

Temporal variation in vertical stratification of neotropical bats

Dylan G.E. Gomes Corresp., 1, Giulliana Appel 2, Jesse R Barber 1

Corresponding Author: Dylan G.E. Gomes Email address: dylangomes@u.boisestate.edu

Previous research has shown diverse vertical space use by various taxa, highlighting the importance of forest canopy. Yet, we often fail to explore how this three-dimensional space use changes over time. Here we use canopy tower systems in French Guiana to monitor neotropical bat activity above and below the forest canopy throughout nine nights in the wet season. We show that different bats use both canopy and understory space differently, and that this can change throughout the night. We find that bats are overall more active in the canopy, but multiple species/acoustic complexes are more active in the understory. We also find that species that do not seem to prefer understory or canopy, when data are aggregated by night, do show temporally changing preferences in hourly activity. This work highlights the need to consider temporal axes in studies of space use, both throughout daily cycles and across seasons.

 $^{^{}m 1}$ Department of Biological Sciences, Boise State University, Boise, Idaho, United States

² Programa de Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil

1	Temporal variation in vertical stratification of neotropical bats
2	
3	Dylan G. E. Gomes ^{1,*} , Giulliana Appel ² , and Jesse R. Barber ¹
4	¹ Department of Biological Sciences, Boise State University, Boise, ID, USA 83725-1515
5	² Programa de Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia
6	Manaus 69080-971, Brazil
7	
8	Corresponding Author:
9	Dylan Gomes ¹
10	
11	Email address: dylangomes@u.boisestate.edu

12	Abstract
13	Previous research has shown diverse vertical space use by various taxa, highlighting the
14	importance of forest canopy. Yet, we often fail to explore how this three-dimensional space use
15	changes over time. Here we use canopy tower systems in French Guiana to monitor neotropical
16	bat activity above and below the forest canopy throughout nine nights in the wet season. We
17	show that different bats use both canopy and understory space differently, and that this can
18	change throughout the night. We find that bats are overall more active in the canopy, but
19	multiple species/acoustic complexes are more active in the understory. We also find that species
20	that do not seem to prefer understory or canopy, when data are aggregated by night, do show
21	temporally changing preferences in hourly activity. This work highlights the need to consider
22	temporal axes in studies of space use, both throughout daily cycles and across seasons.
23	
23	
24	
25	Introduction
26	The study of space use has long interested ecologists (Elton, 1927), and more recently three-
27	dimensional space use has been shown to be important for many taxa including arthropods
28	(Schulze, Linsenmair & Fiedler, 2001; Basset et al., 2003), birds (Pearson, 1971; Walther, 2002),
29	rodents, marsupials (Vieira & Monteiro-Filho, 2003), and bats (Francis, 1994; Bernard, 2001).
30	From an applied perspective, failing to survey animals above the forest canopy can lead to biased
31	conclusions about management decisions. For example, European bats that have higher risk of
32	wind turbine mortality were later found to be more common in higher vertical strata (Müller et
33	al., 2013). Had we understood how these animals use space over time, we may have made
34	different decisions about where to place wind turbines, and when to shut them down. Exploring
35	how animals use vertical strata across time is important to understanding conservation strategies
36	for forests and the animals that use that space. This is especially true in the tropics where
37	biodiversity loss from deforestation is high (Laurance, 1999; Giam, 2017).
38	Bats are ideal study organisms for exploring vertical stratification of space-use. They comprise a
39	group that is diverse, ecologically and economically important (Kalka, Smith & Kalko, 2008;
55	broup that is arresse, ecologically and economically important (realiza, similar & realizo, 2000,

