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ABSTRACT
The benchmark dose (BMD) methodology is used to derive a hazard characterization
measure for risk assessment in toxicology or ecotoxicology. The present paper’s
objective is to introduce the R extension package bmd, which facilitates the estimation
of BMD and the benchmark dose lower limit for a wide range of dose-response models
via the popular package drc. It allows using the most current statistical methods for
BMD estimation, including model averaging. The package bmd can be used for BMD
estimation for binomial, continuous, and count data in a simple set up or from complex
hierarchical designs and is introduced using four examples. While there are other
stand-alone software solutions available to estimate BMDs, the package bmd facilitates
easy estimation within the established and flexible statistical environment R. It allows
the rapid implementation of available, novel, and future statistical methods and the
integration of other statistical analyses.

Subjects Computational Biology, Toxicology, Statistics, Computational Science, Ecotoxicology
Keywords BMDL, Hybrid approach, Model averaging, Risk assessment

INTRODUCTION
Risk assessment in human toxicology and ecotoxicology quantifies the relationship between
the exposure to a chemical (or other stressor) and a hazard characterization measure
of the chemical. If the exposure dose/concentration is estimated to be less than the
dose/concentration estimated to have adverse effects (the point of departure (POD)) then
the risk associated with exposure to the chemical agent is considered acceptable. In practice,
the POD is often modified by safety or uncertainty factors to account for inter-species
differences and inter- and intra-individual differences in the target population. This
modified value is usually called the reference dose/concentration or limit value, depending
on the context. The two main approaches for deriving PODs are the No Observed
Adverse Effect Level (NOAEL) and the Benchmark Dose (BMD) methodology. Note
that for concentrations also NOAEC (No Observed Adverse Effect Concentration) and less
commonly BMC (Benchmark Concentration) are used, as is NOEL, (No Observed Effect
Level), NOED (No Observed Effect Dose) or NOEC, (No Observed Effect Concentration),
in the context where any effect is considered adverse. Whether level, dose, or concentration
is used depends on how the test organism/system is exposed to the chemical agent, but in
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the context of developing methods for benchmark dose estimation the term dose will be
used to quantify exposure.

The NOAEL is the highest dose that does not lead to an observable adverse change in
the investigated response. Hypothesis testing usually complements the Lowest Adverse
Effect Level (LOAEL) determination, i.e., the next dose level above the NOAEL. The
NOAEL will be an experimentally tested dose and it depends strongly on the dose spacing.
Poor experimental design, high variation, and low statistical power lead to relatively higher
NOAELs, which is problematic from a conservative point of view and can only be mitigated
by toxicological weight-of-evidence assessment, considering multiple studies or endpoints
within a single study or by means of additional safety factors.

The BMD approach aims to reduce some of these issues associated with NOAEL
derivation and relies on dose–response modelling. It is, therefore, less dependent on the
tested doses. The BMD methodology was initially introduced by Crump (Crump, 1984)
for binomial response data, but has subsequently been extended with definitions for
continuous response data (Gaylor & Slikker, 1990; Crump, 1995; Budtz-Jørgensen, Keiding
& Grandjean, 2001). The BMD methodology is now recommended by OECD and other
regulatory authorities (Davis, Gift & Zhao, 2011; Organisation for Economic Co-operation
and Development , 2012a; Hardy et al., 2017). The BMD is defined as the dose associated
with a predefined small change in the response, the benchmark response (BMR), from
the background response level. This is a key difference to the NOAEL, which refers to a
level with no observable effect, which may be biased by statistical power, or experimental
sensitivity (Brescia, 2020).

BMRs of 5 and 10% are often used,; however, appropriate BMRs for different endpoints
need to be discussed within the (eco)toxicological community (Slob, 2017; Haber et al.,
2018; Jensen, Kluxen & Ritz, 2019; Kluxen, 2020), as they are not scientifically reasoned,
which is similar to the use of p< 0.05 (Salsburg, 2001; Kennedy-Shaffer, 2019). BMDs are
essentially similar to effective doses or concentrations but often located in more data-sparse
regions of the dose–response curve. In practice, reference values or limit values are derived
from the BMD lower limit (BMDL), which is defined as the lower limit of a one-sided
confidence interval of the BMD estimate (see, Fig. 1).

Currently, mainly two comprehensive software packages are available for BMD analysis:
BMDS developed by US Environmental Protection Agency (EPA) (Davis, Gift & Zhao,
2011) and PROAST developed by the Netherlands National Institute for Public Health and
the Environment (RIVM) in collaborationwithOpenAnalytics (Varewyck & Verbeke, 2017;
Slob, 2018). The two packages differ in several ways. BMDS includes several dose–response
models, but it (for now) only includes Bayesian model averaging and for binary data only.
In contrast, PROAST offers model averaging for both binary and continuous response data
but includes fewer dose–response models. The two packages also differ in how BMDL is
derived. A few other more specialized packages have also been developed for BMD analysis
(Yang, Allen & Thomas, 2007;Wheeler & Bailer, 2008; Shao & Shapiro, 2018).

