Genetic variation of Nigerian cattle inferred from maternal and paternal genetic markers (#50178)

First submission

Guidance from your Editor

Please submit by 14 Jul 2020 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

5 Figure file(s)

12 Table file(s)

3 Other file(s)

DNA data checks

- Have you checked the authors <u>data deposition statement?</u>
- Can you access the deposited data?
- Has the data been deposited correctly?
- Is the deposition information noted in the manuscript?

Vertebrate animal usage checks

- Have you checked the authors <u>ethical approval statement?</u>
- Were the experiments necessary and ethical?
- Have you checked our <u>animal research policies</u>?

Field study

- Have you checked the authors <u>field study permits</u>?
- Are the field study permits appropriate?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Genetic variation of Nigerian cattle inferred from maternal and paternal genetic markers

David H Mauki Equal first author, 1, 2, 3, Adeniyi C Adeola Equal first author, 1, 2, Said I Ng'ang'a 1, 2, 3, Abdulfatai Tijjani 4, Akanbi I Mark 5, Oscar J Sanke 6, Abdussamad M Abdussamad 7, Sunday C Olaogun 8, Jebi Ibrahim 9, Philip M Dawuda 10, Godwin F Mangbon 11, Paul S Gwakisa 12, Ting-Ting Yin 1, Min-Sheng Peng Corresp., 1, 2, 3, Ya-Ping Zhang 1, 2, 3, 13, 14

Corresponding Author: Min-Sheng Peng Email address: pengminsheng@mail.kiz.ac.cn

We analyzed the genetic diversity of Nigerian cattle from 119 and 20 mitochondrial DNA (mtDNA) D-loop and Y-chromosomal sequences respectively and compared with global cattle samples. Nigerian cattle can be assigned to 80 haplotypes based on the D-loop sequences and haplotype diversity was 0.985 + 0.005. The network showed two major matrilineal clustering: the dominant cluster (with haplogroup T1, 98.3% constituting the Nigerian cattle) together with other African cattle; and that composed of Eurasian cattle. Our findings also show the presence of haplogroup T3, 1.7% in Nigerian cattle suggesting low European/West Asian cattle maternal influence. Paternal analysis indicates only Asian zebu haplogroup Y3 influence with several haplotypes in Nigerian cattle. There was no signal of maternal genetic structure in Nigerian cattle population, which may likely suggest the extensive genetic intermixing within the country. The absence of *Bos indicus* maternal signal in Nigerian cattle is attributable to vulnerability bottleneck of mtDNA lineages and concordance with the view of male zebu genetic introgression in African cattle. Our study provides insight into Nigerian cattle genetic diversity and population history in West Africa.

¹ State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China

² Chinese Academy of Sciences, Sino-Africa Joint Research Center, Kunming, Yunnan, China

University of Academy of Sciences, Kunming College of Life Science, Kunming, Yunnan, China

⁴ School of Life Sciences, University of Nottingham, Nottingham, United Kingdom

⁵ Ministry of Agriculture and Rural Development, Secretariat, Ibadan, Oyo, Nigeria

⁶ Taraba State Ministry of Agriculture and Natural Resources, Jalingo, Taraba, Nigeria

⁷ Department of Animal Science, Faculty of Agriculture, Bayero University, Kano, Kano, Nigeria

B Department of Veterinary Medicine, University of Ibadan, Ibadan, Oyo, Nigeria

⁹ College of veterinary medicine, department of theriogenology, University of agriculture, Makurdi, Makurdi, Benue, Nigeria

Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine, University of Agriculture Makurdi, Makurdi, Benue, Nigeria

Division of Veterinary Office, Serti, Taraba, Nigeria

Department of Microbiology, Parasitology and Biotechnology/ Genome Science Center, Sokoine University of Agriculture, Morogoro, Tanzania

¹³ State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences,, Yunnan University, Kunming, Yunnan, China

¹⁴ Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China

1 Genetic variation of Nigerian cattle inferred from maternal and paternal genetic markers

- 2
- 3 David H. Mauki*†‡#, Adeniyi C. Adeola*†#, Said I. Ng'ang'a*†‡, Abdulfatai Tijjani§, Akanbi I.
- 4 Mark¶, Oscar J. Sanke♥, Abdussamad M. Abdussamad®, Sunday C. Olaogun™, Jebi Ibrahim€,
- 5 Philip M. Dawuda[€], Godwin F. Mangbon[□], Paul S. Gwakisa³, Ting-Ting Yin^{*}, Min-Sheng
- 6 Peng*†‡, Ya-Ping Zhang*†‡βk,

- 8 *State Key Laboratory of Genetic Resources and Evolution& Yunnan Laboratory of Molecular
- 9 Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences,
- 10 Kunming, China.
- [†]Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China.
- 12 ‡Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming,
- 13 China.
- 14 §School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.
- 15 Ministry of Agriculture and Rural Development, Secretariat, Ibadan, Nigeria.
- ²⁸Department of Animal Science, Faculty of Agriculture, Bayero University, Kano, Nigeria.
- 18 **Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.

- 19 €Department of Veterinary Surgery and Theriogenology, College of Veterinary Medicine,
- 20 University of Agriculture Makurdi, Makurdi, Nigeria.
- 21 Division of Veterinary Office, Serti, Nigeria.
- 22 ³Sokoine University of Agriculture, Department of Microbiology, Parasitology and
- 23 Biotechnology/ Genome Science Center, Morogoro, Tanzania.
- 24 State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of
- 25 Life Sciences, Yunnan University, Kunming, China.
- 26 ^kCenter for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences,
- 27 Kunming 650223, China
- 28 #These authors contributed equally to this work.
- 30 Corresponding Author:

- 31 Min-Sheng Peng*†‡, Ya-Ping Zhang*†‡^βk,
- 32 *State Key Laboratory of Genetic Resources and Evolution& Yunnan Laboratory of Molecular
- 33 Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences,
- 34 Kunming, China.
- 35 †Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China.
- 36 [‡]Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming,
- 37 China.

- 38 State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of
- 39 Life Sciences, Yunnan University, Kunming, China.
- 40 ^kCenter for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences,
- 41 Kunming 650223, China
- 42 Email address: corresponding Min-Sheng Peng pengminsheng@mail.kiz.ac.cn and Ya-Ping
- 43 Zhang zhangyp@mail.kiz.ac.cn

45

46

Abstract

- We analyzed the genetic diversity of Nigerian cattle from 119 and 20 mitochondrial DNA 47 (mtDNA) D-loop and Y-chromosomal sequences respectively and compared with global cattle samples. Nigerian cattle can be assigned to 80 haplotypes based on the D-loop sequences and 48 haplotype diversity was 0.985+0.005. The network showed two major matrilineal clustering: the 49
- 50 dominant cluster (with haplogroup T1, 98.3% constituting the Nigerian cattle) together with
- other African cattle; and that composed of Eurasian cattle. Our findings also show the presence 51
- 52 of haplogroup T3, 1.7% in Nigerian cattle suggesting low European/West Asian cattle maternal
- 53 influence. Paternal analysis indicates only Asian zebu haplogroup Y3 influence with several
- haplotypes in Nigerian cattle. There was no signal of maternal genetic structure in Nigerian cattle 54
- 55 population, which may likely suggest the extensive genetic intermixing within the country. The
- absence of *Bos indicus* maternal signal in Nigerian cattle is attributable to vulnerability 56
- bottleneck of mtDNA lineages and concordance with the view of male zebu genetic introgression 57
- 58 in African cattle. Our study provides insight into Nigerian cattle genetic diversity and population
- 59 history in West Africa.

