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To set a systematic study of the Sorghum cystatins (SbCys) gene family, a comprehensive
genome-wide analysis of the SbCys family genes was performed by bioinformatics-based
methods. In total, 18 SbCys genes were identified in Sorghum, which distributed unevenly
on chromosomes, and two genes were involved in tandem duplication event. All SbCys
genes had similar exon/intron structure and motifs, indicating their high evolutionary
conservation. Transcriptome analysis showed that 16 SbCys genes were expressed in at
least one tested tissues, and most genes displayed higher expression levels in
reproductive tissues than in vegetable tissues, indicating that the SbCys genes
participated in the regulation of seed formation. Furthermore, the expressions of 7 SbCys
genes were induced by Bipolaris sorghicola infection, while only 2 genes were responsive
to aphid infestation. In addition, quantitative real-time polymerase chain reaction (qRT-
PCR) confirmed that 17 SbCys genes were induced by one or two abiotic stresses
(dehydration, salt shock and ABA stresses). In addition, the interaction network indicated
that SbCys proteins were associated with several biological processes, including seed
development and stress responses. Notably, the expression of SbCys4 was up-regulated
under biotic and abiotic stresses, suggesting its potential roles in mediating the response
of Sorghum to adverse environmental impact. Our results provide new insights into the
structural and functional characteristics of SbCys gene family, which laid the foundation for
better understanding the roles and regulatory mechanism of Sorghum cystatins in seed
development and responses to different stress conditions.
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ABSTRACT

To set a systematic study of the Sorghum cystatins (SbCys) gene family, a comprehensive
genome-wide analysis of the ShCys family genes was performed by bioinformatics-based
methods. In total, 18 SHCys genes were identified in Sorghum, which distributed unevenly on
chromosomes, and two genes were involved in tandem duplication event. All SbCys genes had
similar exon/intron structure and motifs, indicating their high evolutionary conservation.
Transcriptome analysis showed that 16 ShCys genes were expressed in at least one tested tissues,
and most genes displayed higher expression levels in reproductive tissues than in vegetable
tissues, indicating that the SbCys genes participated in the regulation of seed formation.
Furthermore, the expressions of 7 ShCys genes were induced by Bipolaris sorghicola infection,
while only 2 genes were responsive to aphid infestation. In addition, quantitative real-time
polymerase chain reaction (QRT-PCR) confirmed that 17 ShCys genes were induced by one or
two abiotic stresses (dehydration, salt shock and ABA stresses). In addition, the interaction
network indicated that SbCys proteins were associated with several biological processes,
including seed development and stress responses. Notably, the expression of ShCys4 was up-
regulated under biotic and abiotic stresses, suggesting its potential roles in mediating the
response of Sorghum to adverse environmental impact. Our results provide new insights into the
structural and functional characteristics of ShCys gene family, which daid the foundation for
better understanding the roles and regulatory mechanism of Sorghum cystatins in seed

development and responses to different stress conditions.
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INTRODUCTION

Cystatins are competitive and reversible inhibitors of cysteins proteases from families C1A and
C13, which have been identified in many plant species (Martinez and Diaz, 2008; Zhao et al.
2014). Based on their primary sequence homology, three signature motifs include a QxVxG
reactive site, a tryptophan residue (W) located downstream of the reactive site, and one or two
glycine (G) residues in the flexible N terminus of the protein. These three motifs are important
for the cystatin inhibitory mechanism (Jenko et al. 2003; Stubbs et al. 1990). In addition, a
consensus sequence ([LVI]-[AGT]-[RKE]-[FY]-[AS]-[VI]-x-[EDQV]-[HYFQ]-N) in cystatins is
conformed to a predicted secondary a-helix structure (Margis et al. 1998). Most plant cystatins
are small proteins with a molecular mass in the 12- to 16-kD range (Margis et al. 1998). Some
plant cystatins contain a C-terminal extension that raises their molecular weights up to 23 kDa,
are thought to be involved in the inhibition of cysteine protease activities in the peptidase C13
family (Martinez et al. 2007; Martinez and Diaz, 2008).

The principal functions of plant cystatins are related to the regulation of endogenous
cysproteases during plant growth and development, senescence, and programmed cell death
(Belenghi et al. 2010; Diazmendoza et al. 2014; Zhao et al. 2014). Additionally, Plant cystatins
have been used as effective molecules against different pests and pathogens (Martinez et al.
2016). For example, several publications reported the inhibition of recombinant cystatins on the
growth of some pests and fungi (Martinez et al. 2005; Lima et al. 2015). Tomato plants over-
expressing the wheat cystatin TaMDC1 displayed a broad stress resistance for bacterial pathogen,
and the defense responses were mediated by methyl jasmonate and salicylic acid (Christova et al.

2018). The inhibition of amaranth cystatin on the digestive insect cysteine endopeptidases was
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observed by Valdés-Rodriguez et al. (2015). Plant cystatins are also involved in the responses to
abiotic stresses, such as over-expression of MpCYS4 in apple delayed natural and stress-induced
leaf senescence (Tan et al. 2017). Song et al. (2017) found that the expression of AtCYS5 was
induced by heat stress (HS) and exogenous ABA treatment in germinating seed, furthermore,
over expression of 4tCYS5 enhanced HS tolerance in transgenic Arabidopsis.