Boyles et al., 2011; Kasso & Balakrishnan, 2013), highly sensitive to deforestation (Garcia-40 Morales et al., 2016), and are relatively easy to monitor with recent advances in passive acoustic 41 monitoring. Passive monitoring of tropical bats during the dry season suggests that bat activity 42 and species diversity is higher in the canopy, relative to mid- or below-canopy (Marques, Ramos 43 Pereira & Palmeirim, 2016). This may be a result of high insect abundance in the canopy (Basset 44 et al., 2003). Many nectar feeding Lepidoptera (e.g. Sphingidae), for example, are more abundant 45 high in the canopy, where more flowers are present (Schulze, Linsenmair & Fiedler, 2001). Yet, 46 it is likely that vertical space use by flowers, arthropod prey, and bat foragers would vary both 47 seasonally, and throughout the night. Indeed, some tropical insectivorous bat species adjust their 48 activity during the night to take advantage of more favorable periods to forage (Appel et al., 49 2019). 50 Yet little is known about temporal patterns of vertical space use of aerial insectivorous bats. Here 51 52 we survey the vertical space use by neotropical bats in French Guiana over the course of the entire night, for nine nights. 53 54 55 Methods 56 57 Setup We sampled above and below two canopy towers, part of the COPAS infrastructure, at the 58 59 Nourages research station, French Guiana from the evening of 10 April 2018, to the morning of 19 April 2018 in the wet season. We conducted paired sampling on top of the canopy towers (~ 60 61 40 m high), to get a measure of activity above the forest canopy, and below canopy towers (~1.5 m high), to get a measure of bat activity in the forest understory. At each sample site, we 62 63 deployed a passive acoustic monitoring unit (Song Meter SM3) with an omnidirectional ultrasonic microphone (SMU; Wildlife Acoustics, Massachusetts, USA). We programmed 64 acoustic monitors to run continuously from sunset to sunrise (~12 hours) and to record with a 16-65 bit depth, 384 kHz sample rate, with an internal 16 kHz high pass filter, and a 1.5 ms minimum 66 trigger duration. 67

- 68 *Sonar sequence identification*
- 69 Bat recordings were batch processed with Sonobatch scrubbing software to exclude non-bat
- 70 calls. We then visualized the remaining 16,123 sequences with Kaleidoscope Software (version
- 71 4.3.2; Wildlife Acoustics, Massachussetts, USA) and identified the calls following the libraries
- of Amazonian bat echolocation (López-Baucells, 2018) and echolocation characteristics from the
- 73 literature (Barataud et al., 2013; Arias-Aguilar et al., 2018). When possible, we identified bat
- calls to the species level or identified the call as an acoustic complex when species-level
- 75 identification was impossible (Torrent et al., 2018). Our analysis included a total of 11 species
- and eight acoustic complexes, with a total of 19 sonotypes from the families Emballonuridae,
- 77 Molossidae, Mormoopidae and Vespertilionidae (Table 1). We defined bat activity as the number
- of bat passes per hour and night. A bat pass is a sequence of 5-s recording that has a minimum of
- 79 two recognizable search-phase calls per species (Torrent et al., 2018; Appel et al., 2019)).
- 80 Statistical analysis
- All our models were generalized linear (mixed) effects models that we ran in a Bayesian
- framework with the R (R Core Team, 2017) package 'rstanarm' (Gabry & Goodrich, 2016). We
- visually checked model residuals and trace plots, and inspected predictors for collinearity. There
- were no divergent transitions or issues with convergence. All priors were uninformed.
- 85 Since all response data were counts of bat passes, we modelled these data with a negative
- binomial distribution and log link function. In our 'all bats' model (presented in Figs 1 and 2) we
- set a random (varying) intercept for bat species, with varying slopes for hour after sunset (0-12),
- vertical strata (canopy vs understory), and the interaction between the two (which were also
- 89 fitted as fixed effects to make inferences on 'all bats' overall). We did not include site as a
- 90 random effect, as we did not have at least five levels (Harrison et al., 2018).
- 91 We included horizontal moon illumination (measured following Kyba, Conrad & Shatwell,
- 92 2020) as a fixed effect to control for any influences that moon light might have on vertical bat
- activity (Hecker & Brigham, 1999; Appel et al., 2017), as well as any latent processes occurring
- over the course of the nine day experiment (either due to moonlight or day of the year). In this
- 95 model, we removed all bat species (or acoustic complexes) that contained 5 or fewer
- observations, since these data are not robust enough for inference.