Keywords: mtDNA D-loop, Y-chromosome, genetic diversity, Nigerian cattle, West Africa

62

63

61

INTRODUCTION

64	The modern domestic cattle were initially domesticated about 10,000 years ago from two
65	putative domestication centers, the Near East for <i>Bos taurus</i> and the Indian Sub-continent for <i>B</i> .
66	indicus (Loftus et al., 1994a). In Africa, the modern domestic cattle were probably introduced at
67	different times starting with B. taurus circa 7,000 BP and later B. indicus circa 4,000 BP from
68	their putative centers of domestication (Meghen, MacHugh & Bradley, 1994). However, the
69	latter were rapidly introduced around $\sim\!699$ - 640 AD by the Arab traders following the death of
70	the Prophet (Bradley et al., 1998). Penetration of the predominant African taurine to West Africa
71	was amid 4,000 BP (Marshall & Hildebrand, 2002). According to Meghen, MacHugh & Bradley.
72	(1994), the post-introduction of the zebu cattle led to spread of zebus sporadically in Western
73	Africa circa 1,400 years ago from eastern Africa hypothesized to be the original entry point of
74	zebus in Africa (Gifford-Gonzalez & Hanotte, 2011). So far, the origin of African cattle is still
75	under strong debate due to conflicting archaeological and genetic evidence (Hanotte et al., 2002),
76	unravelling of any possible clues is still at large and with very crucial pressure.
77	Nigeria, a country in West Africa harbors quite a number of cattle including taurines, zebus,
78	(Rege, 1999) and their crossbreds (Loftus et al., 1994a). Apart from being a valued source of
79	meat, milk, skin, and wool, Nigerian cattle are observed as important idols in ceremonial rituals
80	and utilized for drafting and ploughing during farming. Acquisition of the current knowledge
81	regarding the genetic status of Nigerian cattle is crucial for conservation and utilization of their

82	genetic resources. Although there are some genetic diversity studies on West African cattle,
83	particularly in Nigeria and have investigated a few populations with limited sample size (Bradley
84	et al., 1994; Loftus et al., 1994a; Loftus et al., 1994b; Bradley et al., 1996; Perez-Pardal et al.,
85	2018). This could imply that the actual extent of the genetic diversity of Nigerian cattle still
86	remains enigma.
87	To decipher the genetic diversity in Nigerian cattle, we employed the use of both mtDNA and Y-
88	chromosomal markers, which have been widely used in assessing the diversity and
89	genogeoraphic structure of many domestic animals (Ramirez et al., 2009; Wang et al., 2014). In
90	this study we therefore evaluated variation in mtDNA D-loop and Y-chromosome of 119 and 20
91	Nigerian cattle samples respectively. Due to the nature of husbandry management in most of
92	African countries, the assessment of genetic variation in Nigerian cattle was conducted based on
93	their sampled locations such as from North Western (Zamfara, Kano, Katsina, Kaduna, and
94	Sokoto States); North Eastern (Taraba, and Plateau States) and Western (Oyo State) regions of
95	Nigeria (Fig. 1a).
96	
97	MATERIALS AND METHODS
98	Ethical considerations
99	All experimental procedures in the present study were performed in accordance to Research
100	Guidelines for the Institutional Review Board of Kunming Institute of Zoology, Chinese
101	Academy of Sciences (SMKX2017009).
102	Sampling and data collection

A total of 139 Nigerian cattle individuals (119 females and 20 males) were sampled from 103 farmer's herds in eight different States in Nigeria as follows (Fig. 1a); Kaduna State (n=19 104 females; n=3 males), Kano State (n=4 females; n=2 males), Katsina State (n=4 females; n=2 105 males), Sokoto State (n=27 females; n=4 males), Mambilla plateau in Taraba State (n=35 106 females; n=2 males), Zamfara State (n=8 females; n=2 males), Oyo State (n=1 female; n=2 107 108 males) and Jos city in Plateau State (n=21 females; n=2 males). During sample collection, to 109 obtain genetically unrelated cattle from the eight states in Nigeria, ecological and geographical perspectives were considered. This included randomly sampling of at most two animals per 110 household and only from those households located approximately 0.5 km further apart. Farmers 111 were also interviewed on the pedigree information of their animals prior to carrying out blood 112 collection. Blood samples were kept in 95% ethanol at room temperature before transportation to 113 the laboratory. Samples were stored at 4°C for immediate use, or at -80°C for later use. 114 115 Yak (Bos grunniens: Accession no. MN398192, Huang et al., 2020) and a B. indicus sample 116 from West Asia (Accession no. EU177868, Achilli et al., 2008) were used as outgroups in phylogenetic tree and haplotype network analyses respectively. A total of 420 sequences based 117 on 636 bp (of the D-loop region) that included 119 individuals from Nigeria, 76 from Europe, 16 118 119 from West Asia, and 209 from other African countries (31 Egyptian cattle, 16 Mozambiquan 120 cattle, 126 Ethiopian cattle, 34 Nguni cattle from South Africa, and two additional samples from 121 Nigeria) were used in mtDNA analyses (more information in Figure 1 legend part b; Table S1). 122 For Y-chromosome analyses only few representative samples of the three major haplogroups of 123 cattle were used as detailed in the supplementary Table S2.

DNA extraction, PCR and sequencing

125	Genomic DNA was extracted from ~5ml of blood following phenol-chloroform method
126	(Sambrook & Russell, 2001). We amplified 636-base pair of the D-loop region of mtDNA, using
127	primers constructed from L27712 D-loop sequence for both forward and reverse primers (Table
128	S3) (Loftus et al., 1994). The mtDNA amplification and sequencing reactions were carried out in
129	a total of 25µl PCR reaction mixture using ~40 ng of mtDNA, 10 pmol of each primer, 2.5
130	mMdNTPs and 5 units of Takara Taq DNA polymerase in a 10pmol TIAGEN reaction buffer
131	containing 1.5 mM MgCl ₂ . Amplifications were carried out in a thermocycler for at least 35
132	cycles as follows: 95°C for 5 min, 94°C for 45 sec, 58°C for 30 sec, 72°C for 1 min 30 sec, and a
133	final extension of 7 min at 72°C. The quality and confirmation check were performed using 2%
134	agarose gel and visualization under UV transilluminator. The PCR products were purified using
135	EXO/SAP enzymes and finally sequenced using Sanger sequencing approach.
135136	EXO/SAP enzymes and finally sequenced using Sanger sequencing approach. We have sequenced 286 bp of the bovine Y-chromosome (<i>Ginja et al., 2009</i>) in 20 Nigerian
136	We have sequenced 286 bp of the bovine Y-chromosome (Ginja et al., 2009) in 20 Nigerian
136 137	We have sequenced 286 bp of the bovine Y-chromosome (<i>Ginja et al., 2009</i>) in 20 Nigerian cattle (Table S2 and S3; GenBank accession numbers: xxx-xxx) in order to identify polymorphic
136 137 138	We have sequenced 286 bp of the bovine Y-chromosome (<i>Ginja et al., 2009</i>) in 20 Nigerian cattle (Table S2 and S3; GenBank accession numbers: xxx-xxx) in order to identify polymorphic sites in the X-degenerate male specific regions of the bovine Y-chromosome (MSY) (<i>Chang et</i>
136 137 138 139	We have sequenced 286 bp of the bovine Y-chromosome (<i>Ginja et al., 2009</i>) in 20 Nigerian cattle (Table S2 and S3; GenBank accession numbers: xxx-xxx) in order to identify polymorphic sites in the X-degenerate male specific regions of the bovine Y-chromosome (MSY) (<i>Chang et al., 2013</i>). In particular, an intron 10 region of the Y-linked zinc finger protein Y (ZFY) gene
136 137 138 139 140	We have sequenced 286 bp of the bovine Y-chromosome (<i>Ginja et al., 2009</i>) in 20 Nigerian cattle (Table S2 and S3; GenBank accession numbers: xxx-xxx) in order to identify polymorphic sites in the X-degenerate male specific regions of the bovine Y-chromosome (MSY) (<i>Chang et al., 2013</i>). In particular, an intron 10 region of the Y-linked zinc finger protein Y (ZFY) gene (<i>Ginja et al., 2009</i> ; Table S3) was used to generate primers for the amplification and sequencing
136 137 138 139 140 141	We have sequenced 286 bp of the bovine Y-chromosome (<i>Ginja et al., 2009</i>) in 20 Nigerian cattle (Table S2 and S3; GenBank accession numbers: xxx-xxx) in order to identify polymorphic sites in the X-degenerate male specific regions of the bovine Y-chromosome (MSY) (<i>Chang et al., 2013</i>). In particular, an intron 10 region of the Y-linked zinc finger protein Y (ZFY) gene (<i>Ginja et al., 2009</i> ; Table S3) was used to generate primers for the amplification and sequencing of all 20 samples with the length of 286 bp. We applied the same PCR conditions used in the

