, respectively). As shown in Fig. 9 and 10, the expression patterns of *SbCys* genes were different under the two biotic stresses. In response to *Bipolaris sorghicola* infection, seven *SbCys* genes were induced and only 2 genes (*SbCys12* and *SbCys13*) were suppressed in infected Sorghum leaves compared with control (Fig. 9a). However, under aphid infestation, four *SbCys* genes (*SbCys4*, *SbCys10*, *SbCys11*, and *SbCys14*) were up-regulated and 3 genes (*SbCys1*, *SbCys3*, and *SbCys17*) were down-regulated relative to control in susceptible Sorghum line (BCK60). In resistant Sorghum line (RTx2783), only two *SbCys* genes (*SbCys4* and *SbCys11*) were induced, and the rest were barely expressed in Sorghum leaves with aphid infection (Fig. 9b and 10). These results might suggest that *SbCys* genes played different roles in responding to pathogen infection and aphid infestation.

#### Expression profiling of SbCys genes under abiotic stresses



346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

We also investigated the expression of SbCvs genes in response to various abiotic stresses including dehydration, salt shock, and ABA (Fig. 11). Under dehydration stress, seven SbCys genes (SbCys4, SbCys5, SbCys6, SbCys9, SbCys10, SbCys11, and SbCys17) were induced to present a significant up-regulation from 0 to 24 h, while the expressions of SbCys2-1, SbCys12, SbCvs15, and SbCvs16 were decreased. Furthermore, the expressions of 4 SbCvs genes (SbCvs1, SbCvs3, SbCvs8, and SbCvs14) displayed an up-down trend from 0 h to 24 h (Fig. 11a). With salt shock treatment, the expressions of SbCys2-1, SbCys3, SbCys4, SbCys8, SbCys10, and SbCys11 were significantly up-regulated at all treatment time points, whereas SbCys16 showed a significant down-regulated trend (Fig. 11b). In addition, SbCys6, SbCys13 SbCys14, SbCys15, and SbCys17 showed up and down expression trends, but SbCys5 displayed down and up expression pattern (Fig. 11b). After exogenous ABA treatment, the expressions of 4 SbCys genes (SbCys2-2, SbCys3, SbCys4, and SbCys7) were significantly up-regulated at all time points, but 9 genes (SbCys1, SbCys2-1, SbCys5, SbCys8, SbCys10, SbCys11, SbCys13, SbCys14, and SbCys17) were down-regulated. Additionally, SbCys12, SbCys15, and SbCys16 displayed an up-down expression trends (Fig. 11c). Interestingly, all SbCys genes were up-regulated in response to one or two stresses except SbCvs4 that was significantly induced under dehydration, salt shock and ABA stresses, suggesting that SbCys4 might play an important role in response to different stress responses.

363

364

365

366

367

#### DISCUSSION

Plant cystatins are a group of intrinsic small proteins, whose members play important roles in diverse biological processes and stress responses (Martinez et al. 2016; Meriem et al. 2010). Recently, a large number of sequence data from different plant species have been uploaded in



GenBank, which provide convenience for us to describe their characteristics, and several 368 cystatins families have been identified from plants, such as rice, soybean and wheat (Wang et al. 369 2015; Dutt et al. 2016; Yuan et al. 2016). However, little is known about cystatin family in 370 Sorghum. In the present study, we identified 18 SbCys genes from Sorghum genome. The 371 number was less than that of B. distachyon genome, where 25 BdCys members were identified 372 (Subburaj et al. 2017). The 18 members in Sorghum was a larger number than found in rice (11 373 genes) and Arabidopsis (7 genes) (Wang et al. 2015), but was similar to soybean (20 members) 374 (Yuan et al. 2016). The difference on the cystatin number might reflect the adaptation of plants 375 to environment. 376 The identified SbCvs genes were unevenly distributed on chromosomes 1, 2, 3, 4, and 9, and half 377 of them were distributed on chromosome 1 (Fig. 1), suggesting that SbCvs genes had a 378 chromosomal preference. The uneven distribution of cystatin genes in chromosomes was also 379 found in B. distachyon genome that the highest number of BdCys genes located in chromosome 1 380 (Subburaj et al. 2017). The phnomenon of chromosomal preference was also observed in *Oryza* 381 sativa genome, but most OsCvs genes were dispersed over two chromosomes, chromosome 1 382 and 3 (Wang et al. 2015). Furthermore, several tandem duplication events occurred at 383 chromosomes 1 of B. distachyon genome (Subburaj et al. 2017). Two tandem duplication events 384 (OsCys4/OsCys5 and OsCys6/OsCys7) were found among OsCys genes, and existed in 385 chromosomes 1 and 3 (Wang et al. 2015). One tandem duplication event (SbCys2-1/SbCys2-2) 386 387 occurred among SbCys genes at chromosome 1 (Fig. S2). The tandem duplication events might cause the distribution patterns of *cystatin* genes on the chromosomes (Li et al. 2017). 388 Eighteen SbCys genes were divided into three groups based on phylogenetic analysis (Fig. 5). 389 390 Some conserved motifs among SbCys proteins had been identified by the alignment of the amino



392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

acid sequences (Fig. 3). However, the conservation was accompanied with differences in some important amino acids, indicating that SbCys family members might undergo a complex evolutionary history, which would have a significant influence on their respective functions (Abraham et al. 2006). For example, QxVxG motif, could directly enter and interact with the active site of targeted enzymes, were conserved in all SbCys proteins with the exceptions of 5 cystatins (SbCys1, SbCys6, SbCys8, SbCys9, and SbCys13) that were partially modified by the insertion or variation in important residues (Fig. 3a). Furthermore, three SbCys proteins (SbCys8, SbCys9, and SbCys13) showed significant variations with other Sorghum cystatins in their predicted three-dimensional structures (Fig. 4). The variations in vital amino acid residues might result in the change in cystatin inhibitory action (Melo et al. 2003). In addition, two novel motifs, motif 3 (V[WY][EVG]KPW) and motif 4 ([RK]xLxxF), firstly described in tobacco (Zhao et al. 2014), were also identified in the C-terminalin of many SbCys proteins. The contribution of the two new motifs to cystatin inhibitory action needs to be further studied. During past decades, plant cystatins were reported to play essential roles in inhibiting endogenous and exogenous cysteine proteases activities during seed development (Gaddour et al. 2001; Kiyosaki et al. 2007). In the present study, as revealed by RNA-seq data analysis (Fig. 8) and S3), the expression levels of several SbCys family genes were higher in reproductive tissues than in vegetable tissues, which were consistent with the reports that most cystatins were specifically expressed in developing seeds and played a role in seed development (Dutt et al. 2010; Zhao et al. 2014). Moreover, promoter analysis showed that the highly expressed SbCys genes in reproductive tissues possessed endosperm expression related cis-elements (Skn-1 and GCN4 motif) (Fig. 6 and Table S5). Our protein interaction prediction results also showed that several SbCys proteins could interact with many functional proteins (Fig. 7), implying these