To date, plant cystatin family genes had been well described in several plant species such as
Arabidopsis, rice, soybean, wheat, and Populus trichocarpa (Martinez and Diaz, 2008; Wang et
al. 2015; Yuan et al. 2016; Dutt et al. 2016). However, a genome-wide study of cystatins family
genes in Sorghum (Sorghum bicolor L.) has not yet been performed. Sorghum is the world’s fifth
biggest crop (after rice, wheat, maize, and barley), belonging to a C4 grass that grows in arid and
semi-arid regions (Taylor et al. 2010). Its drought tolerance is a consequence of morphological
and anatomical characteristics (i.e., thick leaf wax, deep root system) and physiological
responses (i.e., stay-green, osmotic adjustment), is considered as a plant model for drought
tolerance in genomic research (Sunita et al. 2011). Recently, the completion of the whole
genome assembly of Sorghum (Sorghum bicolor L.) makes it possible to identify and analyze
cystatin family genes in Sorghum (Paterson et al. 2009). In this study, we aimed to perform a
genome-wide identification of ShCys family genes in Sorghum and analyze their phylogeny,
conserved motifs, structure, cis-elements, and expression profile in different tissues. We also
explored the expression patterns of SHCys genes in response to biotic and abiotic stresses. The

results may lay a foundation for further functional analyses of cystatin genes.

MATERIALS AND METHODS

Identification of SbCys family members in Sorghum genome
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The identification of SbCys candidates was conducted according to the methods of Lozano et al.
(2015) with some modification. The cystatin sequences of Arabidopsis, rice, and barely were
downloaded from TAIR (http://www.Arabidopsis.org), the Rice Genome Annotation Project

(http://rice.plantbiology.msu.edu/index.shtml), and Ensembl database (http://plants.ensembl.org),

respectively. The whole-genome sequence of Sorghum was downloaded from Ensembl database

database versions missing!! ]
(http://plants.ensembl.org). Then predicted proteins from-Sorghum genome were scanned using

HMMER v3 (http://hmmer.org/) using the Hidden Markov Model (HMM) profile of cystatin
(PF00031) from:Pfam protein family database (http://pfam.xfam.org/) (Finn et al. 2011). From
the proteins obtained using the raw cystatin HMM, a high-quality protein set with a cut-off e-
value < 1 x 1071° was aligned and used to construct a Sorghum specific cystatin HMM using
hmmbuild from the HMMER v3 suite. Then all proteins with e-value < 0.01 were selected by the
new Sorghum specific HMM. Cystatin sequences were further filtered based on the closest
homolog from Arabidopsis, rice and barely using ClustalW and the UNIREF100 sequence
database. Proteins without typical domain (Aspartic acid proteinase inhibitor) and reactive site
motif (QxVxG) were removed from posterior analysis.

Sequence alignment, structure analysis, and phylogenetic tree construction

The Multiple Expectation for Motif Elicitation (MEME) program was used to identify conserved
motifs shared among SbCys proteins. The parameters of MEME were as follows: maximum
number of motifs, 10; optimum width, between 6 and 50; and number of repetitions, any.

The three-dimensional structures of Sorghum cystatins were modelled by the automated SWISS-
MODEL program (http://swissmodel.expasy.org/interactive) (Peitsch 1996). The known crystal
structure of rice oryzacystatin I (OC-I) (Nagata et al. 2000) and SiCYS (Hu et al. 2015) were

used to construct the homology-based models. Structure analysis was conducted by the RasMol
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2.7 program (Sayle and Milner-White 1995).

A phylogenetic tree was constructed using MEGA X with the maximum likelihood method
according to the Whelan and Goldman + freq. Model. Bootstrap analysis was performed by 1000
replicates with the p-distance model. The phylogenetic tree was visualized and optimized in
Figtree (http://tree.bio.ed.ac.uk/software/figtree/).

Transcript structures, chromosomal location and gene duplication

The genomic structure of each ShCys gene was derived from the alignment of their coding
sequence to their corresponding genome full-length sequence. The diagrams of these SbCys
genes were drawn by the Gene Structure Display Server (GSDS, http://gsds.cbi.-pku.edu.cn/)
(Hu et al. 2014). The chromosomal locations of ShCys genes were retrieved from the
Sorghum bicolor NCBIv3 map. The genes were plotted on chromosomes using the Map
Gene2chromosome (MG2C, version 2.0) tool (http://mg2c.iask.in/). Gene duplication events of
ShCys family genes were investigated according to the following two criteria: (1) the alignment
covered > 75% of the longer gene, (2) the aligned region had an identity > 75%, (3) located in
less than 100 kb single region or separated by less than five genes (Gu et al. 2002). For
microsynteny analysis, the CDS sequence of every cystatin from Arabidopsis, barley, rice, and
Sorghum was used as the query to search against all other cystatins using NCBI blast software
with e-value < 1e1%. The Circos software was used to display the results of collinearity gene
pairs (Krzywinski et al. 2009).

Calculation of Ka and Ks

To assess the degree of natural selection on ShCys genes, the rate ratio of Ka (nonsynonymous
substitution rate) to Ks (synonymous substitution rate) was calculated using KaKs Calculator 2.0

(Zhang et al. 2006). The Ka/Ks ratio > 1, < 1, or = 1 indicates positive, negative, or neutral
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evolution, respectively (Yadav et al. 2015).

Promoter analysis of ShCys genes

To investigate the cis-regulatory elements in a promoter region, the upstream sequences (1.5 kb)
of the start codon in each ShCys gene were scanned in the PlantCARE database
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) and New PLACE
(https://www.dna.affrc.go.jp/PLACE/?action=newplace).