PeerJ

97	To further elucidate patterns of bat activity over the course of the night, we separately analyzed
98	the four most common bat species (Peropteryx macrotis, Saccopteryx bilineata, Centronycteris
99	maximiliani, and Peropteryx kappleri) with hour after sunset as a second-order polynomial,
100	vertical strata (canopy vs understory), and the interaction between the two all fitted as fixed
101	effects in a generalized linear model. We did not run similar models for other species, as we did
102	not feel like we had an adequate number of counts for those species, and did not think inferences
103	on minimal data were appropriate.
104	Throughout the results we report 80% and 90% credible intervals, from a Bayesian framework.
105	While these choices are always largely arbitrary, we chose these values because both display a
106	wide interval spanning a high probability range of parameter values. We avoid using a 95%
107	credible interval for a number of reasons. Firstly, these can often be misinterpreted as 95%
108	confidence intervals. The latter, in contrast to Bayesian credible intervals, assume that the
109	interval is random and the parameter is fixed, and are often interpreted as a hypothesis test.
110	Secondly, both 80% and 90% credible intervals reduce concerns with the computational stability
111	of wider (e.g. 95%) intervals. In the following text we generally use 80% CI to suggest broad-
112	scale trends, whereas we use 90% CI in the reporting of parameter estimates, to give a narrower
113	estimate band, with higher certainty.
114	
115	Results
116	Overall, bats were more active in the canopy, versus the understory. That is, bat activity was
117	estimated to be 9.5 times (90% CI: $4.3 - 21.1$) higher in the canopy, than in the understory. Yet,
118	patterns for individual species (or acoustic complexes) were mixed (Fig 1). Broad patterns at
119	80% credible intervals suggest six species/complexes are more active in the canopy, five in the
120	understory, and six aren't more or less active in any particular strata. Of the strongest trends,
121	Peropteryx macrotis was 21.8 times more likely to be found in the canopy (90% CI: $6.01 - 84.6$),
122	whereas <i>Myotis riparius</i> was a factor of 132.8 more likely to be in the understory (90% CI: 31.2
123	-586.6). There was a 92.2% probability that moonlight has a positive effect on overall bat
124	activity, but we did not have the data resolution to look at individual species effects.

PeerJ

L 2 5	Overall bat activity decreased 22.0% (90% CI: 14.8 – 29.6%) for every hour in the canopy as the	
126	night progressed, whereas activity in the understory did not change over time (90% CI: *8.2 -	
L27	10.7%). Individual bat species/complexes differed in their activity above and below the canopy	
128	as the evening progressed, depending on the species/complex (Fig 2). Three bat complexes	
129	increased understory use over the night, whereas none of them decreased their use of that space	
L30	over time (90% CI). The Lasiurus sp. complex, for example, was 52.5% more active in the	
L 31	understory (90% CI: 32.4 – 83.1), each hour of the night (Fig 2). Canopy use throughout the	
132	night, however, increased for two groups, and decreased for one at the 90% CI, but trended that	
133	direction for two other groups (80% CI; Fig 2). Two of the complexes (Molossidae group A &	
L34	B) increased the use of both understory and canopy throughout the night.	
135	Centronycteris maximiliani activity showed a peak of activity in the middle of the night. This	
136	species is slightly more active in the understory, relative to the canopy, during early and late	
L37	parts of the night, whereas they are more active above the canopy during the middle of the night	~
138	(Fig 3A). Saccopteryx bilineata has higher activity in the understory at the beginning and end of	<u>~</u>
L39	the night (dusk and dawn), and higher canopy activity in the early-middle of the night (Fig 3B).	
L40	Both <i>Peropteryx kappleri</i> and <i>P. macrotis</i> are far more active above the canopy (relative to	
L 41	understory), but there is a small, difficult to visualize, spike in understory activity late in the	
L42	night (Fig 3C, D).	
L43		
L44	Discussion	
	Discussion	
L45	Understanding space use over time is vital if we hope to accurately assess habitat use and quality	
146	for bats (Bernard, 2001; Müller et al., 2013; Appel et al., 2019). Since it is difficult to directly	5
L47	observe bats flying in the night, spatio-temporal resolution from passive acoustic monitoring	_
L48	may offer important insights about the natural history of bats, and ultimately their conservation	
L49	(Marques, Ramos Pereira & Palmeirim, 2016) Here we show that both the canopy and	
150	understory are used differently by different neotropical bats, throughout the night.	
l 51	We find that bats are overall more active in the canopy, which corroborates previous work	
L52	(Marques, Ramos Pereira & Palmeirim, 2016) and that overall bat activity decreases in the	
153	canopy throughout the night. We also find multiple species that are more active in the understory	