Mendoza et al. 2016). 415 Plant cystatins are involved in various biotic stress responses and probably act as defense 416 proteins against pests and pathogen infection (Meriem et al. 2010). At present, some cystatins 417 with insecticidal activity have been isolated from barley, corn, tomato and papaya etc. (Alvarez-418 419 Alfageme et al. 2007; Goulet et al. 2008; Kiggundu et al. 2010), and several cystatins having antifungal activities were also isolated from taro, cacao, and wheat (Christova et al. 2006; 420 Pirovani et al. 2010; Chen et al. 2014). Although studies on insecticidal and antifungal activity of 421 plant cystatins have been well established in vitro, the knowledge about their roles in plants in 422 response to biotic stresses is limited. To explore the properties of SbCvs genes responding to pest 423 and pathogen infection, we conducted the analysis on the expression patterns of SbCvs genes. 424 The results showed that the expressions of most cystatin genes were induced during Bipolaris 425 sorghicola infection, suggesting these cystatins played functions in inhibiting exogenous 426 427 cysteine proteases secreted by pathogens to infect plant tissues (Fig. 9a). Interestingly, for sugarcane arthropods infestation, only two genes (SbCys4 and SbCys11) were up-regulated 428 significantly in susceptible and resistant Sorghum lines (Fig. 9b and 10), the expressions of the 429 430 rest genes were no obvious change or were down-regulated. These differential expression patterns between SbCys genes might suggest that some of them had evolved to inhibit specific 431 432 cysteine proteinases. The exact roles of these SbCys genes in insecticidal and antifungal activity 433 in vivo are worthy to be explored in the further study. Another characteristic of cystatin genes is that they are involved in various abiotic stress 434 responses in different plant species, such as rice, barley, and maize (Gaddour et al. 2001; 435 436 Massonneau et al. 2005; Huang et al. 2007). In Arabidopsis, the expression levels of AtCYS1 and

cystatins were involved in regulating the gene expression of cereal grain storage proteins (Diaz-



438

439

440

441

442

443

444

445

446

447

448

449

450

451

AtCYS2 were enhanced by high temperature and wounding stresses (Hwang et al. 2010). AtCYSa and AtCYSb were also induced by different abiotic stresses such as salt, drought, oxidation and cold stresses (Zhang et al. 2008). Velasco-Arroyo et al. (2018) reported that the silence of barley HvCPI-2 and HvCPI-4 specifically modified leaf responses to drought stress. Wang et al. (2015) observed the significant change in the expression levels of several rice OsCYS genes under cold, drought, salt, and hormone treatments. In the present study, most SbCvs genes were found to have positive or negative responses to dehydration, salt shock, and ABA stresses. Moreover, the interaction results showed that most cystatins could interact with stresses-related proteins, implying that the cystatins played critical roles in response to diverse stress conditions. Notably, the expression of SbCys4 was significantly up-regulated under three stress conditions (Fig. 11), suggesting a specific role of SbCys4 in responding to various stress conditions. Promoter analysis indicated that stress-related cis-elements were widespread in the promoter region of these cystatin genes (Table S5), and SbCys4 possessed plenty of stress-related cis-elements, including G-box, ABRE, HSE, MBS and TC-rich repeats. These results provide an effective reference for the functional verification of the SbCys family genes under abiotic stresses.

452

453

454

455

456

457

458

459

#### CONCLUSIONS

In the current study, we identified 18 *SbCys* family genes in Sorghum genome through a genome-wide survey. The chromosomal localization, conserved protein domain, gene structure, the phylogenetic relationship, as well as the interaction network of these *SbCys* genes was systematically analyzed, revealing special characteristics of *SbCys* family genes in Sorghum. The identified *SbCys* genes displayed an uneven distribution in Sorghum chromosomes. All *SbCys* genes shared similar exon/intron organization and conserved motifs. Phylogenetic analysis



461

462

463

464

465

466

467

468

The variation of amino acids in Sorghum cystatin critical active sites suggested that they might undergo a complex evolutionary process and possess structural and functional divergence. The expression profile of *SbCys* genes in different tissues indicated that most *SbCys* genes were involved in tissue growth and development. Changes in the expression of *SbCys* genes under biotic and abiotic stresses indicated that many *SbCys* genes played important roles in response to unfavorable growth conditions. It was noting that the expression of *SbCys4* was significantly enhanced under biotic and abiotic stresses, suggesting its unique role in mediating the response of Sorghum to adverse environment conditions.

469

470

#### REFERENCES

- Abraham Z, Martinez M, Carbonero P, Diaz I. 2006. Structural and functional diversity within the cystatin gene family of *Hordeum vulgare*. *Journal of Experimental Botany* 57(15):4245-4255 DOI 10.1093/jxb/erl200.
- Altenhoff AM, Studer RA, Robinsonrechavi M, Dessimoz C. 2012. Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs. *PLoS Computational Biology* 8(5):e1002514 DOI 10.1371/journal.pcbi.1002514.
- Alvarez-Alfageme F, Martinez M, Pascual-Ruiz S, Castanera P, Diaz I, Ortego F. 2007.