Analysis of interaction networks of the SbCys proteins

The functional interacting network models of SbCys proteins were integrated using the web
STRING program (http://strin g-db.org/) based on an Arabidopsis association model; the
confidence parameters were set at a 0.40 threshold, the number of interactors was set to five
interactors. Arabidopsis AtCys proteins were mapped to Sorghum SbCys proteins based on their
homologous relationship, and the interaction network of SbCys proteins was drawn by
Cytoscape v3.6.0.

Expression analysis of SHCys genes under biotic stresses

The RNA-Seq data used for investigating the expression patterns of ShCys genes in various
tissues were downloaded from NCBI SRA (Sequence Read Archive) database (ERP024508)
(Wang et al. 2018). Root, shoot, and whole organism were collected at 14 days after germination.
Embryo, endosperm and pericarp were collected at 20 days after pollination. Pollen samples
were collected at booting stage. Inflorescences were collected according to the sizes: 1-5 mm, 5-
10 mm, and 1-2 cm. Three biological replicates were performed for each plant tissue. RNA was
sequenced using the Illumina HiSeq 2500 system to generate 250 bp pair-end reads.

RNA-seq data of biotic stresses were obtained from two experiments. The first experiment

measured the transcriptome response of a resistant Sorghum (Sorghum bicolor L. Moench)
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infected with Bipolaris sorghicola (DRP"000986) (Yazawa et al. 2013). RNA samples were
collected at 0, 12 and 24 hours post-inoculation with one biological replicate. RNA-seq was run
using Illumina technology to give 100-base-pair single-end reads on a HiSeq2000 system. The
second study measured changes in the transcriptome of Sorghum leaves infested by sugarcane
aphid (Tetreault et al. 2019). The RNA-seq data were downloaded from the NCBI SRA database
(SRP162227). In this study, two treatments (infested and control) were arranged and two
Sorghum genotypes (resistant cultivar RTx2783 and susceptible cultivar BCK60) were used.
Leaf samples were collected from treated and control plants at 5, 10 and 15 days post sugarcane
aphid infestation. Three biological replicates were performed for all treatment and time
combinations. RNA was sequenced using the [llumina Hiseq 2500 platform to generate 100 bp
single end reads. The accession numbers and sample information were listed in Table S1. The
differential expression of ShCys genes were investigated by Hisat2 (http:/kim-lab.org/), Htseq
(http://www.htseq.org/), and DESeq2 (R package) based on the RNA-seq data (Wen, 2017). The
p <0.05 and |logFC| > 1.5 were set as the cut-off criterion.

Plant materials and treatments

Seed of Sorghum (Sorghum bicolor L. cv. Jinza 35) were surface sterilized (15 min in 4%
NaClO), washed with distilled water several times, and transferred to moist germination paper
for 3 days in an incubator at 25 °C. These seedlings were grown in holes of foam floating plastic
containers (30 seedlings per container) with constant aeration in Hoagland solution in a growth
room with 14 h/30 °C light and 10 h/22 °C dark regime. The nutrient solution was routinely
changed every 3 days. At the three-leaf stage (the juvenile phase (Hashimoto et al. 2019)),
abiotic stresses including ABA, salinity, and dehydration treatments were initiated according to

the procedures described in previous reports (Dugas et al. 2011; Wang et al. 2012; Yan et al.
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2017). The plants were transferred quickly to the nutrient solution containing 0.1 mM ABA
(dissolved in ethanol), 5 uL ethanol (control for ABA treatment), 250 mM sodium chloride
(NaCl), or 15% (W/V) polyethylene glycol (PEG) 6,000. The central part of flag leaves from
randomly selected Sorghum plants were harvested respectively at 0, 12 and 24 hours post-
treatment per trial, and immediately frozen in liquid nitrogen and stored at -80 °C prior to RNA
isolation. For each treatment at a given time, three biological replicates were used. The leaf
samples of 10 plants came from the same container for one biological replicate. That is, three
containers were used for three biological replicates respectively.

RNA extraction and qRT-PCR analysis

Total RNA of 100 mg leaf samples was isolated using the “TaKaRa MiniBEST Plant RNA
Extraction” Kit (TaKaRa, Dalian, China) following the manufacturer’s instructions. Purity and
concentration of RNA samples were evaluated by measuring the Aj¢/Aszo and A,gp/Asgo ratios.
In order to digest the genomic DNA, the RNAs were treated with RNase-free DNase I. Reverse
transcription was performed according to the kit instruction’(Promega, Madison, USA). Primer

pairs  for gqRT-PCR  analysis were  designed by @ Primer3Plus  program

(http://www.bioinformatics.nl), and:shown in Table S2. A 20 pl reaction volume containing 0.4
ul of each primer (forward and reverse), 2 pl 10-fold diluted cDNA, 7.2 ul of nuclease-free water
and 10 pl of GoTag® qPCR Master Mix (Perfect Real Time; Promega). PCR reaction included
one cycle at 95 °C for 3 min, followed by 39 cycles of 95 °C for 15 s, 60 °C for 30s and 72 °C for
20s. The reactions were conducted using-:CFX96 Real-Time PCR Detection System (Bio-Rad
Laboratories, Inc.). Three independent biological replicates and two technical replicates of each
sample were performed. Gene-specific amplification of both reference and cystatin genes were

standardized by the presence of a single, dominant peak in the qRT-PCR dissociation curve
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analyses. All data were analyzed by CFX Manager Software (Bio-Rad Laboratories, Inc.). The
efficiency range of the qRT-PCR amplifications for all of the genes tested was between 91% and
100%. The average target (ShCys) cT (threshold cycle) values were normalized to reference (f-
actin) cT values. The fold change between treated sample and control was calculated using the
slightly modified 2-*A¢) method as described by Kebrom et al. (2010). A probability of p < 0.05

was considered to be significant.