Data analysis

145

146

Sequences check and alignment

147	The assembled DNA sequences of 139 individuals were exported into MEGA X ver 10.1.7
148	software (Kumar et al., 2018) for alignment with other cattle populations mined from Genbank
149	for both mtDNA D-loop (Table S1 and S4) and ZFY Y-chromosomal markers (Table S2).
150	Multiple sequence alignments of the D-loop region and ZFY gene of the Y-chromosome were
151	carried out using CLUSTAL W package (Thompson, Higgins & Gibson, 1994) integrated in the
152	MEGA software. All sites containing alignment gaps were excluded from the analysis. Our data
153	involved amplification and sequencing of the 636 -base pair (bp) mtDNA D-loop region and 286
154	bp ZFY gene of 119 and 20 Nigerian cattle samples respectively. Variations in the D-loop region
155	were detected by assembling all forward and reverse sequences against the reference B. taurus
156	mtDNA sequence [(GenBank accession no. V00654); (Anderson et al., 1982)] using SeqMan
157	Lasergene package in DNASTAR software. Variations in the Y-chromosome of the X
158	degenerate region located at intron 10 of ZFY gene were also determined. The alignments and
159	assembly of the Y-chromosome sequences were carried out similarly following the protocol used
160	by Ginja, Telo da Gama & Penedo, (2009) where sequences from distantly related species were
161	used as deployed by Gotherstrom et al. (2005) but using Bison bison, B. frontalis, and B.
162	grunniens sequences (Verkaar et al., 2004). The polymorphic sites among all Nigerian
163	individuals were identified using a B. taurus reference genome (GenBank Accession no.
164	AF241271; Lawson et al., 2002).
165	Genetic diversity and haplogroup classification
166	MitoToolPy_Linux (Peng et al., 2015) was used to determine haplogroup distribution across
167	Africa by analyzing a 240 bp fragment length of the D-loop region of mtDNA involving 609
168	cattle samples in total (including the 119 Nigerian cattle sequenced in this study [(Fig. 1a; Table
169	S4); (reference data were retrieved from: Loftus et al., 1994a; Bradley et al., 1996; Troy et al.,

170 2001; Beja-Pereira et al., 2006; Dadi et al., 2009; Bonfiglio et al., 2012; Horsburgh et al., 2013; Olivieri et al., 2015)]. We used DnaSP v5 (Librado & Rozas, 2009) to determine the haplotypes 171 in 420 mtDNA cattle sequences and the assignment of bovine Y-chromosome haplogroups for 172 Nigerian cattle. The extent of genetic diversity, was assessed by using Arlequin v3.5 (Excoffier 173 174 & Lischer, 2010) and expressed in terms of the number of haplotypes (H) and polymorphic sites 175 (PS), haplotype diversity (HD), nucleotide diversity (π), the mean number of nucleotide differences (Df) and their standard deviations (SD) estimated across all African populations used 176 177 in this study. Notably, the comparisons of the genetic diversity estimates were considered for 178 only those populations with sample size above 5. Phylogenetic tree analyses 179 180 To investigate the evolutionary relationship of Nigerian cattle with other cattle samples mined from GenBank (Table S1 and S2), the same version of MEGA software was used to construct a 181 rooted neighbor-joining (NJ) phylogenetic tree (Saitou & Nei 1987) using the Maximum 182 183 Composite Likelihood evolutionary distance approach (Tamura, Nei & Kumar, 2004) and bootstrap test was employed at 1000 replications so as to assess the confidence of each node 184 185 (Felsenstein, 1985). To further visualize the genetic relationships between the haplotypes and identifying the number of unique mtDNA D-loop haplogroups present in the 420 dataset, the 186 median-joining (MJ) network (Bandelt, Forster & Rohl, 1999) was generated by using Network 187 188 v4.6 software (www.fluxus-engineering.com). Population genetic structure and demographic dynamic profiles 189 190 To infer the matrilineal genetic variation within populations, among populations, and groups of 191 populations, analysis of molecular variance (AMOVA) was carried out following 50,000

permutations in Arlequin v3.5 software. The analysis was conducted for Nigerian cattle at various hierarchical levels viz the Nigerian cattle as a single cluster, Nigerian cattle vs the other African countries but also vs cattle from Europe and West Asia. The levels of significance in each hierarchical cluster tested were evaluated using F_{ST} parameter at a significant P level of 0.05.

To unravel the population dynamics and demographic patterns of Nigerian cattle population, mismatch distribution patterns were estimated (*Rogers & Harpending, 1992*) with respect to their geographical regions for North West and North East. The chi-square test of goodness of fit and Harpending's raggedness index "r" (*Harpending, 1994*) statistics were also calculated to assert the significance of the deviations of the sum of squares differences (*SSD*) observed from the simulated model of demographic expansions determined by 1,000 coalescent simulations. Demographic statistical parameters for Tajima's D (*Tajima, 1989*) and Fu's F_S (Fu, 1997) were also estimated by using Arlequin v3.5 software to further complement the mismatch distribution patterns.

RESULTS

Variation in mtDNA sequences and genetic diversity

In this study we evaluated variations in the mtDNA D-loop of 119 Nigerian cattle together with 301 global cattle sequences based on 636 bp from Egypt, Ethiopia, Mozambique, South Africa, Europe and West Asia available in the GenBank. The sequences generated in this study have been deposited in the GenBank with accession numbers MT362777 – MT362895. There were 153 variable sites scored in all 420 cattle samples that defined 275 haplotypes (Table S5) and 80

of them assigned to Nigerian cattle sequenced in this study (Table 1). Most of the Nigerian cattle in the current study possess unique haplotypes (80%) and the remaining ones were shared with other African and European cattle. The lowest level of haplotype diversity (0.983 \pm 0.009) was observed in cattle from North East while the highest (0.984 \pm 0.007) was observed in the North Western region. Estimated haplotype diversity (HD) across all Nigerian individuals was 0.985+0.005 (Table 1). This value observed is lower than the haplotype diversity of Egyptian and Mozambican cattle populations but was higher compared to Ethiopian and South African cattle.

Haplogroup classification and phylogenetic trees using mtDNA

The haplogroup distribution across Africa shows that majority of African cattle are of *B. taurus* T1 the widely known *B. taurus* haplogroup for African cattle (Fig. 1a, Table S4). This was also evidently confirmed when considering Nigerian cattle analyzed in this study where majority of them were classified into haplogroup T1 (98.3%) (Table S1 and S4). Interestingly-enough, two of the Nigerian individuals were detected with haplogroup T3 at rather very low frequency of 1.7%, which could imply low influence of European/West Asian cattle, probably have been brought about by a way of interbreeding with exotic commercial breeds in the recent past. Apart from Nigeria, other African countries in the Northern part of Africa particularly Egypt, Libya and Morocco were also detected with the other types of *B. taurus* haplogroups T2, T3 and Q1. No trace of *B. indicus* lineage was observed in Nigerian cattle samples sequenced in this study. To obtain further insights into the haplotype relationships, the network analysis (Fig. 1b) and phylogenetic tree (Fig. S1) were constructed using the 636 bp sequences of 119 Nigerian cattle and 301 other sequences retrieved from the GeneBank. The phylogenetic tree has indicated two major lineages of cattle, *B. taurus* (T1, T2, T3, T5, and Q1) and *B. indicus* (I1 and I2) lineages as