154	(only <i>Myotis riparius</i> in Marques, Ramos Pereira & Palmeirim, 2016). Other Myotid species are
155	thought to-prefer to forage in the understory elsewhere in the world (Kennedy, Sillett &
156	Szewczak, 2014; Wellig et al., 2018), suggesting that this characteristic may be a trait of the
157	genus independent of the geographic location.
158	It is possible that some differences between this study and Marques et al. (2016) are explained by
159	seasonal differences in prey communities within the canopy and understory, as this study was
160	during the wet season and Marques et al. (2016) occurred during the dry season. Arthropod prey
161	vary seasonally in their abundance (Wolda, 1988; Lister & Aguayo, 1992; Pinheiro et al., 2002)
162	and those prey likely spend time in different vertical strata (Schulze, Linsenmair & Fiedler,
163	2001). Indeed, seasonal changes in arthropod abundances in the neotropics have been linked to
164	changes in diets of many taxa, including bats (Lister & Aguayo, 1992; Jahn et al., 2010; Salinas-
165	Ramos et al., 2015). However, there are likely many other idiosyncratic differences between the
166	French Guiana and Brazilian forests studied here and in Marques et al. (2016), respectively, that
167	could contribute to these differences as well. Future work should aim to understand three-
168	dimensional space use over longer periods of time within the same forest.
169	For many bats, there were no clear preferences between canopy and understory (Fig. 1). This may
170	be because these bats are just as active in the various vertical strata. Bernard (2001), for example,
171	found the same lack of vertical stratification pattern as we did for Saccopteryx bilineata and S.
172	leptura, and the author suggests that this may be because these species fly in large spiral
173	movements occupying both the higher and lower strata. Instead, this apparent lack of a pattern
174	may suggest that bats partition the night and are more active in different strata at different times.
175	S. bilineata provides an example, as they were not more active in either stratum when their
176	activity was integrated over the entire night (Fig1), yet they partition their use of the canopy and
177	understory across the night. S. bilineata has a "U"-shaped change in activity in the understory
178	over time. This suggests that these bats roost somewhere near our detectors, likely inside tree
179	cavities and on exposed trunks (Voss et al., 2016), but spend the middle hours of the night
180	foraging above the canopy (Fig 3B). If bats are virtually non-existent in a survey of the
181	understory during early hours of the night, but common in the canopy during later hours, it is
182	likely that they are roosting elsewhere and commuting to forage (Voss et al., 2016).