  Effects of potato plants expressing a barley cystatin on the predatory bug *Podisus*maculiventris via herbivorous prey feeding on the plant. Transgenic Research 16:1-13 DOI

  10.1007/s11248-006-9022-6.
- 482 Belenghi B, Acconcia F, Trovato M, Perazzolli M, Bocedi A, Polticelli F, Ascenzi P,



| 183 | <b>Delledonne M. 2010.</b> AtCYS1, a cystatin from <i>Arabidopsis thaliana</i> , suppresses  |
|-----|----------------------------------------------------------------------------------------------|
| 184 | hypersensitive cell death. European Journal of Biochemistry 270(12):2593-604 DOI             |
| 185 | 10.1046/j.1432-1033.2003.03630.x.                                                            |
| 186 | Blanca VA, Mercedes DM, Andrea GS, Santamaria B, Estrella M, Miguel TB, Kumlehn G,           |
| 187 | Martinez J, Diaz I. 2018. Silencing barley cystatins HvCPI-2 and HvCPI-4 specifically        |
| 188 | modifies leaf responses to drought stress. Plant Cell Environment 41:1776-1790 DOI           |
| 189 | 10.1111/pce.13178.                                                                           |
| 190 | Chen PJ, Senthilkumar R, Jane WN, He Y, Tian Z, Yeh KW. 2014. Transplastomic                 |
| 191 | Nicotiana benthamiana plants expressing multiple defence genes encoding protease             |
| 192 | inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and    |
| 193 | abiotic stresses. Plant Biotechnology Journal 12(4):1-13 DOI 10.1111/pbi.12157.              |
| 194 | Christova PK, Christov NK, Imai R. 2006. A cold inducible multidomain cystatin from winter   |
| 195 | wheat inhibits growth of snow mold fungus, Microdochium nivale. Planta 223:1207-1218         |
| 196 | DOI 10.1007/s00425-005-0169-9.                                                               |
| 197 | Christova PK, Christov NK, Mladenov PV, Imai R. 2018. The wheat multidomain cystatin         |
| 198 | TaMDC1 displays antifungal, antibacterial, and insecticidal activities in planta. Plant Cell |
| 199 | Reports 37:923-932 DOI 10.1007/s00299-018-2279-4.                                            |
| 500 | Diaz-Mendoza M, Dominguez-Figueroa JD, Velasco-Arroyo B, Cambra I, Gonzalez-                 |
| 501 | Melendi P, Lopez-Gonzalvez A, Garcia A, Hensel G, Kumlehn J, Diaz I, Martinez                |
| 502 | M. 2016. HvPap-1 C1A protease and HvCPI-2 cystatin contribute to barley grain filling        |
| 503 | and germination. Plant Physiology 170:2511-2524. DOI 10.1104/pp.15.01944.                    |
| 504 | Díazmendoza M, Velascoarroyo B, Gonzálezmelendi P, Martínez M, Díaz I. 2014. C1A             |
| 505 | cysteine protease-cystatin interactions in leaf senescence. Journal of Experimental          |



Botany 65(14):3825-33 DOI 10.1093/jxb/eru043. 506 Dugas DV, Monaco MK, Olson A, Klein RR, Kumari S, Ware D, Klein PE. 2011. Functional 507 annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and 508 abscisic acid. BMC Genomics 12:514 DOI 10.1186/1471-2164-12-514. 509 Dutt S, Singh VK, Marla SS, Kumar A. 2010. In silico analysis of sequential, structural and 510 511 functional diversity of wheat cystatins and its implication in plant defense. Genomics *Proteomics Bioinformatics* **8(1):**42-56 DOI 10.1016/S1672-0229(10)60005-8. 512 Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity 513 searching. Nucleic Acids Research 39:29-37 DOI 10.1093/nar/gkr367. 514 Gaddour K, Carbajosa JV, Lara P, Almoneda PI, Diaz I, Carbonero P. 2001. A constitutive 515 cystatin-encoding gene from barley (Icy) responds differentially to abiotic stimuli. Plant 516 *Molecular Biology* **45:**599-608 DOI 10.1023/a:1010697204686. 517 Goulet MC, Dallaire C, Vaillancourt LP, Khalf M, Badri AM, Preradov A, Duceppe MO, 518 Cloutier GC, Michaud CD. 2008. Tailoring the specificity of a plant cystatin toward 519 herbivorous insect digestive cysteine proteases by single mutations at positively selected 520 amino acid sites. Plant Physiology 146:1010-1019 DOI 10.2307/40065908. 521 522 Gu Z, Cavalcanti A, Chen FC, Bouman P, Li WH. 2002. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Molecular Biology Evolution 19(3):256-523 262 DOI 10.1093/oxfordjournals.molbev.a004079. 524 Hashimoto S, Tezuka T, Yokoi S. 2019. Morphological changes during juvenile-to-adult phase 525 transition in Sorghum. *Planta* **250**:1557-1566 DOI 10.1007/s00425-013-1895-z. 526 Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. 2014. GSDS 2.0: an upgraded gene feature 527 visualization server. Bioinformatics 31(8):1296 DOI 10.1093/bioinformatics/btu817. 528



| 529 | Hu YJ, Irene D, Lo CJ, Cai YL, Tzen TC, Lin TH, Chyan CL. 2015. Resonance assignments        |
|-----|----------------------------------------------------------------------------------------------|
| 530 | and secondary structure of a phytocystatin from Sesamum indicum. Biomolecular NMR            |
| 531 | Assignments 9:309-311 DOI 10.1007/s12104-015-9598-y.                                         |
| 532 | Huang Y, Xiao B, Xiong L. 2007. Characterization of a stress responsive proteinase inhibitor |
| 533 | gene with positive e.ect in improving drought resistance in rice. Planta 226:73-85 DOI       |
| 534 | 10.2307/23389651.                                                                            |
| 535 | Hwang JE, Hong JK, Lim CJ, Chen H, Je J, Yang KA, Kim DY, Choi YJ, Lee SY, Lim CO.           |
| 536 | 2010. Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and        |
| 537 | AtCYS2, during development and abiotic stresses. Plant Cell Reports 29:905-915 DOI           |
| 538 | 10.1007/s00299-010-0876-y.                                                                   |
| 539 | Jenko S, Dolenc I, Guncar G, Dobersek A, Podobnik M, Turk D. 2003. Crystal structure of      |
| 540 | Stefin A in complex with cathepsin H: N-terminal residues of inhibitors can adapt to the     |
| 541 | active sites of endo- and exopeptidases. Journal Molecular Biology 326(3):875-885 DOI        |
| 542 | 10.1016/s0022-2836(02)01432-8.                                                               |
| 543 | Kebrom TH, Brutnell TP, Finlayson SA. 2010. Suppression of sorghum axillary bud              |
| 544 | outgrowth by shade, phyB and defoliation signalling pathways. Plant Cell Environment         |
| 545 | <b>33(1):</b> 48-58 DOI 10.4161/psb.5.3.11186.                                               |
| 546 | Kiggundu A, Muchwezi J, Van C, Viljoen A, Vorster J, Schlüter U, Kunert K, Michaud D.        |
| 547 | 2010. Deleterious effects of plant cystatins against the banana weevil Cosmopolites          |
| 548 | sordidus. Arch Insect Biochemistry Physiology 73(2):87-105 DOI 10.1002/arch.20342.           |
| 549 | Kiyosaki T, Matsumoto I, Asakura T, Funaki J, Kuroda M, Misaka T, Arai S, Abe K. 2007.       |
| 550 | Gliadain, a gibberellin-inducible cysteine proteinase occurring in germinating seeds of      |
| 551 | wheat, Triticum aestivum L., specifically digests gliadin and is regulated by intrinsic      |