238

239

240

241

242

245

246

247

248

249

250

251

252

255

256

257

258

259

expected. All Nigerian cattle have been placed together with the rest of taurine cattle individuals separately from the zebu cattle. The MJ network depicted similar pattern where haplogroup I1 for zebu lineage (considered herein as the outgroup) was separated from all the taurine haplogroups. Furthermore, the network revealed two major clustering: the first cluster showed grouping of Nigerian cattle with African and European cattle; while the second cluster did not contain Nigerian individuals. Nigerian cattle in the first cluster exhibit a star-like pattern, which signifies a signature of population expansion. 243 Population genetic structure and historical demographic dynamics 244 AMOVA analysis incorporating the eight populations from Nigeria showed that more than 99% of the total genetic variation present in Nigerian cattle occurred within individuals (Table S6). Furthermore, when analyzing the genetic variation between Nigerian cattle and other cattle populations AMOVA showed that, 62 to 93% of the total variation between Nigerian cattle and other African cattle populations occurs within individuals, with the highest variation observed between Nigerian and Mozambican cattle (93.46%). Generally, all attempts to explore the differentiation between Nigeria and other populations were attributable to within-population variance (P < 0.05) with exceptional of variation among populations within groups for Nigerian and European cattle (F = 0.07375, P = 0.00004). The F_{ST} distance values between most Nigerian 253 cattle sub-populations were low (Table S7). However, it was considerably high between Nigerian 254 cattle and other African cattle populations showing significant genetic variation between them at P < 0.05 with exceptional for cattle populations between Ethiopia and Mozambique (FST = -0.00548, P = 0.57129). Our AMOVA results complemented by genetic distance estimates suggest general absence of maternal genetic structuring in Nigerian cattle sub-populations, likely

due to extensive genetic intermixing within the country.

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

To elucidate the demographic dynamics of Nigerian cattle, mismatch distribution patterns, for each geographical region in Nigeria were assessed (Fig. S2). The mismatch distribution patterns were unimodal, however the pattern deviated significantly from expected under a null hypothesis model of either spatial or demographic expansion due to significant values obtained for Sum of Squared deviation (SSD) and Harpending's Raggedness index (HRI) (Table S8). The significant values for SSD and HRI indicate a bad goodness of fit test, which does not support the scenario of population expansion. The values for Tajima's D -2.315 (P < 0.05) and Fu's F_S statistics -26.203 (P < 0.05) on the other hand were both negative and significant indicating an agreement of recent population growth and expansion respectively. Cattle population from Western region part of Nigeria showed Tajima's D value of 0 possibly due to only 3 samples having being used, but could indicate that this population in this region evolved as per mutation drift equilibrium with no evidence of selection. Genetic polymorphism of cattle Y- chromosome and haplogroup distribution In supplementary Figure 3, we provide detailed information on haplogroup distribution based on Y-chromosomal markers in Africa. Our results show that all Nigerian cattle cluster in haplogroup Y3 solely a *B. indicus* haplogroup due to similar mutations (Table 2, Fig. S3). Notably, in addition to previously reported mutations that further classify zebu cattle into haplotype Y3 families as pointed out by Chen et al. (2018) and Perez-Pardal et al. (2018), we also show new mutations in Nigerian cattle possibly not previously reported. These include those SNPs observed between g.784 and g.805bp (Table 2). Multiple sequence alignment with haplotypes

defining the three major haplogroups of cattle (Y1, Y2 and Y3) (Nijman et al., 2008; Ginja, Telo

da Gama & Penedo, 2009 and Table S2) revealed the existence of seven mutations including

mutations A>G, T>C and T>G that distinguish Y3a (or Y_C) and Y3b (or Y3_A, Y3_B) haplotype

families (Table 2) grouping Nigerian cattle into several zebu Y3 sub-haplotype families (Table 3). Majority of the Nigerian cattle shared haplotype Hap_7Y3 together with cattle from Asia. Our findings indicate non-evidence influence of European Y1 or Y2 haplogroups in Nigerian cattle. The phylogenetic tree showed distinct Nigerian individuals with some of them clustering together with distantly related species illustrating possible ancient auroch contribution into the gene pool of Nigerian cattle (Fig. S4).

The overall genetic diversity for Nigerian cattle measured by the haplotype diversity and the mean number of pairwise difference is 1.000 ± 0.016 and 1.679 ± 1.027 respectively (Table 3).

The genetic diversity detected in some African cattle populations/breeds as per *Perez-Pardal et al. (2018)* and *Ginja, Telo da Gama & Penedo, (2019)* based on Y-chromosomal markers are shown in Table S9. Both of these studies employed low sampling coverage for the assessment of Nigerian cattle genetic diversity compared to the sampling coverage used in this study.

DISCUSSION

In this study we examined the genetic variation across eight Nigerian cattle populations, which represent samples from one country in West Africa. The results based on mtDNA D-loop revealed 80 haplotypes from 119 Nigerian cattle sequences, which showed a haplotype diversity of 0.985 ± 0.005 . This value is lower compared to those observed in Egyptian cattle (H = 1.0 ± 0.008) in the study conducted by *Olivieri et al. (2015)*. These findings signify a high level of maternal genetic variation in Nigerian cattle. AMOVA on the other hand suggests a general absence of maternal genetic structuring in Nigerian cattle that may have been as a result of recent past extensive genetic intermixing within the country. Studies show that genetic intermixing is

305	caused by rigorous transportation of domestic animals like goats, cattle, and sheep from place to
306	place as a result of their valuable resource for economic trade or cultural exchange (Tarekegn et
307	al., 2018). We observed similar genetic diversity pattern based on Y-chromosome analysis where
308	the haplotype diversity detected was higher compared to the haplotype diversity 0.800 ± 0.213
309	reported by Perez-Pardal et al. (2018) for Nigerian cattle possibly due to a single breed
310	population having been used, albeit it was similar to haplotype diversity of cattle from India and
311	Central Asia (Perez-Pardal et al., 2018). Generally, in comparison with other cattle populations
312	in Africa, our study indicated the highest genetic diversity of 1.000 ± 0.016 (Table 3) with the
313	lowest in Zebu_Peul breed population from Burkina Faso (Table S9).
314	The present-day zebu-like cattle in West Africa were products of crossbreeding events between
315	the West African taurine cattle such as N'Dama and imported zebu cattle from Asia (MacHugh)
316	et al. 1997). We portrayed the genetic relationships among Nigerian cattle by using MJ network
316 317	<i>et al.</i> 1997). We portrayed the genetic relationships among Nigerian cattle by using MJ network (Fig. 1b) and NJ tree (Fig. S1). We observed all Nigerian cattle to have an exclusive taurine
317	(Fig. 1b) and NJ tree (Fig. S1). We observed all Nigerian cattle to have an exclusive taurine
317 318	(Fig. 1b) and NJ tree (Fig. S1). We observed all Nigerian cattle to have an exclusive taurine specific genetic haplogroup T, notwithstanding some of the Nigerian cattle displayed some
317318319	(Fig. 1b) and NJ tree (Fig. S1). We observed all Nigerian cattle to have an exclusive taurine specific genetic haplogroup T , notwithstanding some of the Nigerian cattle displayed some features of <i>B. indicus</i> morphological resemblance such as the presence of the humps. This
317318319320	(Fig. 1b) and NJ tree (Fig. S1). We observed all Nigerian cattle to have an exclusive taurine specific genetic haplogroup T , notwithstanding some of the Nigerian cattle displayed some features of B . <i>indicus</i> morphological resemblance such as the presence of the humps. This scenario is in accordance with similar observations by <i>Loftus et al.</i> (1994a). The phylogenetic
317318319320321	(Fig. 1b) and NJ tree (Fig. S1). We observed all Nigerian cattle to have an exclusive taurine specific genetic haplogroup T, notwithstanding some of the Nigerian cattle displayed some features of <i>B. indicus</i> morphological resemblance such as the presence of the humps. This scenario is in accordance with similar observations by <i>Loftus et al.</i> (1994a). The phylogenetic tree indicated two major lineages of cattle: <i>B. taurus</i> haplogroup T lineage (containing T1, T2,
317 318 319 320 321 322	(Fig. 1b) and NJ tree (Fig. S1). We observed all Nigerian cattle to have an exclusive taurine specific genetic haplogroup T, notwithstanding some of the Nigerian cattle displayed some features of <i>B. indicus</i> morphological resemblance such as the presence of the humps. This scenario is in accordance with similar observations by <i>Loftus et al.</i> (1994a). The phylogenetic tree indicated two major lineages of cattlet <i>B. taurus</i> haplogroup T lineage (containing T1, T2, T3, T5 haplogroups) and the novel Q1 haplogroup and <i>B. indicus</i> haplogroup I lineage with
317 318 319 320 321 322 323	(Fig. 1b) and NJ tree (Fig. S1). We observed all Nigerian cattle to have an exclusive taurine specific genetic haplogroup T, notwithstanding some of the Nigerian cattle displayed some features of <i>B. indicus</i> morphological resemblance such as the presence of the humps. This scenario is in accordance with similar observations by <i>Loftus et al.</i> (1994a). The phylogenetic tree indicated two major lineages of cattle: <i>B. taurus</i> haplogroup T lineage (containing T1, T2, T3, T5 haplogroups) and the novel Q1 haplogroup and <i>B. indicus</i> haplogroup I lineage with exclusive I1 and I2 haplogroups expectedly (<i>Achilli et al.</i> , 2008). All Nigerian cattle have been
317 318 319 320 321 322 323 324	(Fig. 1b) and NJ tree (Fig. S1). We observed all Nigerian cattle to have an exclusive taurine specific genetic haplogroup T , notwithstanding some of the Nigerian cattle displayed some features of B . indicus morphological resemblance such as the presence of the humps. This scenario is in accordance with similar observations by Loftus et al. (1994a). The phylogenetic tree indicated two major lineages of cattle: B . taurus haplogroup T lineage (containing $T1$, $T2$, $T3$, $T5$ haplogroups) and the novel Q1 haplogroup and B . indicus haplogroup T lineage with exclusive T 1 and T 2 haplogroups expectedly (Achilli et al., 2008). All Nigerian cattle have been placed together with the rest of taurine cattle individuals separated from the zebu cattle with high