183	With the constant increase of deforestation of Amazonian primary forests (Fearnside, 2005;			
184	Lovejoy & Nobre, 2018) and consequent loss of vertical stratification of these forests (Silva et			
185	al., 2020), aerial insectivorous bat activity is being affected by forest removal and degradation.			
186	Delineating specifically how vertical structure shapes bat communities and activity adds critical			
187	insight for ecologists and managers. Here we show that monitoring for bats in one vertical			
188	stratum only, or during just the early 'golden' hours of the night clearly misses important			
189	information. On the more speculative side, given enough information about a species' emergence			
190	timing (Rydell, Entwistle & Racey, 1996; Duvergé et al., 2000; Russo, Cistrone & Jones, 2007),			
191	it may even be possible to estimate distances to roosts from these data. If this were the case,			
192	multiple passive acoustic monitors scattered throughout a forest could roughly triangulate on the			
193	location of these roosts (Svaizer, Matassoni & Omologo, 1997; Chang et al., 2002), which could			
194	then be preferentially protected from deforestation or development.			
195				
195				
196	Conclusions			
197	We used passive acoustic monitoring to explore how neotropical bats use space over time. While			
198	bats generally were more active in the forest canopy, we show that individual groups of bats use			
199	space differently over the course of a night. Those who fail to survey habitat in three dimensions,			
200	and for the entire duration of a night may form erroneous conclusions about the quality of that			
201	habitat, or make poor management decisions. We hope that future work continues to explore how			
202	animals and their prey use space throughout the night, and over the course of different seasons,			
203	which will surely expand our knowledge of these understudied creatures.			
204				
204				
205	Acknowledgements:			
206	We would like to thank the Nouragues research station in French Guiana for access to their			
207	facilities and canopy tower system, and Cory A. Toth for help deploying bat detectors.			
208	Funding:			

209	We thank the CRNS for a 2017 Nouragues Travel Grant to JRB that funded this work.
210	Additional funding provided by NSF (GRFP 2018268606 to DGEG and IOS 1920936 to JRB).
211	GA was supported by a Coordenação de Aperfeiçoamento Pessoal Nivel Superior (CAPES)
212	scholarships (Finance code 1) and Sandwich fellowship CAPES Process (88881.362190/2019-0).
213	
214	References:
215	
216	Appel G, López-Baucells A, Magnusson WE, Bobrowiec PED. 2017. Aerial insectivorous bat
217	activity in relation to moonlight intensity. Mammalian Biology 85:37-46.
218	Appel G, López-Baucells A, Magnusson WE, Bobrowiec PED. 2019. Temperature, rainfall, and
219	moonlight intensity effects on activity of tropical insectivorous bats. Journal of
220	Mammalogy 100:1889–1900.
221	Arias-Aguilar A, Hintze F, Aguiar LM, Rufray V, Bernard E, Pereira MJR. 2018. Who's calling?
222	Acoustic identification of Brazilian bats. Mammal Research 63:231-253.
223	Barataud M, Giosa S, Leblanc F, Rufray V, Disca T, Tillon L, Delaval M, Haquart A, Dewynter
224	M. 2013. Identification et écologie acoustique des chiroptères de Guyane française. Le
225	Rhinolophe 19:103–145.
226	Basset Y, Hammond PM, Barrios H, Holloway JD, Miller SE. 2003. Vertical stratification of
227	arthropod assemblages. Arthropods of tropical forests:17-27.
228	Bernard E. 2001. Vertical stratification of bat communities in primary forests of Central
229	Amazon, Brazil. Journal of Tropical Ecology 17:115-126.
230	Boyles JG, Cryan PM, McCracken GF, Kunz TH. 2011. Economic importance of bats in
231	agriculture. Science 332:41–42.
232	Chang PS, Ning A, Lambert MG, Haas WJ. 2002. Acoustic source location using a microphone
233	array.
234	Duvergé PL, Jones G, Rydell J, Ransome RD. 2000. Functional significance of emergence
235	timing in bats. <i>Ecography</i> 23:32–40.
236	Elton CS. 1927. Animal ecology. University of Chicago Press.
237	Fearnside PM. 2005. Deforestation in Brazilian Amazonia: history, rates, and consequences.
238	Conservation biology 19:680–688.