- cystatins. *FEBS Journal* **164:**470-477 DOI 10.1111/j.1742-4658.2007.05749.x.
- 553 Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA.
- 2009. Circos: an information aesthetic for comparative genomics. Genome research
- **19(9):**1639-1645 DOI 10.1101/gr.092759.109.
- Li J, Yang XW, Li YC, Niu JS, He DX. 2017. Proteomic analysis of developing wheat grains
- infected by powdery mildew (Blumeria graminis f.sp. tritici). Journal of Plant
- *Physiology* **215**:140-153 DOI 10.1016/j.jplph.2017.06.003.
- Li SF, Su T, Cheng GQ, Wang BX, Li X, Deng CL, Gao WJ. 2017. Chromosome evolution in
- connection with repetitive sequences and epigenetics in plants. Genes 8:290 DOI
- 561 10.3390/genes8100290.
- Lima AM, dos Reis SP, de Souza CR. 2015. Phytocystatins and their potential to control plant
- diseases caused by fungi. Protein and Peptied Letters 22:104-111 DOI
- 10.2174/0929866521666140418101711.
- Lozano R, Hamblin MT, Prochnik S, Jannink JL. 2015. Identification and distribution of the
- NBS-LRR gene family in the Cassava genome. BMC Genomics 16(1):360 DOI
- 567 10.1186/s12864-015-1554-9.
- 568 Margis R, Reis EM, Villeret V. 1998. Structural and phylogenetic relationships among plant
- and animal cystatins. Arch Biochemistry Biophysics 359(1):24-30 DOI
- 570 10.1006/abbi.1998.0875.
- 571 Martinez M, Abraham Z, Gambardella M, Echaide M, Carbonero P, Diaz I. 2005. The
- strawberry gene Cyf1 encodes a phytocystatins with antifungal activity. Journal of
- 573 Experimental Botany **56:**1821-1829 DOI 10.1093/jxb/eri172.
- 574 Martinez M, Cambra I, Carrillo L, Diazmendoza M, Diaz I. 2009. Characterization of the



| 575 | entire cystatin gene family in barley and their target cathepsin L-like cysteine-proteases,     |
|-----|-------------------------------------------------------------------------------------------------|
| 576 | partners in the hordein mobilization during seed germination. Plant Physiology                  |
| 577 | <b>151(3):</b> 1531-1545 DOI 10.1104/pp.109.146019.                                             |
| 578 | Martinez M, Diazmendoza M, Carrillo L, Diaz I. 2007. Carboxy terminal extended                  |
| 579 | phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases.         |
| 580 | FEBS Letters <b>581(16):</b> 2914-2918 DOI 10.1016/j.febslet.2007.05.042.                       |
| 581 | Martinez M, Diaz I. 2008. The origin and evolution of plant cystatins and their target cysteine |
| 582 | proteinases indicate a complex functional relationship. BMC Evolutionary Biology                |
| 583 | <b>8(1):</b> 198-210 DOI 10.1186/1471-2148-8-198.                                               |
| 584 | Martinez M, Santamaria ME, Diazmendoza M, Arnaiz A, Carrillo L, Ortego F, Diaz I.               |
| 585 | 2016. Phytocystatins: defense proteins against phytophagous insects and acari.                  |
| 586 | International Journal of Molecular Sciences 17(10):1747-1763 DOI                                |
| 587 | 10.3390/ijms17101747.                                                                           |
| 588 | Massonneau A, Condamine P, Wisniewski J P, Zivy M, Rogowsky PM. 2005. Maize                     |
| 589 | cystatins respond to developmental cues, cold stress and drought. Biochimica et Biophysica      |
| 590 | Acta 1729:186-199 DOI 10.1016/j.bbaexp.2005.05.004.                                             |
| 591 | Melo FR, Mello MO, Franco OL, Rigden DJ, Mello LV, Genú AM, Silvafilho MC, Gleddie              |
| 592 | S, Grossidesá MF. 2003. Use of phage display to select novel cystatins specific for             |
| 593 | Acanthoscelides obtectus cysteine proteinases. BBA-Proteins Proteomics 1651(1):146-             |
| 594 | 152 DOI 10.1016/S1570-9639(03)00264-4.                                                          |
| 595 | Meriem B, Urte S, Juan V, Marie-Claire G, Dominique M. 2010. Plant cystatins. Biochimie         |
| 596 | 92(11):1657-1666 DOI 10.1016/j.biochi.2010.06.006.                                              |
| 597 | Nagata K, Kudo N, Abe K, Arai S, Tanokura M. 2000. Three-dimensional solution structure         |



of oryzacystatin-I, a cysteine proteinase inhibitor of the rice, Oryza sativa L. japonica. 598 Biochemistry **39:**14753-14760 DOI 10.1021/bi0006971. 599 Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, 600 Hellsten U, Mitros T, Poliakov A. 2009. The Sorghum bicolor genome and the 601 diversification of grasses. *Nature* **457(7229)**:551-556 DOI 10.1038/nature07723. 602 603 **Peitsch M. 1996.** ProMod and Swiss-Model: internet-based tools for automated comparative modeling. **224:**274-279 protein Biochemical Society **Transactions** DOI 604 10.1042/bst0240274. 605 **Pfaffl MW. 2001.** A new mathematical model for relative quantification in real-time RT-PCR. 606 Nucleic Acids Research 29:e45 DOI 10.1093/nar/29.9.e45. 607 Pirovani CP, Santiago AS, Santos LS, Micheli F, Margis R, Silva Gesteira R, Alvim FC, 608 Pereira GAG, Mattos JC. 2010. Theobroma cacao cystatins impair Moniliophthora 609 perniciosa mycelial growth and are involved in postponing cell death symptoms. Planta 610 **232(6):**1485-1497 DOI 10.2307/23391912. 611 Sayle R, Milner-White EJ. 1995. RasMol: biomolecular graphics for all. Trends in Biochemical 612 Sciences **20:**374 DOI 10.1016/S0968-0004(00)89080-5. 613 614 Song C, Kim T, Chung WS, Lim CO. 2017. The *Arabidopsis* phytocystatin AtCYS5 enhances seed germination and seedling growth under heat stress conditions. Molecular Cells 615 **40(8):**577-586 DOI 10.14348/molcells.2017.0075. 616 617 Strömvik MV, Fauteux F. 2009. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae. BMC Plant Biology 9:126 DOI 618 10.1186/1471-2229-9-126. 619 620 Stubbs MT, Laber B, Bode W, Huber R, Jerala R, Lenarcic B, Turk V. 1990. The refined