RESULTS

Identification and analysis of ShCys genes

To extensively identify all of SbCys family members in Sorghum, we constructed a Sorghum-
specific HMM for the SbCys domain to scan'Sorghum genome, and 22 gene candidates were
identified. After removing the repetitive and/or incomplete sequences, the rest of SbCys
sequences were submitted to Pfam (http://pfam.xfam.org/) and SMART (http://smart.embl-
heidelberg.de/) to confirm the conserved domain. Finally, a total of 18 non-redundant SbCys
proteins were identified and were serially renamed from ShCysl to SbCysl7 according to their
location and order in chromosomes. Gene names, gene IDs, chromosomal locations, amino acid
numbers and protein sequences were listed in Table S3. The average length of these SbCys
proteins was 148 amino acid residues and the length mainly centered on the range of 105 to 240
amino acid residues.

Chromosome distribution analysis showed that the number of SHhCys genes on each chromosome
is different (Fig. 1). Chromosome 1 had the greatest number of SHCys genes (9 genes), followed
by chromosomes 9 and 3 (4 and 3 genes, respectively). Chromosomes 2 and 4 had just one

ShCys gene, whereas chromosomes 5, 6, 7, 8 and 10 had no SbCys genes. Half of SbCys genes
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were distributed on chromosome 1, suggesting that ShCys genes may have a chromosomal
preference. proposed reason?

Gene structure analysis of ShCys genes

The analysis of exon-intron structure can provide significant information about the gene function,
organization and evolution of multiple gene families (Xu et al. 2012). Schematic structures of
ShCys genes from Sorghum were obtained using the GSDS program (Fig. 2). Among the ShCys
genes, more than half (12, 66.7%) were intronless, three genes (ShCysi1, SbCysl5, and SbCys16)
had one intron, two genes (ShCysi4 and ShCys17) had two introns, and one gene (ShCys10) had
three introns. These six ShCys genes with one or more introns were clustered into one clade,
suggesting the evolutionary event may effect on the gene structure (Altenhoff et al. 2012).
Sequence alignment, protein motifs analysis, and structural predication of SbCys
Alignments of SbCys sequences were carried out to search for amino acid variants that could
lead to differences in their inhibitory capability for cysteine proteases. The results were shown in
Fig. 3a. N-terminal and C-terminal extensions with varying lengths that presented in several
SbCys proteins were not displayed in the comparison. These predicted structures shared many
identical residues including a-helix and the four B-sheets (2-5) (Fig. 3a). Analysis of conserved
motifs of SbCys proteins also revealed that some typical conserved motifs could be detected in
most SbCys proteins, such as motif 1, 2, 3, and 4, form a fundamental structural combination
(Fig. 3b and 3c). Motif 1 was conserved in the central loop region with a consensus sequence of
“QxVxG” and could be detected in most SbCys proteins, which played an important role in the
inhibitory capacity of cystatins towards their target cysteine proteases (Meriem et al. 2010).
Motif 2 contained a particular consensus sequence ([LVI][GA][RQG][WF]AV) that conformed

to a predicted secondary a-helix structure (Martinez et al. 2009). The other two typical motifs for

Peer] reviewing PDF | (2019:12:44309:2:0:NEW 27 Jul 2020)



Peer]

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

SbCys proteins, motif 3 (V[WY][EVG]KPW) and motif 4 ([RK]xLxxF), were firstly described
in tobacco (Zhao et al. 2014), were also detected in most SbCys proteins, indicating their
conserved and common role in both dicots and monocots. Motif 5 existed only in 3 SbCys family
members (SbCys5, SbCys8, and SbCys15,). Details of the 5 conserved motifs were shown in Fig.
S1.

The predicted three-dimensional structures of the Sorghum cystatins were established using the
SWISS-MODEL program based on the known crystal structure of OC-I and SiCYS (Fig. 4).
Although these structures were predicted with variable degrees of accuracy, all of Sorghum
cystatins shared similar protein structure with rice OC-I (Fig. 4a), excepting SbCys10 that shared
similar protein structure with SiCYS (Fig. 4b). In additon, SbCysl14 showed a significant
variation in its predicted three-dimensional structures, an extra a-helix occurred in the C-terminal
region, which probably due to the cystatin contained a C-terminal extension. Two important
motifs (the conserve QxVxG motif and W residue) of Sorghum cystatins involved in the
interaction with the target cysteine enzymes were also shown in Fig. 4. The predicted structure of
SbCys13 showed some distortions in the region of the 2 sheet, probably due to the insertion of a
methionine in the first position of the conserved QxVxG motif.