239	Francis CM. 1994. Vertical stratification of fruit bats (Pteropodidae) in lowland dipterocarp				
240	rainforest in Malaysia. Journal of Tropical Ecology 10:523-530.				
241	Gabry J, Goodrich B. 2016. rstanarm: Bayesian applied regression modeling via Stan. R				
242	package version 2.10. 0.				
243	Garcia-Morales R, Moreno CE, Badano EI, Zuria I, Galindo-Gonzalez J, Rojas-Martinez AE,				
244	Avila-Gomez ES. 2016. Deforestation impacts on bat functional diversity in tropical				
245	landscapes. PloS one 11.				
246	Giam X. 2017. Global biodiversity loss from tropical deforestation. Proceedings of the National				
247	Academy of Sciences 114:5775–5777.				
248	Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin CE, Robinson BS,				
249	Hodgson DJ, Inger R. 2018. A brief introduction to mixed effects modelling and multi-				
250	model inference in ecology. PeerJ 6:e4794.				
251	Hecker KR, Brigham RM. 1999. Does moonlight change vertical stratification of activity by				
252	forest-dwelling insectivorous bats? Journal of Mammalogy 80:1196–1201.				
253	Jahn AE, Levey DJ, Mamani AM, Saldias M, Alcoba A, Ledezma MJ, Flores B, Vidoz JQ,				
254	Hilarion F. 2010. Seasonal differences in rainfall, food availability, and the foraging				
255	behavior of Tropical Kingbirds in the southern Amazon Basin. Journal of Field				
256	Ornithology 81:340–348.				
257	Kalka MB, Smith AR, Kalko EK. 2008. Bats limit arthropods and herbivory in a tropical forest.				
258	Science 320:71–71.				
259	Kasso M, Balakrishnan M. 2013. Ecological and economic importance of bats (Order				
260	Chiroptera). ISRN Biodiversity 2013.				
261	Kennedy J-P, Sillett SC, Szewczak JM. 2014. Bat activity across the vertical gradient of an old-				
262	growth Sequoia sempervirens forest. Acta Chiropterologica 16:53-63.				
263	Kyba CC, Conrad J, Shatwell T. 2020. Lunar illuminated fraction is a poor proxy for moonlight				
264	exposure. Nature ecology & evolution 4:318–319.				
265	Laurance WF. 1999. Reflections on the tropical deforestation crisis. <i>Biological conservation</i>				
266	91:109–117.				
267	Lister BC, Aguayo AG. 1992. Seasonality, predation, and the behaviour of a tropical mainland				
268	anole. Journal of Animal Ecology:717–733.				

López-Baucells A. 2018. Field guide to the bats of the Amazon. Pelagic Publishing.

269

270	Lovejoy TE, Nobre C. 2018. Amazon tipping point. American Association for the Advancement
271	of Science.
272	Marques JT, Ramos Pereira MJ, Palmeirim JM. 2016. Patterns in the use of rainforest vertical
273	space by Neotropical aerial insectivorous bats: all the action is up in the canopy.
274	Ecography 39:476–486.
275	Müller J, Brandl R, Buchner J, Pretzsch H, Seifert S, Strätz C, Veith M, Fenton B. 2013. From
276	ground to above canopy—Bat activity in mature forests is driven by vegetation density
277	and height. Forest Ecology and Management 306:179-184.
278	Pearson DL. 1971. Vertical stratification of birds in a tropical dry forest. <i>The Condor</i> 73:46–55.
279	Pinheiro F, Diniz IR, Coelho D, Bandeira MPS. 2002. Seasonal pattern of insect abundance in
280	the Brazilian cerrado. Austral Ecology 27:132–136.
281	R Core Team. 2017. R: A language and environment for statistical computing. Vienna, Austria:
282	R Foundation for Statistical Computing; 2016.
283	Russo D, Cistrone L, Jones G. 2007. Emergence time in forest bats: the influence of canopy
284	closure. Acta Oecologica 31:119–126.
285	Rydell J, Entwistle A, Racey PA. 1996. Timing of foraging flights of three species of bats in
286	relation to insect activity and predation risk. Oikos:243-252.
287	Salinas-Ramos VB, Herrera Montalvo LG, León-Regagnon V, Arrizabalaga-Escudero A, Clare
288	EL. 2015. Dietary overlap and seasonality in three species of mormoopid bats from a
289	tropical dry forest. Molecular Ecology 24:5296–5307.
290	Schulze CH, Linsenmair KE, Fiedler K. 2001. Understorey versus canopy: patterns of vertical
291	stratification and diversity among Lepidoptera in a Bornean rain forest. In: Tropical
292	forest canopies: Ecology and management. Springer, 133-152.
293	Silva I, Rocha R, López-Baucells A, Farneda FZ, Meyer CF. 2020. Effects of forest
294	fragmentation on the vertical stratification of neotropical bats. Diversity 12:67.
295	Svaizer P, Matassoni M, Omologo M. 1997. Acoustic source location in a three-dimensional
296	space using crosspower spectrum phase. In: 1997 IEEE International Conference on
297	Acoustics, Speech, and Signal Processing. IEEE, 231–234.
298	Torrent L, López-Baucells A, Rocha R, Bobrowiec PE, Meyer CF. 2018. The importance of
299	lakes for bat conservation in Amazonian rainforests: an assessment using autonomous
300	recorders. Remote Sensing in Ecology and Conservation 4:339–351.