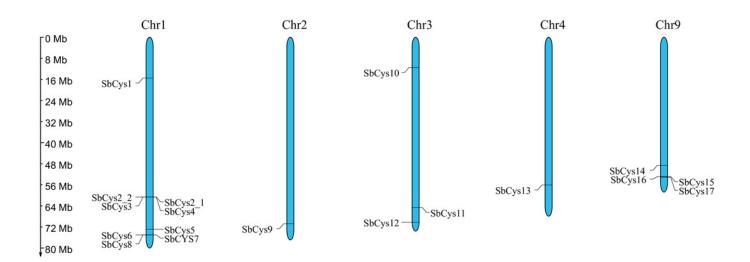
| 621 | 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine                      |
|-----|---------------------------------------------------------------------------------------------------------------|
| 622 | proteinase papain: a novel type of proteinase inhibitor interaction. Embo Journal                             |
| 623 | <b>9(6):</b> 1939-1947 DOI 10.1002/j.1460-2075.1990.tb08321.x.                                                |
| 624 | Subburaj S, Zhu D, Li X, Hu Y, Yan Y. 2017. Molecular characterization and expression                         |
| 625 | profiling of Brachypodium distachyon L. cystatin genes reveal high evolutionary                               |
| 626 | conservation and functional divergence in response to abiotic stress. Frontiers in Plant                      |
| 627 | Science 8:743 DOI 10.3389/fpls.2017.00743.                                                                    |
| 628 | Sunita K, Klein RR, Andrew O, Monaco MK, Dugas DV, Doreen W, Klein PE. 2011.                                  |
| 629 | Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic                          |
| 630 | stress and abscisic acid. <i>BMC Genomics</i> <b>12(1):</b> 514-514 DOI 10.1186/1471-2164-12-514.             |
| 631 | Tan Y, Yang Y, Li C, Liang B, Li M, Ma F. 2017. Overexpression of MpCYS4, a phytocystatin                     |
| 632 | gene from Malus prunifolia (Willd.) Borkh., delays natural and stress-induced leaf                            |
| 633 | senescence in apple. Plant Physiology Biochemistry 115:219-28 DOI                                             |
| 634 | 10.1016/j.plaphy.2017.03.025.                                                                                 |
| 635 | Taylor SH, Hulme SP, Rees M, Ripley BS, Woodward FI, Osborne CP. 2010.                                        |
| 636 | Ecophysiological traits in C <sub>3</sub> and C <sub>4</sub> grasses: A phylogenetically controlled screening |
| 637 | experiment. New Phytologist 185(3):780-791 DOI 10.1111/j.1469-8137.2009.03102.x.                              |
| 638 | Tetreault HM, Grover S, Scully ED, Gries T, Palmer N, Sarath G, Louis J, Sattler SE. 2019.                    |
| 639 | Global responses of resistant and susceptible Sorghum (Sorghum bicolor) to sugarcane                          |
| 640 | aphid (Melanaphis sacchari). Frontiers in Plant Science 10:145 DOI                                            |
| 641 | 10.3389/fpls.2019.00145.                                                                                      |
| 642 | Valdes-Rodriguez S, Galvan-Ramirez JP, Guerrero-Rangel A, Cedro-Tanda A. 2015.                                |
| 643 | Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine                           |
|     |                                                                                                               |



| 544 | endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests. |
|-----|----------------------------------------------------------------------------------------------|
| 545 | Biotechnology Applied Biochemistry 62:634-641 DOI 10.1002/bab.1313.                          |
| 546 | Velasco-Arroyo B, Diaz-Mendoza M, Gomez-Sanchez A, Moreno-Garcia B, Santamaria               |
| 547 | ME, Torija-Bonilla M, Hensel G, Kumlehn J, Martinez M, Diaz I 2018. Silencing                |
| 548 | barley cystatins HvCPI-2 and HvCPI-4 specifically modifies leaf responses to drought         |
| 549 | stress. Plant Cell and Environment 41(8):1776-1790 DOI 10.1111/pce.13178.                    |
| 550 | Wang B, Regulsk M, Tseng E, Olson A, Goodwin S, McCombie WR, Ware D. 2018. A                 |
| 551 | comparative transcriptional landscape of maize and Sorghum obtained by single-               |
| 552 | molecule sequencing. <i>Genome Research</i> <b>28(6):</b> 921-928 DOI 10.1101/gr.227462.117. |
| 553 | Wang HW, Hwang SG, Karuppanapandian T, Liu AH, Kim W, Jang CS. 2012. Insight into            |
| 554 | the molecular evolution of non-specific lipid transfer proteins via comparative analysis     |
| 555 | between rice and sorghum. DNA Research 19:179-194 DOI 10.1093/dnares/dss003.                 |
| 556 | Wang W, Zhao P, Zhou XM, Xiong HX, Sun MX. 2015. Genome-wide identification and              |
| 557 | characterization of cystatin family genes in rice (Oryza sativa L.). Plant Cell Reports      |
| 558 | <b>34(9):</b> 1579-1592 DOI 10.1007/s00299-015-1810-0.                                       |
| 559 | Wen G. 2017. A simple process of RNA-Sequence analyses by Hisat2, Htseq and DESeq2.          |
| 560 | International Conference <b>Pp:</b> 11-15 DOI 10.1145/3143344.3143354.                       |
| 561 | Xu G, Guo C, Shan H, Kong H. 2012. Divergence of duplicate genes in exon-intron structure.   |
| 562 | PNAS 109(4):1187-1192 DOI 10.1073/pnas.1109047109.                                           |
| 563 | Yadav CB, Bonthala VS, Muthamilarasan M, Pandey G, Khan Y, Prasad M. 2015.                   |
| 564 | Genome-wide development of transposable elements-based markers in foxtail millet and         |
| 565 | construction of an integrated database. DNA Research 22:79-90 DOI                            |
| 566 | 10.1093/dnares/dsu039.                                                                       |