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

observed in this study (Loftus et al., 1994a; Loftus et al., 1994b). This reflects that the predominant African cattle were solely of taurine origin. The MJ network depicted similar pattern where haplogroup I1 for zebu lineage (considered herein as the out-group) was separated from the taurine lineage haplogroups. The network also revealed two major clustering: the first cluster showed grouping of Nigerian cattle with African and European cattle; while the second cluster did not contain Nigerian individuals. The complete absence of Asian zebu mtDNA in Nigerian cattle samples suggests that crossbreeding events were mainly through the imported Asian male zebus (Loftus et al., 1994a; Loftus et al., 1994b; Bradley et al., 1996). Nonetheless, this scenario could have been attributed by the continued adoption of trypanotolerant breeds that probably led to total loss of the B. indicus mtDNA lineages or its vulnerability towards population bottleneck. This has also been observed elsewhere by several studies particularly cattle from North-East Asia (Mannen et al., 2004). Bradley et al. (1994) and Perez-Pardal et al. (2018) further stressed availability of male zebu Y-haplotypes in West African cattle extrapolating the importation of probably only male zebus into this region. The mtDNA and Y-chromosome analyses conducted in this study have confirmed that Nigerian cattle are an influence of both taurine and indicine lineages from female and male genetic contributions respectively. Previously, mtDNA studies (Loftus et al., 1994a) have founded that African cattle are of taurine background. However, studies conducted by using Y-chromosomal markers (Bradley et al., 1994) founded that African cattle had been genetically introgressed with zebu cattle from Asia. Based on Y-chromosomal studies, it is observed that majority of African cattle belong to haplogroup Y3 (a B. indicus haplogroup) especially for cattle in East and Central Africa (Fig. S3). However, the frequency of zebu haplogroup Y3 is seen to decrease gradually as you move towards West and South of Africa likely due to the presence of *B. taurus* haplogroups

351	Y1 and Y2 in these regions. A study by <i>Decker et al. (2014)</i> had previously demonstrated similar
352	observations using autosomal single nucleotide polymorphisms (SNPs) markers. Some studies
353	have further indicated that B. indicus haplogroup Y3 contain several haplotype families such as
354	$Y3b$ (or $Y3_A$, $Y3_B$) and $Y3a$ (or Y_C) (Chen et al., 2018; Perez-Pardal et al., 2018), with $Y3_A$ and
355	Y3 _B being the dominant haplogroups in East and West African cattle respectively. Similarly, we
356	have observed the same, however, we point out to a possibility of having several other distinct
357	zebu individuals in Nigerian cattle that may have not been previously investigated (Table 3, Fig.
	S4). Moreover, the phylogenetic analysis of evolutionary relationship infers the possibility of
359	local ancient wild aurochs introgression that may have had occurred in Africa post introduction
360	of zebus adding to an effect of the current several Y3 strains present in Nigeria or rather the
361	legacy of local adaptation. These findings shade some possible novel insights regarding Nigerian
362	cattle perspectives of their origins. The classification of Nigerian cattle into both as taurine and
363	as indicine confirms the ongoing hybridization process of cattle species (B. taurus and B.
364	indicus) that occurred since ancient time spontaneously or rather through recent breeding events.
365	In the light of this argument with respect to Nigerian cattle in West Africa comes as most
366	farmers in this region preferred zebu of male lineage due to their massive huge size but also
367	being resistant to rinderpest that taurines are not, even though them being less vigorous towards
368	trypanosomiasis, a disease prevalent in tsetse regions of both West and Central Africa that
369	taurines are resistant to (Grigson, 1991; Ibeagha-Awemu et al., 2004). Because of their ability to
370	withstand rinderpest disease and the huge size of the bulls for meat, Asian zebus
371	(trypanosusceptible) were preferentially selected for domestication that subsequently led to the
372	modern West African cattle as hybrid product of both the predominant local African taurines
373	(trypanotolerant) (or the earliest introduced taurines from Eurasia) and Asian zebus.

Inference of demographic profiles and population dynamics were extrapolated by mismatch distribution patterns. We observed a unimodal mismatch distribution pattern in North East, North West and the entire Nigerian cattle population. This pattern suggests the evidence of population growth and expansion of Nigerian cattle. Although the goodness of fit model displayed contrary results to the support of evidence for population expansion, the negative values in Tajima's *D* and FU's *FS* show excess of low and high frequency polymorphisms indicative of population size increase from a recent population bottleneck or genetic hitchhiking. Moreover, the MJ network showed a star-like pattern that further signifies the scenario of population expansion of Nigerian cattle that could have had emerged from a single founder sample or several founder samples that had very little variation between them. Similar findings were observed by previous studies, where they detected unimodal mismatch distribution patterns as evidence for demographic expansion (*Bradley et al.*, 1996; *Mannen et al.*, 2004).