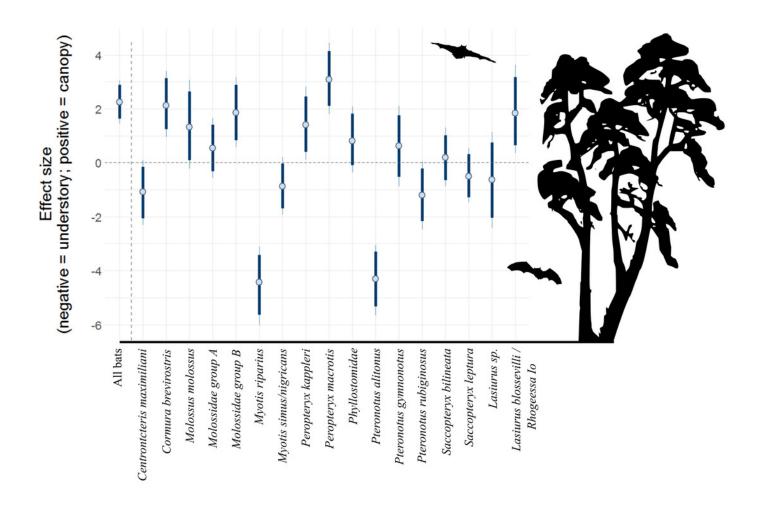

301	Vieira EM, Monteiro-Filho EL. 2003. Vertical stratification of small mammals in the Atlantic
302	rain forest of south-eastern Brazil. Journal of Tropical Ecology 19:501-507.
303	Voss RS, Fleck DW, Strauss RE, Velazco PM, Simmons NB. 2016. Roosting ecology of
304	Amazonian bats: evidence for guild structure in hyperdiverse mammalian communities.
305	American Museum Novitates 2016:1–43.
806	Walther BA. 2002. Vertical stratification and use of vegetation and light habitats by Neotropical
307	forest birds. Journal für Ornithologie 143:64-81.
808	Wellig SD, Nusslé S, Miltner D, Kohle O, Glaizot O, Braunisch V, Obrist MK, Arlettaz R. 2018
809	Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles
310	and relationships to wind speed. PloS one 13:e0192493.
311	Wolda H. 1988. Insect seasonality: why? Annual review of ecology and systematics 19:1–18.
12	

Figure 1

Model coefficient estimates for activity in vertical strata, by bat species/complex.

Positive values on y axis indicate that bats were more active in the canopy, whereas negative values indicate that bats were more active near the forest floor.