Phylogenetic analysis of ShCys genes

Cystatin gene family is highly conserved in both monocots and dicotyledons (Martinez and Diaz,
2008). To investigate the phylogenic relationships of SbCys proteins to other known plant
cystatins, a multiple sequence alignment of SbCys sequences to the sequences from Arabidopsis,
rice, and barley was conducted by the ClustalW program. As showed in Fig. 5, these cystatins
were categorized into three groups, including Group I, Group II, and Group III. A total of 21

cystatins were classified to Group I and 6 cystatins from Sorghum. Group II contained 7
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cystatins, only one cystatin from Sorghum. The remaining 21 proteins were assigned to Group I1I
and 11 SbCys proteins fell into this group. In addition, some bootstrap values in the phylogenetic
tree were low, suggesting that high sequence differentiation in these cystatins occurred.
Microsynteny analysis indicated that one orthologous gene pair was identified in the cross of
barley and Sorghum, rice and Sorghum, respectively, while no orthologous gene pair between
Arabidopsis and Sorghum was found (Fig. S2). These data indicated that SbCys genes were more
closely to those of rice and barley than that of Arabidopsis. Interestingly, a pair of SbCys genes
(SbCys2-1 and ShCys2-2) was confirmed to be tandem duplication in Sorghum (Fig. S2).
Analysis of duplicated ShCys genes showed that the Ka/Ks ratios far less than 1, varying from
0.0976 to 0.5679 (Table S4), indicating that negative selection occurred in the duplication event.
Promoter analysis of ShCys genes

In order to obtain useful information on the regulatory mechanism of cystatin gene expression,
the 1.5 kb upstream sequences from the translation start sites of SbCys genes were submitted into
PlantCARE database to detect the cis-elements. Various putative plant regulatory elements in the
promoter region of ShCys genes were shown in Fig. 6 and Table S5. Several potential regulatory
elements involved in stress-related transcription factor-binding sites were found, including G-
box, W-box, TC-rich repeats, MBS, heat shock elements (HSEs), and ABA-response element
(ABRE). The identified ShCys genes possessed at least 1 stress-response-related cis-element,
suggesting that the expressions of SHCys genes were related to these abiotic stresses. All of
ShCys genes had one or more G-box with the exception of ShCys9, implying that these ShCys
genes could be induced by light stress. 14 SbCys genes possessed MBS element, ABRE element
was found in 12 ShCys genes, and HSE element was located in 10 ShCys genes. TC-rich repeats

and W-boxes were located in 8 genes, respectively. In addition, Skn-1 motif was conserved in

Peer] reviewing PDF | (2019:12:44309:2:0:NEW 27 Jul 2020)



Peer]

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

the promoter regions of most ShCys genes, indicating these genes were associated with the
regulation of seed storage protein gene expression (Stromvik and Fauteux, 2009). The high
diversity of the cis-acting elements suggested that these ShCys genes might have a wide range of
functional roles and could be involved in multiple stress responses and growth and development
progress (Zhang et al. 2008).

Protein interaction network of SbCys proteins

In this study, the interactions of the SbCys proteins were investigated in an Arabidopsis
association model using STRING software. As shown in Fig. 7, the interaction network of
cystatins showed a complex functional relationship. AtCys2 (corresponding to SbCysl12)
interacted with stress related proteins (AT1G56280, AT3G19580, AT5G67450, and AtCys1) and
growth and development related proteins (AT1G63100 and ATS5G04340), AtCysl
(corresponding to SbCysl1, 15, 16, and 17) interacted with some vacuolar-processing enzyme
which involved in processing of vacuolar seed protein precursors into the mature forms, and
AtCys5 (corresponding to SbCysl, 2-1, 3,4, 5, 6, 7, 8, 9, and 13) interacted with several lipid-
transfer proteins (AT1G07747, AT1G52415, AT2G16592, AT3G29152, and AT4G12825). The
results suggested that cystatins might be associated with many biological processes by protein
interactions, such as pollen development, stress responses, and seed maturation (Wang et al.
2012).

Expression profile of SHCys genes in different Sorghum tissues

To obtain the spatial and temporal expression patterns of all ShCys genes, RNA-seq data
(ERP024508) were downloaded to explore the expression levels of ShCys genes in different
tissues including root, stem, whole organism, pollen, endosperm, embryo, inflorescence (1-5mm,

1-10mm, and 1-2cm), and pericarp. As shown in Fig. 8 and S3, most SHCys genes were
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expressed in one tissue at least, except for ShCys13, which were barely expressed in any tissue.
The expression patterns of ShCys genes in reproductive tissues were significantly difference
from vegetable tissues. Such as SbCys2-1, SbCys3, SbCys4, SbCys5, SbCys7, SbCys9, SbCysi2,
and SbCys 17 showed relatively higher expression levels in reproductive tissues including pollen,
endosperm, embryo, and pericarp than in vegetable tissues, while the expression of SHCys7 and

vegetative?
SbhCys15 were higher in vegetable tissues than in reproductive tissues. It was worth noting that
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excepting for ShCys 17 which displayed higher expression pattern.

Expression of ShCys genes under biotic stresses

To gain insight into the potential roles of ShCys genes in response to Bipolaris sorghicola
infection and sugarcane aphid infestation, their relative expression patterns were investigated by
using the public transcription data from NCBI SRA database (DRP000986 and SRP162227,
respectively). As shown in Fig. 9 and 10, the expression patterns of SbCys genes were different
under the two biotic stresses. In response to Bipolaris sorghicola infection, seven ShCys genes
were induced and only 2 genes (S6CysI2 and ShCysi3) were suppressed in infected Sorghum
leaves compared with control (Fig. 9a). However, under aphid infestation, four ShCys genes
(SbCys4, SbCys10, SbCysl 1, and SbCys14) were up-regulated and 3 genes (ShCys i, SbCys3, and
SbhCys17) were down-regulated relative to control in; susceptible Sorghum line (BCK60). In
resistant Sorghum line (RTx2783), only two SbCys genes (SbCys4 and ShCysi1) were induced,
and the rest were barely expressed in Sorghum leaves with aphid infection (Fig. 9b and 10).
These results might suggest that ShCys genes played different roles in responding to pathogen
infection and aphid infestation.