CONCLUSIONS

This study reported the current genetic status and some possible new insights about the origin of cattle in West Africa using Nigerian samples from matrilineal and patrilineal perspectives. High level of maternal and paternal genetic diversity was observed in Nigerian cattle, with lack of phylogeographic structure possibly due to humanly mediated interventions that usually enhance severe intermixing as a result of random mating. Despite the ensue of the two contrary findings, we tend to believe that Nigerian cattle would be more of indicine background due to their morphological appearance matching that of zebus observed during sampling and also as confirmed by the Y-chromosome analysis conducted in this study. Therefore, deep population

396	genetic autosomal studies are required using high-throughput technologies to provide
397	comprehensive demographic history of cattle in West Africa.
398	
370	
399	Authors' contributions
400	YP.Z., D.H.M, A.C.A. and MS.P. led the project, and designed and conceived the study.
401	D.H.M. and A.C.A. prepared the manuscript. MS.P. and YP.Z. revised the manuscript.
402	D.H.M., S.I.N. and A.C.A performed the data analysis. A.C.A., A.I.M., O.J.S., S.C.O., J.I. and
403	G.F.M. performed sampling. D.H.M. carried out experiments. All authors revised and approved
404	the final manuscript.
405	
103	
406	Acknowledgments
407	We appreciate all those who assisted in the study. This work was supported by the Sino-Africa
408	Joint Research Center, Chinese Academy of Sciences (SAJC201611) and the Animal Branch of
408 409	Joint Research Center, Chinese Academy of Sciences (SAJC201611) and the Animal Branch of the Germplasm Bank of Wild Species, Chinese Academy of Sciences (the Large Research
409	the Germplasm Bank of Wild Species, Chinese Academy of Sciences (the Large Research
409 410	the Germplasm Bank of Wild Species, Chinese Academy of Sciences (the Large Research Infrastructure Funding). The Chinese Academy of Sciences President's International Fellowship
409 410 411	the Germplasm Bank of Wild Species, Chinese Academy of Sciences (the Large Research Infrastructure Funding). The Chinese Academy of Sciences President's International Fellowship Initiative provided support to A.C.A (2018FYB0003). D.H.M and S.I.N acknowledge the
409 410 411 412	the Germplasm Bank of Wild Species, Chinese Academy of Sciences (the Large Research Infrastructure Funding). The Chinese Academy of Sciences President's International Fellowship Initiative provided support to A.C.A (2018FYB0003). D.H.M and S.I.N acknowledge the support of the Chinese Academy of Sciences-The World Academy of Sciences (CAS-TWAS)
409 410 411 412 413	the Germplasm Bank of Wild Species, Chinese Academy of Sciences (the Large Research Infrastructure Funding). The Chinese Academy of Sciences President's International Fellowship Initiative provided support to A.C.A (2018FYB0003). D.H.M and S.I.N acknowledge the support of the Chinese Academy of Sciences-The World Academy of Sciences (CAS-TWAS)

416	The authors declare that they have no competing interests.
417	
418	References
419	Achilli A, Olivieri A, Pellecchia M, Uboldi C, Colli L, Al-Zahery N, Accetturo M, Pala M,
420	Hooshiar Kashani B, Perego UA, Battaglia V, Fornarino S, Kalamati J, Houshmand M,
421	Negrini R, Semino O, Richards M, Macaulay V, Ferretti L, Bandelt HJ, Ajmone-Marsan P,
422	Torroni A. 2008. Mitochondrial genomes of extinct aurochs survive in domestic cattle.
423	Current Biology 18 (4):157–158.
424	Anderson SMHL, De Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG. 1982.
425	Complete sequence of bovine mitochondrial DNA conserved features of the mammalian
426	mitochondrial genome. <i>Journal of molecular biology</i> 156 (4):683–717.
427	Bandelt HJ, Forster P, Rohl A. 1999. Median-joining networks for inferring intraspecific
428	phylogenies. Molecular Biology and Evolution 16:37–48.
429	Beja-Pereira A, Caramelli D, Lalueza-Fox C, Vernesi C, Ferrand N, Casoli A, Goyache F, Royo
430	LJ, Conti S, Lari M, Martini A, Ouragh L, Magid A, Atash A, Zsolnai A, Boscato P,
431	Triantaphylidis C, Ploumi K, Sineo L, Mallegni F, Taberlet P, Erhardt G, Sampietro L,
432	Bertranpetit J, Barbujani G, Luikart G, Bertorelle G. 2006. The origin of European cattle:
433	evidence from modern and ancient DNA. Proceedings of the National Academy of Sciences
434	of the United States of America 103:8113–8118.

435	Bradley DG, Lottus R1, Cunningham P, Machugh DE. 1998. Genetics and domestic cattle
436	origins. Evolutionary Anthropology 6 :79–86.
437	Bradley DG, MacHugh DE, Cunningham P, Loftus RT. 1996. Mitochondrial diversity and the
438	origins of African and European cattle. Proceedings of the National Academy of Sciences of
439	the United States of America 93 :5131–5.
440	Bradley DG, MacHugh DE, Loftus RT, Sow RS, Hoste CH, Cunningham EP. 1994. Zebu-
441	taurine variation in Y chromosomal DNA: a sensitive assay for genetic introgression in wes
442	African trypanotolerant cattle populations. <i>Animal Genetics</i> 25 :7–12.
443	Bonfiglio S, Ginja C, De Gaetano A, Achilli A, Olivieri A, Colli L, Penedo MCT. 2012. Origin
444	and spread of Bos taurus: new clues from mitochondrial genomes belonging to haplogroup
445	T1. PloS one 7 (6).
446	Chang TC, Yang Y, Retzel EF, Liu WS. 2013. Male-specific region of the bovine Y
447	chromosome is gene rich with a high transcriptomic activity in testis development.
448	Proceedings of the National Academy of Sciences of the United States of America
449	110 :12373–12378.
450	Chen N, Cai Y, Chen Q, Li R, Wang K, Huang Y, Hu S, Huang S, Zhang H, Zheng Z. Song W.
451	2018. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression
452	events of domesticated cattle in East Asia. <i>Nature communications</i> 9 (1):1–13.
453	Dadi H, Tibbo M, Takahashi Y, Nomura K, Hanada H, Amano T. 2009. Variation in
454	mitochondrial DNA and maternal genetic ancestry of Ethiopian cattle populations. Animal
455	genetics 40 (4):556–559.

456	Decker JE, Mckay SD, Rolf MM, Kim J, Molina Alcala A, Sonstegard TS, Hanotte O,
457	Gotherstrom A, Seabury CM, Praharani L, Babar ME, Correia De Almeida Regitano L,
458	Yildiz MA, Heaton MP, Liu WS, Lei CZ, Reecy JM, Saif-Ur-Rehman M, Schnabel RD,
459	Taylor JF. 2014. Worldwide patterns of ancestry, divergence, and admixture in
460	domesticated cattle. PLoS Genettics 10(3).
461	Excoffier L, Lischer HE. 2010. Arlequin suite ver 3.5: a new series of programs to perform
462	population genetics analyses under Linux and Windows. Molecular Ecology Resources
463	10 :564–7.
464	Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap.
465	Evolution 39 :783–791.
466 467	Fu YX. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. <i>Genetics</i> 147 :915–925.
468	Gifford-Gonzalez D, Hanotte O. 2011. Domesticating animals in Africa: Implications
469	of genetic and archaeological findings. <i>Journal of World Prehistory</i> 24 :1–23.
470	Ginja C, Telo da Gama L, Penedo MCT. 2009. Y chromosome haplotype analysis in Portuguese
471	cattle breeds using SNPs and STRs. Journal of Heredity 100(2):148-157.
472	Götherström A, Anderung C, Hellborg L, Elburg R, Smith C, Bradley DG, Ellegren H. 2005.
473	Cattle domestication in the Near East was followed by hybridization with aurochs bulls in
474	Europe. Proceedings of the Royal Society B: Biological Sciences 272(1579):2345–2351.
475	Grigson C. 1991. An African Origin for African Cattle? Some Archaeological Evidence. <i>The</i>
476	African Archaeological Review 9 :119–144.

477	Hanotte O, Bradley DG, Ochleng JW, Verjee Y, Hill EW, Rege JEO. 2002. African pastoralism:
478	genetic imprints of origins and migrations. <i>Science</i> 296 (5566):336–339.
479	Harpending HC. 1994. Signature of ancient population growth in a low-resolution mitochondrial
480	DNA mismatch distribution. <i>Human Biology</i> 66 :591–600.
481	Hiendleder S, Lewalski H, Janke A. 2008. Complete mitochondrial genomes of Bos taurus and
482	Bos indicus provide new insights into intra-species variation, taxonomy and
483	domestication. Cytogenetic and genome research 120(1-2):150–156.
484	Horsburgh KA, Prost S, Gosling A, Stanton JA, Rand C, Matisoo-Smith EA. 2013. The genetic
485	diversity of the Nguni breed of African Cattle (Bos spp.): complete mitochondrial genomes
486	of haplogroup T1. PloS one 8 (8).
487	Huang C, Zhang Q, Fu D, Basang W, Chu M, Yangla D, Wu X, Ma X, Guo X, Yan P, Liang C.
488	2020. The complete mitochondrial genome sequence and phylogenetic analysis of Sibu yak
489	(Bos grunniens). Mitochondrial DNA Part B 5 :46–47.
490	Ibeagha-Awemu EM, Jann OC, Weimann C, Erhardt G. 2004. Genetic diversity, introgression
491	and relationships among West/Central African cattle breeds. Genetics Selection Evolution
492	36 (6):673–690.
493	Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary
494	Genetics Analysis across computing platforms. <i>Molecular Biology and Evolution</i> 35 :1547–
495	1549.