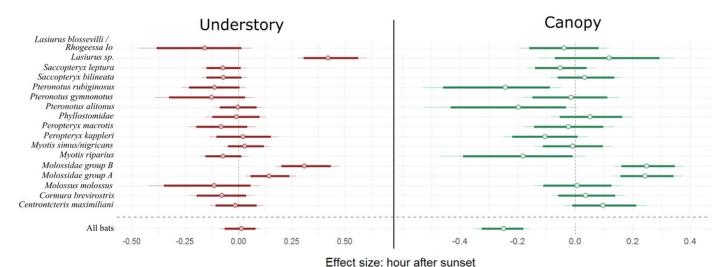


Figure 2

Model coefficient estimates for activity over the course of the night by bat species.

Estimates on left are for understory activity, whereas those on right are for canopy activity. Positive values on x axis indicate that bats were more active as time passed within a night, whereas negative values indicate that bats were more active earlier in the night.

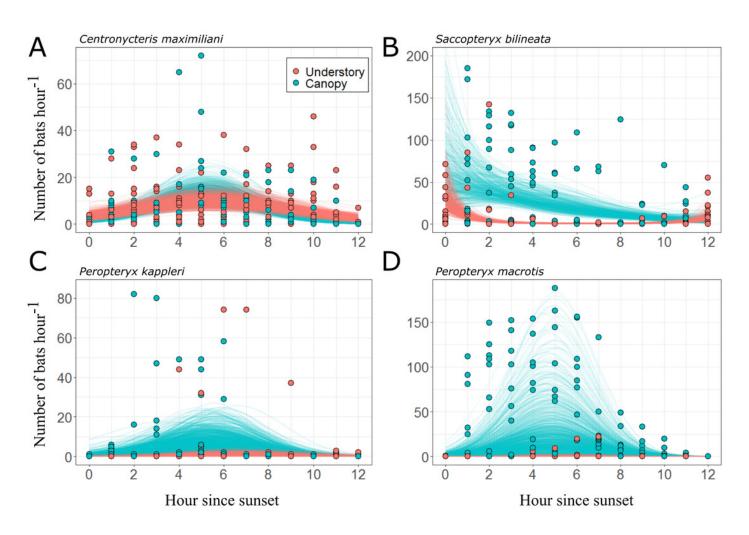


Figure 3

Activity of four most common species recorded at the Nouragues Research Station in French Guiana, plotted by hour since sunset.

Points indicate raw data by understory (red) and canopy (blue). Lines indicate 95% of 1000 posterior draws from Bayesian models.

Table 1(on next page)

Passive acoustic monitoring observations over nine nights within the understory and canopy at the COPAS facility in French Guiana.

Diclidurus sp. may include Diclidurus albus, D. scutatus, and/or D. ingens. Lasiurus sp. may include Lasiurus ega, L. castaneus, L. egregius, and/or L. atratus. Molossidae group A may include Molossus sinaloe, M. rufus, M. currentium, Promops centralis, Cynomops planirostris, and/or C. paranus. Molossidae group B may include Cynomops greenhalii, C. abrasus, Eumops auripendulus, E. glaucinus, E. dabbenei, E. hansae, E. maurus, Nyctinomops laticaudatus, and/or Tadarida brasiliensis.

Acoustic group	Understory	Canopy	Total
Peropteryx trinitatis	0	1	1
Pteronotus sp.	0	1	1
Saccopteryx gymnura	1	0	1
Diclidurus sp.	2	3	5
Molossus molossus	0	20	20
Pteronotus gymnonotus	2	19	21
Pteronotus rubiginosus	20	15	35
Lasiurus blossevilli / Rhogeessa Io	0	37	37
Lasiurus sp.	69	3	72
Phyllostomidae	13	84	97
Myotis riparius	203	2	205
Myotis simus/nigricans	143	88	231
Molossidae group B	55	198	253
Molossidae group A	57	214	271
Pteronotus alitonus	362	4	366
Cormura brevirostris	10	379	389
Saccopteryx leptura	397	671	1068
Peropteryx kappleri	280	1264	1544
Centrontcteris maximiliani	1270	944	2214
Saccopteryx bilineata	1018	3512	4530
Peropteryx macrotis	70	4692	4762

1