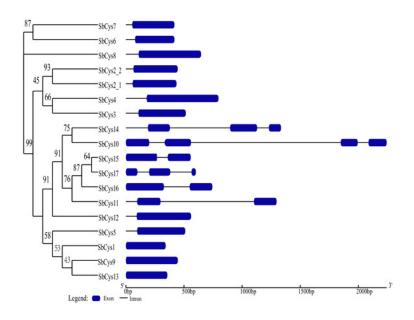
| 667 | Yan S, Li SJ, Zhai GW, Lu P, Deng H, Zhu S, Huang RL, Shao JF, Tao YZ, Zou GH. 2017.          |
|-----|-----------------------------------------------------------------------------------------------|
| 668 | Molecular cloning and expression analysis of duplicated polyphenol oxidase genes reveal       |
| 669 | their functional differentiations in Sorghum. Plant Science 263:23-30 DOI                     |
| 670 | 10.1016/j.plantsci.2017.07.002.                                                               |
| 671 | Yazawa T, Kawahigashi H, Matsumoto T, Mizuno H. 2013. Simultaneous transcriptome              |
| 672 | analysis of Sorghum and Bipolaris sorghicola by using RNA-seq in combination with De          |
| 673 | novo transcriptome assembly. PLoS One 8(4):e62460 DOI                                         |
| 674 | 10.1371/journal.pone.0062460.                                                                 |
| 675 | Yuan S, Li R, Wang L, Chen H, Zhang C, Chen L, Hao Q, Shan Z, Zhang X, Chen S. 2016.          |
| 676 | Search for nodulation and nodule development-related cystatin genes in the genome of          |
| 677 | soybean (Glycine max). Frontiers in Plant Science 7:1595 DOI 10.3389/fpls.2016.01595.         |
| 678 | Zhang X, Liu S, Takano T. 2008. Two cysteine proteinase inhibitors from Arabidopsis thaliana, |
| 679 | AtCYSa and AtCYSb, increasing the salt, drought, oxidation and cold tolerance. Plant          |
| 680 | Molecular Biology <b>68:</b> 131-143 DOI 10.1007/s11103-008-9357-x.                           |
| 681 | Zhao P, Zhou XM, Zou J, Wang W, Wang L, Peng XB, Sun MX. 2014. Comprehensive                  |
| 682 | analysis of cystatin family genes suggests their putative functions in sexual reproduction,   |
| 683 | embryogenesis, and seed formation. Journal of Experimental Botany 65(17):5093-5108            |
| 684 | DOI 10.1093/jxb/eru274.                                                                       |
| 685 | Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J. 2006. KaKs_Calculator 2.0: Calculating         |
| 686 | Ka and Ks through model selection and model averaging. Genomics Proteomics                    |
| 687 | Bioinformatics 4(4):259-263 DOI 10.1016/S1672-0229(10)60008-3.                                |
| 688 |                                                                                               |
| 689 |                                                                                               |







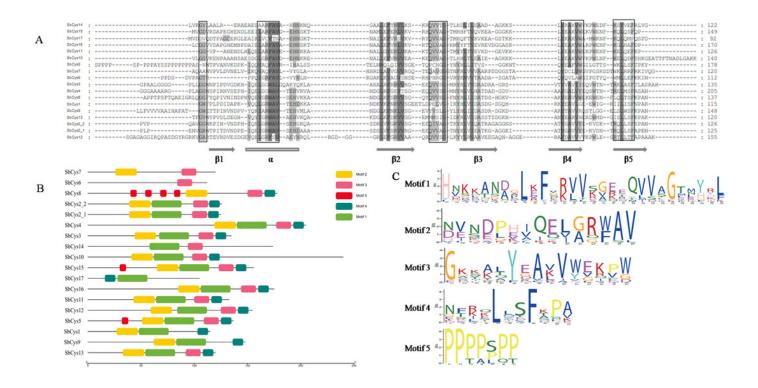

Chromosome localization of SbCys genes.


Chromosome number is indicated at the top of each bar. The size of chromosome was labeled on the left of the figure.





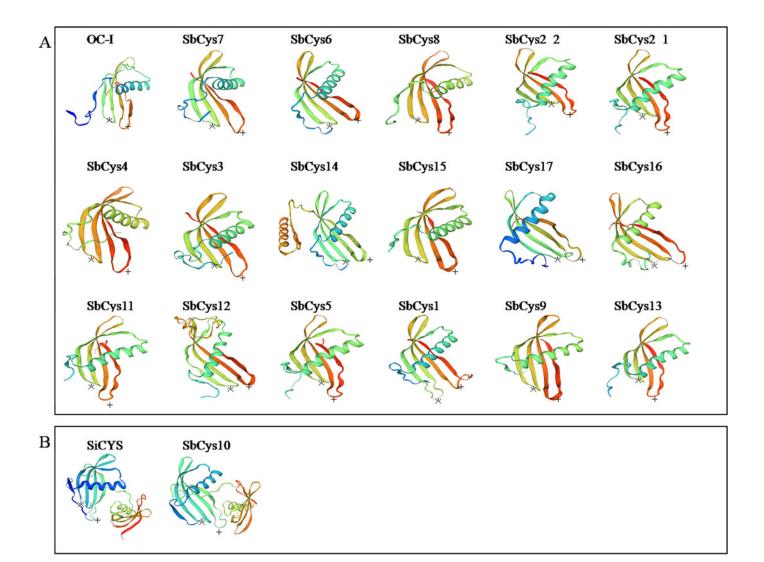
Phylogenetic relationship and gene structure of SbCys genes.


A phylogenetic tree was constructed using MEGA X by the maximum likelihood method with 1000 bootstrap replicates. Exon/intron structures were identified by online tool GSDS. Lengths of exons and introns of each *SbCys* genes were exhibited proportionally. Exons and introns are shown by blue bars and black horizontal lines, respectively.





The amino acid alignment and conserved motifs distribution of SbCys.