496	Lai SJ, Liu YP, Liu YX, Li XW, Yao YG. 2006. Genetic diversity and origin of Chinese cattle
497	revealed by mtDNA D-loop sequence variation. Molecular Phylogenetics and
498	Evolution 38 (1):146–154.
499	Lawson LJ, Hewit GM. 2002. Comparison of substitution rates in ZFX and ZFY introns of sheep
500	and goat related species supports the hypothesis of male-biased mutation rates. Journal of
501	Molecular Evolution 54 (1):54–61.
502	Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA
503	polymorphism data. <i>Bioinformatics</i> 25 :1451–2.
504	Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P. 1994a. Evidence for two
505	independent domestications of cattle. Proceedings of the National Academy of Sciences of
506	the United States of America 91:2757–61.
507	Loftus RT, MacHugh DE, Ngere LO, Balain DS, Badi AM, Bradley DG, Cunningham EP.
508	1994b. Mitochondrial genetic variation in European, African and Indian cattle populations.
509	Animal Genetics 25:265–71.
510	MacHugh DE, Shriver MD, Loftus RT, Cunningham P, Bradley DG. 1997. Microsatellite DNA
511	variation and the evolution, domestication and phylogeography of taurine and zebu cattle
512	(Bos taurus and Bos indicus). Genetics 146:1071–86.
513	Mannen H, Kohno M, Nagata Y, Tsuji S, Bradley DG, Yeo JS, Nyamsamba D, Zagdsuren Y,
514	Yokohama M, Nomura K, Amano T. 2004. Independent mitochondrial origin and historical
515	genetic differentiation in North Eastern Asian cattle. Molecular Phylogenetics and
516	Evolution 32 :539–44.

517	Marshall F, Hildebrand E. 2002. Cattle before crops: the beginnings of Food production in
518	Africa. Journal of World Prehistory 16:99–143.
519	Meghen C, MacHugh DE, Bradley DG. 1994. Genetic characteristics of West African cattle.
520	World Animal Review 78 :59–66.
521	Nijman IJ, Van Boxtel DC, Van Cann LM, Marnoch Y, Cuppen E, Lenstra JA. 2008. Phylogeny
522	of Y chromosomes from bovine species. <i>Cladistics</i> 24 (5):723–726.
523	Olivieri A, Gandini F, Achilli A, Fichera A, Rizzi E, Bonfiglio S, Battaglia V, Brandini S, De
524	Gaetano A, El-Beltagi A, Lancioni H, Agha S, Semino O, Ferretti L, Torroni A. 2015.
525	Mitogenomes from Egyptian Cattle Breeds: New Clues on the Origin of Haplogroup Q and
526	the Early Spread of Bos taurus from the Near East. <i>PLoS One</i> 10 (10)
527	Peng MS, Fan L, Shi NN, Ning T, Yao YG, Murphy RW, Wang WZ, Zhang YP. 2015.
528	DomeTree: a canonical toolkit for mitochondrial DNA analyses in domesticated animals.
529	Molecular Ecology Resources 15:1238–42.
530	Pérez-Pardal L, Sánchez-Gracia A, Álvarez I, Traoré A, Ferraz JBS, Fernández I, Patel A. 2018.
531	Legacies of domestication, trade and herder mobility shape extant male zebu cattle
532	diversity in South Asia and Africa. Scientific reports 8(1):1–8.
533	Ramirez O, Ojeda A, Tomas A, Gallardo D, Huang LS, Folch JM, Galman-Omitogun O. 2009.
534	Integrating Y-chromosome, mitochondrial, and autosomal data to analyze the origin of pig
535	breeds. <i>Molecular biology and evolution</i> 26 (9):2061–2072.

536	Rege JEO. 1999. The state of African cattle genetic resources 1. Classification framework and
537	identification of threatened and extinct breeds. <i>Animal Genetic Resources</i> 25 :1–25.
538	Rogers AR, Harpending H. 1992. Population growth makes waves in the distribution of pairwise
539	genetic differences. Molecular Biology and Evolution 9:552-69.
540	Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing
541	phylogenetic trees. <i>Molecular biology and evolution</i> 4 (4):406–425.
542	Sambrook J, Russell DW. 2001. Molecular cloning. In: C.S.H. Laboratory, ed. <i>A laboratory</i>
543	manual. New York: Cold Spring Harbor Laboratory Press.
544	Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA
545	polymorphism. Genetics 123:585–95.
546	Tamura K, Nei M, Kumar S. 2004. Prospects for inferring very large phylogenies by using the
547	neighbor-joining method. Proceedings of the National Academy of Sciences 101:11030-
548	11035.
549	Tarekegn GM, Tesfaye K, Mwai OA, Djikeng A, Dessie T, Birungi J, Tutah J. 2018.
550	Mitochondrial DNA variation reveals maternal origins and demographic dynamics of
551	Ethiopian indigenous goats. <i>Ecology and evolution</i> 8 (3):1543–1553.
552	Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of
553	progressive multiple sequence alignment through sequence weighting, position-specific gap
554	penalties and weight matrix choice. <i>Nucleic acids research</i> 22 (22):4673–4680.
555	Troy CS, MacHugh DE, Bailey JF, Magee DA, Loftus RT, Cunningham P, Chamberlain AT,

556	Sykes BC, Bradley DG. 2001. Genetic evidence for Near-Eastern origins of European cattle.
557	<i>Nature</i> 410 :1088–91.
558	Verkaar EL, Nijman IJ, Beeke M, Hanekamp E, Lenstra JA. 2004. Maternal and paternal
559	lineages in cross-breeding bovine species. Has wisent a hybrid origin? Molecular biology
560	and evolution 21 (7):1165–1170.
561	Wang GD, Xie HB, Peng MS, Irwin D, Zhang YP. 2014. Domestication genomics: evidence
562	from animals. Annual Review of Animal Biosciences 2:65-84.
563	
564	Figure legend
565	Figure 1 Sampling locations of cattle in Nigeria and the network of 420 cattle samples
566	based on 636 bp of the mtDNA D-loop region. (a) Map of cattle sampling locations from
567	Nigeria (Zamfara, Kano, Katsina, Kaduna, and Sokoto from North West; Taraba and Plateau
568	from North East; and Oyo from the West) and the haplogroup distribution based on mtDNA
569	across Africa. (b) Median-joining network of 420 cattle samples constructed by using
570	NETWORK v 4.6 (Bandelt, Forster & Rohl, 1999). Reference sequences used for haplotype
571	network analysis included: Europe, n=76 (Loftus et al., 1994a; Lai et al., 2006; Achilli et al.,
572	2008; Hiendleder, Lewalski & Janke, 2008; Bonfiglio et al., 2012 and accession nos. AF034438-
573	AF034446); West Asia, n=16 (<i>Achilli et al., 2008</i>); Egypt, n=31 (<i>Bonfiglio et al., 2012; Olivieri</i>
574	et al., 2015); Ethiopia, n=126 (Dadi et al., 2009; Bonfiglio et al., 2012); Mozambique, n=16
575	(Accession nos. JQ684029-JQ684045), South Africa, n=34 (Horsburgh et al., 2013) and two
576	additional Nigerian samples mined from GenBank (Accession no. L27731 and L27730). Sizes of

578	those not indicated are just one step mutation. Colours indicate the geographical distribution of
579	the sampling locations across Africa, Europe and West Asia as shown by the legend in (b).
580	Table legend
581	Table 1 Genetic diversity of cattle in Africa based on mtDNA D-Loop
582	Table 2 Mutations that describe the distinction of the three major haplogroups of cattle based on
583	ZFY intron 10 gene. The two genomic sites that separate each distinct haplogroup are in bold.
584	The seven mutations observed in Nigerian cattle (NY3) are italicized.
585	Table 3 The frequency of haplotypes for Nigeria, Europe and Asia and their distribution based
586	on Y-chromosome at the ZFY intron 10 gene.
587	
588	
589	

Figure 1

Sampling locations of cattle in Nigeria and the network of 420 cattle samples based on 636 bp of the mtDNA D-loop region

(a) Map of cattle sampling locations from Nigeria (Zamfara, Kano, Katsina, Kaduna, and Sokoto from North West; Taraba and Plateau from North East; and Oyo from the West) and the haplogroup distribution based on mtDNA across Africa . (b) Median-joining network of 420 cattle samples constructed by using NETWORK v 4.6 (Bandelt, Forster & Rohl, 1999) .