Expression profiling of ShCys genes under abiotic stresses
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We also investigated the expression of ShCys genes in response to various abiotic stresses
including dehydration, salt shock, and ABA (Fig. 11). Under dehydration stress, seven SbCys
genes (SbCys4, SbCys5, SbCys6, SbCys9, SbCys10, SbCysll, and SbCysl7) were induced to
present a significant up-regulation from 0 to 24 h, while the expressions of SbCys2-1, SbCysi2,
SbhCys15, and ShCys16 were decreased. Furthermore, the expressions of 4 SbCys genes (SbCys|,
SbCys3, SbCys8, and SbCys14) displayed an up-down trend from O h to 24 h (Fig. 11a). With salt
shock treatment, the expressions of SbCys2-1, SbCys3, SbCys4, SbCys8, SbCys10, and SbCysl1
were significantly up-regulated at all treatment time points, whereas ShCysi6 showed a
significant down-regulated trend (Fig. 11b). In addition, SbCys6, SbCysi13 SbCysi4, SbCysl5,
and ShCysl7 showed up and down expression trends, but ShCys5 displayed down and up
expression pattern (Fig. 11b). After exogenous ABA treatment, the expressions of 4 ShCys genes
(SbCys2-2, SbCys3, SbCys4, and ShCys7) were significantly up-regulated at all time points, but 9
genes (SbCysl, SbCys2-1, SbCys5, SbCys8, SbCys10, SbCysl1, SbCys13, SbCysi4, and SbCys17)
were down-regulated. Additionally, SbCysi2, SbCysl5, and SbCysl6 displayed ‘an up-down
expression trends (Fig. 11c). Interestingly, all SbCys genes were up-regulated in response to one
or two stresses except ShCys4 that was significantly induced under dehydration, salt shock and
ABA stresses, suggesting that SbCys4 might play an important role in response to different stress

responses.

DISCUSSION
Plant cystatins are a group of intrinsic small proteins, whose members play important roles in
diverse biological processes and stress responses (Martinez et al. 2016; Meriem et al. 2010).

Recently, a large number of sequence data from different plant species have been uploaded in
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GenBank, which provide convenience for us to describe their characteristics, and several
cystatins families have been identified from plants, such as rice, soybean and wheat (Wang et al.
2015; Dutt et al. 2016; Yuan et al. 2016). However, little is known about cystatin family in
Sorghum. In the present study, we identified 18 SHCys genes from Sorghum genome. The
number was less than that of B distachyon genome, where 25 BdCys members were identified
(Subburaj et al. 2017). The 18 members in Sorghum was a larger number than found in rice (11
genes) and Arabidopsis (7 genes) (Wang et al. 2015), but was similar to soybean (20 members)
(Yuan et al. 2016). The difference on the cystatin number might reflect the adaptation of plants
to environment.

The identified SHCys genes were unevenly distributed on chromosomes 1, 2, 3, 4, and 9, and half
of them were distributed on chromosome 1 (Fig. 1), suggesting that ShCys genes had a
chromosomal preference? The uneven distribution of cystatin genes in chromosomes was also
found in B. distachyon genome that the highest number of BdCys geneslocated in chromosome 1
(Subbura;j et al. 2017). The phnomenon of chromosomal preference was also observed in Oryza
sativa genome, but most OsCys genes were dispersed over two chromosomes, chromosome 1
and 3 (Wang et al. 2015). Furthermore, several tandem duplication events occurred at
chromosomes 1 of B. distachyon genome (Subburaj et al. 2017). Two tandem duplication events
(OsCys4/0sCys5 and OsCys6/OsCys7) were found among OsCys genes, and existed in
chromosomes 1 and 3 (Wang et al. 2015). One tandem duplication event (SbCys2-1/SbCys2-2)
occurred among ShCys genes at chromosome 1 (Fig. S2). The tandem duplication events might
cause the distinct distribution patterns of cystatin genes on the chromosomes (Li et al. 2017).
Eighteen ShCys genes were divided into three groups based on phylogenetic analysis (Fig. 5).

Some conserved motifs among SbCys proteins had been identified by the alignment of the amino
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acid sequences (Fig. 3). However, the conservation was accompanied with differences in some
important amino acids, indicating that SbCys family members might undergo a complex
evolutionary history, which would have a significant influence on their respective functions
(Abraham et al. 2006). For example, QxVxG motif, could directly enter and interact with the
active site of targeted enzymes, were conserved in all SbCys proteins with the exceptions of 5
cystatins (SbCys1, SbCys6, SbCys8, SbCys9, and SbCys13) that were partially modified by the
insertion or variation in important residues (Fig. 3a). Furthermore, three SbCys proteins (SbCysS,
SbCys9, and SbCys13) showed significant variations with other Sorghum cystatins in their
predicted three-dimensional structures (Fig. 4). The variations in vital amino acid residues might
result in the change in cystatin inhibitory action (Melo et al. 2003). In addition, two novel motifs,
motif 3 (V[WY][EVG]KPW) and motif 4 ([RK]xLxxF), firstly described in tobacco (Zhao et al.
2014), were also identified in the C-terminalin of many SbCys proteins. The contribution of the
two new motifs to cystatin inhibitory action needs to be further studied.