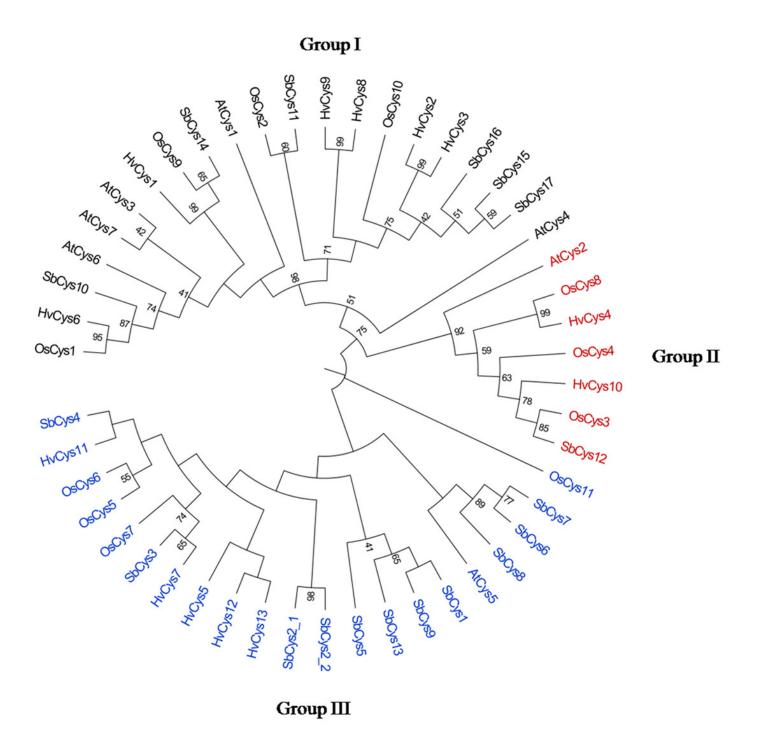

(A) The locations of the secondary structures ( $\alpha$ -helix and  $\beta$ -sheets) were included. The main cystatin conserved motifs are in black boxes. The strong and weak conservative changes in amino acids are marked by dark gray and light gray font, respectively. (B) The motifs were identified by MEME. Each motif was represented by one color box. (C) Conserved protein motif 1 (QxVxG), motif 2 ( LARFAV and G-residue), motif 3 (W-residue), motif 4 ([RK]xLxxF), and motif 5(P-residue) presented in the variable region of cystatin genes.





The three-dimensional structure prediction of Sorghum cystatins.

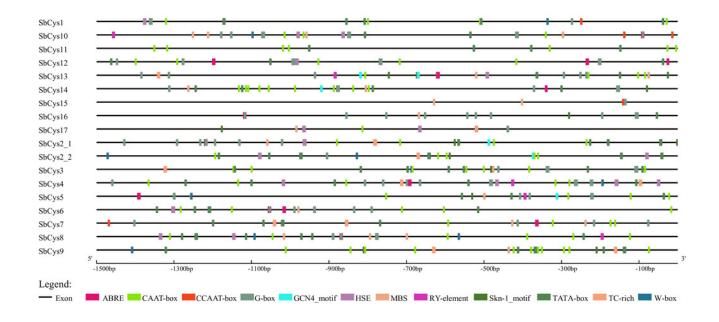
(A) The three-dimensional structures of SbCys proteins were predicted using the automated SWISS-MODEL program with OC-I as a template. (B) The three-dimensional structure of SbCys10 was predicted using the automated SWISS-MODEL program with SiCYS as a template. Two important motifs involved in the interaction with the target enzymes are indicated: the reactive site (asterisks) and W residue (crosses).






Phylogenetic relationships of the cystatins from Arabidopsis, rice, barley and Sorghum.

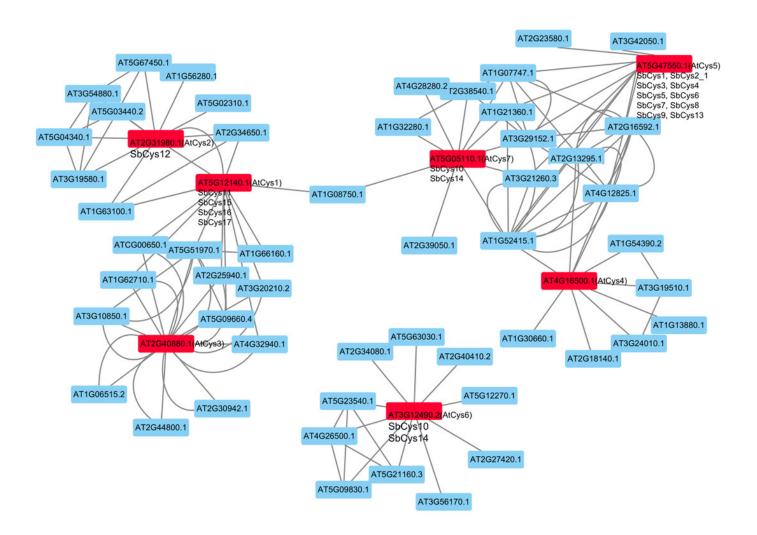
The phylogenetic tree was constructed by MEGA X with the maximum likelihood method. The numbers at the nodes indicate the bootstrap values. Gene names with black, red, and blue represented Group I, Group II, and Group III, respectively.








The distribution of *cis*-elements in the 1.5 kb upstream promoter regions of *SbCys* genes.

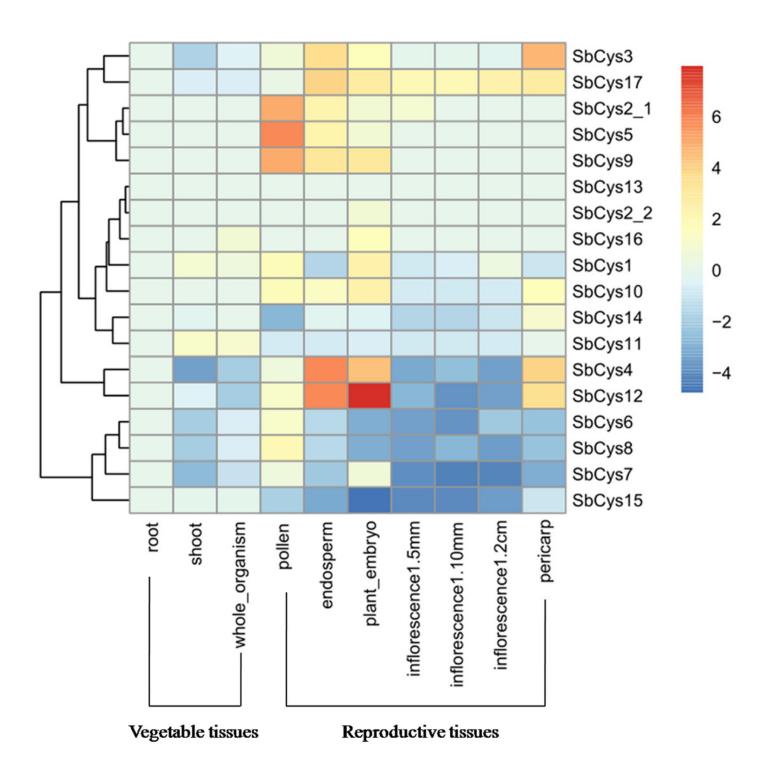

The *cis*-elements in the promoter region of *SbCys* genes were predicted using PlantCARE database ( <a href="http://bioinformatics.psb.ugent.be/webtools/plantcare/html/">http://bioinformatics.psb.ugent.be/webtools/plantcare/html/</a>). Different *cis*-elements were represented by different shapes and colors.