Reference sequences used for haplotype network analysis included: Europe, n=76 (Loftus et al., 1994a; Lai et al., 2006; Achilli et al., 2008; Hiendleder, Lewalski & Janke, 2008; Bonfiglio et al., 2012 and accession nos. AF034438-AF034446); West Asia, n=16 (Achilli et al., 2008); Egypt, n=31 (Bonfiglio et al., 2012; Olivieri et al., 2015); Ethiopia, n=126 (Dadi et al., 2009; Bonfiglio et al., 2012); Mozambique, n=16 (Accession nos. JQ684029-JQ684045), South Africa, n=34 (Horsburgh et al., 2013) and two additional Nigerian samples mined from Genbank (Accession no. L27731 and L27730). Sizes of the circles are proportional to haplotype frequencies. m, refers to number of mutation steps and those not indicated are just one step mutation. Colours indicate the geographical distribution of the sampling locations across Africa, Europe and West Asia as shown by the legend in (b).

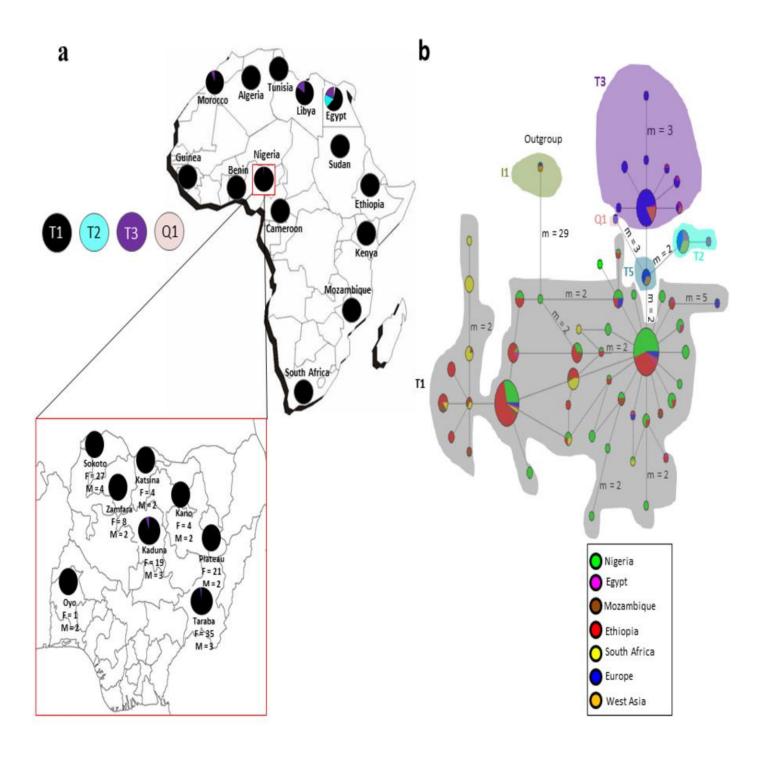


Table 1(on next page)

Genetic diversity of cattle in Africa based on mtDNA D-Loop

1 Table 1. Genetic diversity of cattle in Africa based on mtDNA D-Loop

Population	S	PS	Н	HD (SD)	π (SD)	Df
1. Nigeria	119	67	80	0.985(0.005)	0.051(0.029)	3.403
(a) North West ¹	62	44	44	0.984(0.007)	0.076(0.044)	3.338
(b) North East ²	56	52	43	0.983(0.009)	0.067(0.038)	3.462
(c) West ³	3*	4	3	1.000(0.272)	0.667(0.598)	2.667
2. Egypt	31	46	30	1.000(0.082)	0.010(0.005)	6.391
3. Mozambique	16	18	15	0.992(0.025)	0.180(0.109)	3.233
4. Ethiopia	126	70	83	0.969(0.009)	0.005(0.003)	3.365
5. South Africa	34	17	24	0.961(0.019)	0.006(0.003)	3.606

3

9 estimation of haplotype and nucleotide diversity based on 636 bp mtDNA D-loop sequence was

10 carried out by ARLEQUIN v. 3.5 (Excoffier & Lischer, 2010) software.

⁴ Note: S = sample size, PS = the number of polymorphic sites, H = the number of haplotypes, HD

⁼ haplotype diversity, π = nucleotide diversity, Df = the mean number of nucleotide differences,

⁶ and SD = standard deviations. ¹Cattle samples from Zamfara, Kano, Katsina, Kaduna and Sokoto

⁷ States; ²Samples from Taraba and Jos, Plateau States; ³Samples from Ibadan, Oyo State. *Two

⁸ additional downloaded samples from GenBank (Accession no. L27731 and L27730). The

Table 2(on next page)

Mutations that describe the distinction of the three major haplogroups of cattle based on ZFY intron 10 gene. The two genomic sites that separate each distinct haplogroup are in bold. The seven mutations observed in Nigerian cattle (NY3) are italicized.

- 1 Table 2. Mutations that describe the distinction of the three major haplogroups of cattle based on
- 2 ZFY intron 10 gene. The two genomic sites that separate each distinct haplogroup are in bold.
- 3 The seven mutations observed in Nigerian cattle (NY3) are italicized.

	7	ZFY intron 10	
Haplogroup	Reference	Alternative	Publication
***		<i>a</i>	
Y1	C	C	
	GT		
Y2	С	C	Gotherstrom <i>et al.</i> 2005
	GT	GT	30 m 20 m 20 m 20 m
	0.1	0.2	Ginja <i>et al</i> . 2009
Y3	C	T	
	GT	GT	
Y3	С	Т	
1 3	GT	GT	
	A	G	
	$\stackrel{A}{A}$	T	
g.784-g.805	$\stackrel{A}{A}$	$\stackrel{r}{C}$	This study
5.70.5.000	T	$\stackrel{\mathcal{C}}{A}$	11110 00000
	T	G	
	\overline{T}	$\overset{\circ}{C}$	
	\overline{C}	\overline{T}	

Table 3(on next page)

The frequency of haplotypes for Nigeria, Europe and Asia and their distribution based on Y-chromosome at the ZFY intron 10 gene.

- 1 **Table 3.** The frequency of haplotypes for Nigeria, Europe and Asia and their distribution based
- 2 on Y-chromosome at the ZFY intron 10 gene.

Haplotype	Frequency	Nigeria	Europe	Asia
Hap_1Y3	2	2		
Hap_2Y3	2	2		
Hap_3Y3	1	1		
Hap_4Y3	1	1		
Hap_5Y3	1	1		
Hap_6Y3	1	1		
Hap_7Y3	15	12		3
Hap_8Y2	1		1	
Hap_9Y2	3		3	
Hap_10Y1	1		1	
Total	28	20	5	3

	**H	20
Genetic diversity	**PS	10
	**HD (SD)	1.000 (0.016)
	**Df (SD)	1.679 (1.027)

4 Note: ** = Genetic diversity of Nigerian cattle; H = number of haplotypes, HD = Haplotype

5 diversity; PS = number of polymorphic sites, Df = Mean number of pairwise difference and SD =

6 standard deviations.