During past decades, plant cystatins were reported to play essential roles in inhibiting
endogenous and exogenous cysteine proteases activities during seed development (Gaddour et al.
2001; Kiyosaki et al. 2007). In the present study, as revealed by RNA-seq data analysis (Fig. 8
and S3), the expression levels of several ShCys family genes were higher in reproductive tissues
than in vegetable tissues, which were consistent with the reports that most cystatins were
specifically expressed in developing seeds and played a role in seed development (Dutt et al.
2010; Zhao et al. 2014). Moreover, promoter analysis showed that the highly expressed SbCys
genes in reproductive tissues possessed endosperm expression related cis-elements (Skn-1 and
GCN4_motif) (Fig. 6 and Table S5). Our protein interaction prediction results also showed that

several SbCys proteins could interact with many functional proteins (Fig. 7), implying these
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cystatins were involved in regulating the gene expression of cereal grain storage proteins (Diaz-
Mendoza et al. 2016).

Plant cystatins are involved in various biotic stress responses and probably act as defense
proteins against pests and pathogen infection (Meriem et al. 2010). At present, some cystatins
with insecticidal activity have been isolated from barley, corn, tomato and papaya etc. (Alvarez-
Alfageme et al. 2007; Goulet et al. 2008; Kiggundu et al. 2010), and several cystatins having
antifungal activities were also isolated from taro, cacao, and wheat (Christova et al. 2006;
Pirovani et al. 2010; Chen et al. 2014). Although studies on insecticidal and antifungal activity of
plant cystatins have been well established in vitro, the knowledge about their roles in plants in
response to biotic stresses is limited. To explore the properties of ShCys genes responding to pest
and pathogen infection, we conducted the analysis on the expression patterns of SbCys genes.
The results showed that the expressions of most cystatin genes were induced during Bipolaris
sorghicola infection, suggesting these cystatins played functions in inhibiting exogenous
cysteine proteases secreted by pathogens to infect plant tissues (Fig. 9a). Interestingly, for
sugarcane arthropods infestation, only two genes (ShCys4 and SbCysll) were up-regulated
significantly in susceptible and resistant Sorghum lines (Fig. 9b and 10), the expressions"of the
rest genes were no obvious change or were down-regulated. These differential expression
patterns between ShCys genes might suggest that some of them had evolved to inhibit specific
cysteine proteinases. The exact roles of these ShCys genes in insecticidal and antifungal activity
in vivo are worthy to be explored in the further study.

Another characteristic of cystatin genes is that they are involved in various abiotic stress
responses in different plant species, such as rice, barley, and maize (Gaddour et al. 2001;

Massonneau et al. 2005; Huang et al. 2007). In Arabidopsis, the expression levels of A¢CYSI and

Peer] reviewing PDF | (2019:12:44309:2:0:NEW 27 Jul 2020)



Peer]

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

AtCYS2 were enhanced by high temperature and wounding stresses (Hwang et al. 2010). A¢tCYSa
and AtCYSb were also induced by different abiotic stresses such as salt, drought, oxidation and
cold stresses (Zhang et al. 2008). Velasco-Arroyo et al. (2018) reported that the silence of barley
HvCPI-2 and HvCPI-4 specifically modified leaf responses to drought stress. Wang et al. (2015)
observed the significant change in the expression levels of several rice OsCYS genes under cold,
drought, salt, and hormone treatments. In the present study, most ShCys genes were found to
have positive or negative responses to dehydration, salt shock, and ABA stresses. Moreover, the
interaction results showed that most cystatins could interact with stresses-related proteins,
implying that the cystatins played critical roles in response to diverse stress conditions. Notably,
the expression of ShCys4 was significantly up-regulated under three stress conditions (Fig. 11),
suggesting a specific role of SbCys4 in responding to various stress conditions. Promoter
analysis indicated that stress-related cis-elements were widespread in the promoter region of
these cystatin genes (Table S5), and SHCys4 possessed plenty of stress-related cis-elements,
including G-box, ABRE, HSE, MBS and TC-rich repeats. These results provide an effective

reference for the functional verification of the ShCys family genes under abiotic stresses.

CONCLUSIONS

In the current study, we identified 18 SHCys family genes in Sorghum genome through a
genome-wide survey. The chromosomal localization, conserved protein domain, gene structure,
the phylogenetic relationship, as well as the interaction network of these SHCys genes was
systematically analyzed, revealing special characteristics of ShCys family genes in Sorghum. The
identified ShCys genes displayed an uneven distribution in Sorghum chromosomes. All S6Cys

genes shared similar exon/intron organization and conserved motifs. Phylogenetic analysis
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suggested that Sorghum cystatins had higher homology with monocotyledon than dicotyledon.
The variation of amino acids in Sorghum cystatin critical active sites suggested that they might
undergo a complex evolutionary process and possess structural and functional divergence. The
expression profile of SHCys genes in different tissues indicated that most ShCys genes were
involved in tissue growth and development. Changes in the expression of ShCys genes under
biotic and abiotic stresses indicated that many ShCys genes played important roles in response to
unfavorable growth conditions. It was noting that the expression of ShCys4 was significantly
enhanced under biotic and abiotic stresses, suggesting its unique role in mediating the response

of Sorghum to adverse environment conditions.
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Figure 1

Chromosome localization of SbCys genes.