The interaction networks of SbCys proteins according to the orthologs in *Arabidopsis*.

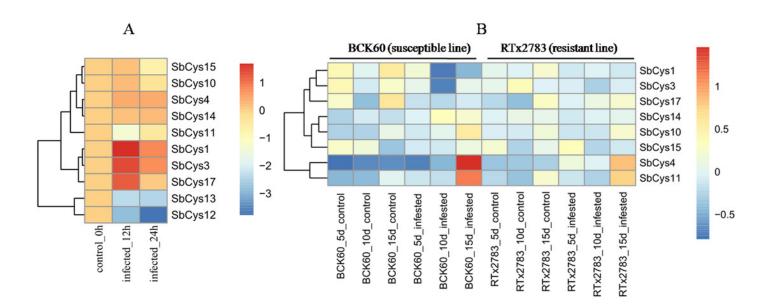
Functional interacting network models were integrated using the STRING tool, and the confidence parameters were set at a 0.40 threshold. Homologous genes in Sorghum and *Arabidopsis* are shown in black and red, respectively.





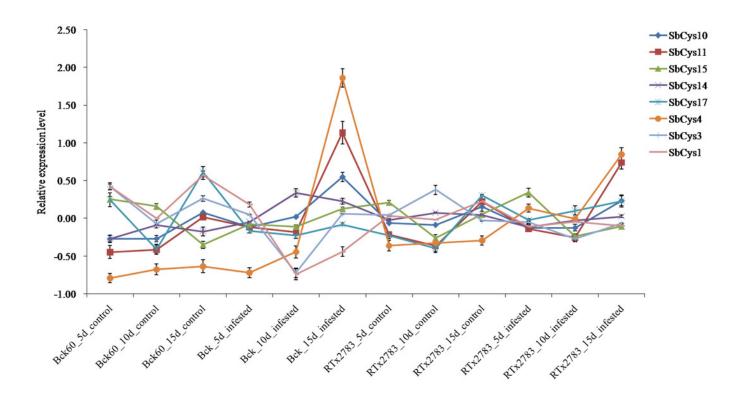

Hierarchical clustering of the expression profiles of SbCys genes in different tissues .

Different tissues are exhibited below each column. Root, shoot, and whole organism belonged to vegetable tissues were collected at 14 days after Sorghum seed germination. Reproductive tissues included embryo, endosperm and pericarp were collected at 20 days after pollination; pollens at booting stage; Inflorescences based on sizes: 1-5 mm, 5-10 mm, and 1-2 cm. Log transform data was used to create the heatmap. The scale bar represented the fold change (color figure online). Blue blocks represented the lower expression level and red blocks represented the higher expression level.







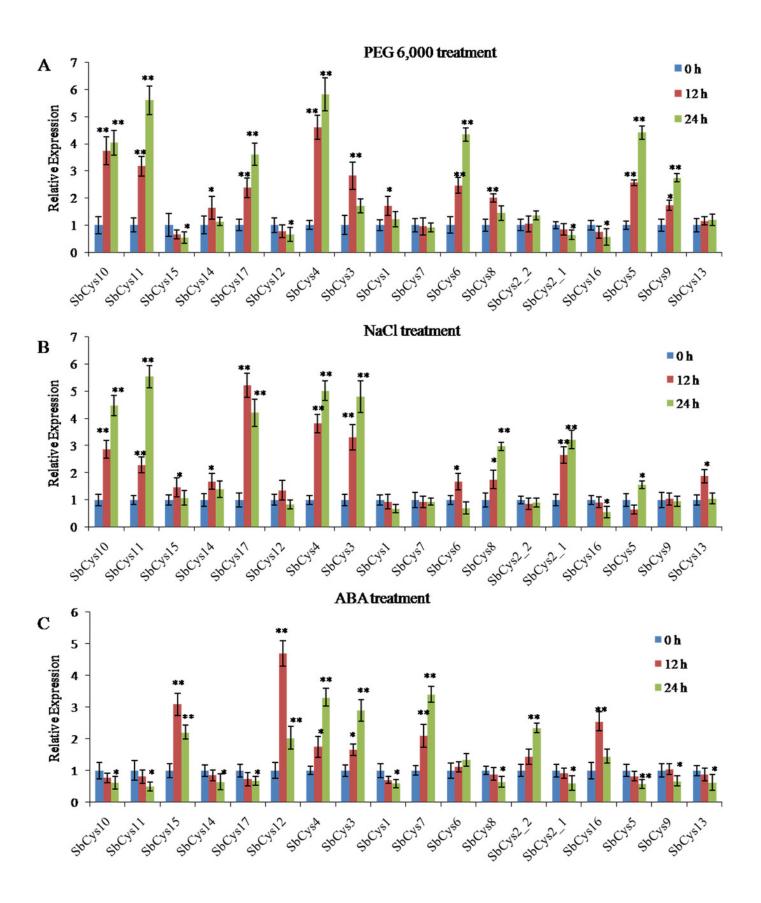


Hierarchical clustering of the expression profiles of *SbCys* genes under biotic stresses.

(A) The expression changes in *SbCys* genes at 0, 12, and 24 hours with *Bipolaris sorghicola* infection. (B) The expression changes of *SbCys* genes at 5, 10, 15 days with sugarcane aphid infestation. Log transform data was used to create the heatmap. The scale bar represents the fold change (color figure online). Blue blocks indicate low expression and red blocks indicate high expression (color figure online).





Expression profiles of SbCys genes at 5, 10, and 15 days with sugarcane aphid infection.






Expression patterns of *SbCys* genes under (A) dehydration (PEG 6,000) treatment, (B) salt shock (NaCl) treatment, and (C) ABA treatment.

qRT-PCR was used to investigate the expression levels of each *SbCys* gene. To visualize the relative expression levels data, 0 h at each treatment was normalized as "1". \* indicated significant differences in comparison with the control at  $p \le 0.05$ . \*\* indicated significant differences in comparison with the control at  $p \le 0.01$ .