Chromosome number is indicated at the top of each bar. The size of chromosome was

labeled on the left of the figure.
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Figure 2

Phylogenetic relationship and gene structure of SbCys genes.

A phylogenetic tree was constructed using MEGA X by the maximum likelihood method with
1000 bootstrap replicates. Exon/intron structures were identified by online tool GSDS.
Lengths of exons and introns of each SbCys genes were exhibited proportionally. Exons and

introns are shown by blue bars and black horizontal lines, respectively.
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Figure 3

The amino acid alignment and conserved motifs distribution of SbCys.

(A) The locations of the secondary structures (a-helix and B-sheets) were included. The main
cystatin conserved motifs are in black boxes. The strong and weak conservative changes in
amino acids are marked by dark gray and light gray font, respectively. (B) The motifs were
identified by MEME. Each motif was represented by one color box. (C) Conserved protein
motif 1 (QxVxG), motif 2 ( LARFAV and G-residue), motif 3 (W-residue), motif 4 ([RK]xLxxF),

and motif 5(P-residue) presented in the variable region of cystatin genes.

Peer] reviewing PDF | (2019:12:44309:2:0:NEW 27 Jul 2020)



PeerJ Manuscript to be reviewed

Figure 4

The three-dimensional structure prediction of Sorghum cystatins.

(A) The three-dimensional structures of SbCys proteins were predicted using the automated

SWISS-MODEL program with OC-I as a template. (B) The three-dimensional structure of
SbCys10 was predicted using the automated SWISS-MODEL program with SiCYS as a
template. Two important motifs involved in the interaction with the target enzymes are

indicated: the reactive site (asterisks) and W residue (crosses).
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Figure 5

Phylogenetic relationships of the cystatins from Arabidopsis, rice, barley and Sorghum.

The phylogenetic tree was constructed by MEGA X with the maximum likelihood method. The
numbers at the nodes indicate the bootstrap values. Gene names with black, red, and blue

represented Group I, Group Il, and Group lll, respectively.
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Figure 6

The distribution of cis-elements in the 1.5 kb upstream promoter regions of SbCys
genes.

The cis-elements in the promoter region of SbCys genes were predicted using PlantCARE

database ( http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ ). Different cis-

elements were represented by different shapes and colors.
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Figure 7

The interaction networks of SbCys proteins according to the orthologs in Arabidopsis.

Functional interacting network models were integrated using the STRING tool, and the

confidence parameters were set at a 0.40 threshold. Homologous genes in Sorghum and

Arabidopsis are shown in black and red, respectively.

AT2G23580.1 AT3G42050.1

AT5G67450.1
b e N— ATIGO7747.1
AT3G54880.1 2126385401/ \ SbCys5, SbCysé
/ Jirssoam‘z i AT1G21360.1 Smé 22832?3
AT5G04340.1 LG L2 S AT';\G\29152.1
\/ o \)mm%
AT3G19580.1 AT3G21260.3

AT1G08750.1 AT4G12825.1

AT1G63100.1

AT1G52415.1 AT1G54390.2

AT2G39050.1

nceo)o\a/mi AT5G51970.1 | — AT1G66160.1 \
e AT2G25940.1
AT3G20210.2 AT3G19510.1
AT3G10850.1 /
04| AT1G13880.1
AT5G63030.1 AT1G30660.1 AT3G24010.1

AT2G34080.1
AT2G40410.2 AT2G18140.1

AT1G06515.2 AT5G12270.1

AT2G44800.1
AT4G26500.1

AT2G27420.1

AT5G21160.3

AT5G09830.1
AT3G56170.1

Peer] reviewing PDF | (2019:12:44309:2:0:NEW 27 Jul 2020)



Peer]

Figure 8

Hierarchical clustering of the expression profiles of SbCys genes in different tissues .

Different tissues are exhibited below each column. Root, shoot, and whole organism
belonged to vegetable tissues were collected at 14 days after Sorghum seed germination.
Reproductive tissues included embryo , endosperm and pericarp were collected at 20 days
after pollination; pollens at booting stage; Inflorescences based on sizes: 1-5 mm, 5-10 mm,
and 1-2 cm. Log transform data was used to create the heatmap. The scale bar represented
the fold change (color figure online). Blue blocks represented the lower expression level and

red blocks represented the higher expression level.
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Figure 9

Hierarchical clustering of the expression profiles of SbCys genes under biotic stresses.

(A) The expression changes in SbCys genes at 0, 12, and 24 hours with Bipolaris sorghicola
infection. (B) The expression changes of SbCys genes at 5, 10, 15 days with sugarcane aphid
infestation. Log transform data was used to create the heatmap. The scale bar represents the
fold change (color figure online). Blue blocks indicate low expression and red blocks indicate

high expression (color figure online).
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Figure 10

Expression profiles of SbCys genes at 5, 10, and 15 days with sugarcane aphid infection.
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Figure 11

Expression patterns of SbCys genes under (A) dehydration (PEG 6,000) treatment, (B)
salt shock (NaCl) treatment, and (C) ABA treatment.

gRT-PCR was used to investigate the expression levels of each SbCys gene. To visualize the
relative expression levels data, 0 h at each treatment was normalized as “1”. * indicated
significant differences in comparison with the control at p < 0.05. ** indicated significant

differences in comparison with the control at p < 0.01.
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