Over the past 25 years, the open-source environment R (R Core Team, 2018) has
developed into an extremely powerful statistical software where many extension packages
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Figure 1 The fitted concentration–response curve for the three-parameter log-normal model fitted to
data from the earthworm toxicity test, with different concentrations of chloroacetamide (mg/kg soil)
(Hoekstra, 1987). The model is shown together with data (mean values per concentration), and the es-
timated benchmark dose (BMD) and benchmark dose lower limit (BMDL) based on the added risk def-
inition and a benchmark response (BMR) of 0.05. p0 is the estimated probability of dying for the back-
ground population, i.e., the background response level.

Full-size DOI: 10.7717/peerj.10557/fig-1

offer specialized functionality. One such extension package is drc developed for the analysis
of dose–response data (Ritz et al., 2019).

The present paper’s objective is to introduce the R extension package bmd and help
(eco)toxicologists with using the tool by the evaluation of multiple case studies and simple
example code. The package allows using the most current statistical methods for BMD
estimation in R. It can be seen as a flexible alternative to BMDS and PROAST in terms of
available models, a higher degree of user-control over models, and more approaches for
BMDL estimation andmodel averaging. The option of using sandwich variance–covariance
estimates to adjust for model misspecifications is an important addition. The R package
also offers the possibility to work with count data. An option not available in any other
BMD software. The other clear distinction of bmd is that it can be used within the R
environment and thus supplement other statistical analyses within the same software.
Further, other extensions that are or will be developed for R can be directly used together
with bmd. This flexibility is currently not achieved in other BMD software.

BMD ESTIMATION
Estimating a BMD and its corresponding BMDL depends on the type of response data
considered, the definition used for defining BMD, the predefined BMR, the choice of
dose–response model, and the approach used for estimating BMDL. The dose–response
model is fitted to data using drc. Since drc uses powerful self-starter functions, the fitting
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process is automated. The fit can then be visually assessed, and the distribution of the
residuals investigated. The fit can also be compared to other candidate models, and model
averaging may be performed. Below, the individual steps of the process are described.

Defining BMD for a predefined BMR
The BMD is defined as the dose resulting in a pre-specified small change, denoted the BMR,
in the response relative to the control group’s response level. In practice, defining BMD
and specifying BMR goes hand in hand (Jensen, Kluxen & Ritz, 2019). Different types of
changes in the response may be relevant, i.e., absolute versus relative changes compared to
the control response level, and accordingly, different definitions of the BMDexist. However,
not all definitions are relevant to all types of endpoints. The definitions available in the
package bmd are described below in detail and are summarized in Table S1. The definitions
below are for increasing dose–response curves; for decreasing dose–response curves, the
same principles apply, but with a slight change in the definitions (for example, the definition
of additional risk for decreasing dose–response curves is: BMR= p0− f (BMD,β)).

Binomial response data
For binomial response data, two definitions are commonly used (Jensen, Kluxen & Ritz,
2019); additional and excess risk (Piegorsch, 2010):
Additional risk

BMR= f (BMD,β)−p0 (1)

Excess risk

BMR=
f (BMD,β)−p0

1−p0
(2)

f denotes the dose–response model, and β is the vector of parameters in the model. p0
represents themean background response level, i.e., the probability of an adverse effect. The
background response level is typically estimated from themodel as p0= limdose→0f (dose,β)
but may also be estimated from a control group or be specified based on prior knowledge
(Jensen, Kluxen & Ritz, 2019). Notice that if the background response level, p0, equals 0, the
two definitions, additional risk (Eq. (1)), and excess risk (Eq. (2)), are identical. Excess risk
is the most common definition used for binomial response data. The excess risk definition
(Eq. (2)) is recommended by both the US EPA and the European Food Safety Authority
(EFSA) (US Environmental Protection Agency, 2012; Hardy et al., 2017). Appropriate BMR
values should ideally be based on expert biological or toxicological knowledge about the
test system, but in practice, the decision is often driven by statistical considerations (Jensen,
Kluxen & Ritz, 2019). US EPA and EFSA recommend choosing a BMR in the lower end of
the specific data set’s observable dose range. A BMR of 10% using the excess risk definition
is often within the dose-range and a common choice for reporting results of a BMD analysis
with binomial data (US Environmental Protection Agency, 2012; Hardy et al., 2017; Jensen,
Kluxen & Ritz, 2019).

Continuous response data
For continuous response data, the analogous definitions of additional and excess risk are
based on the so-called hybrid approach (Gaylor & Slikker, 1990; Budtz-Jørgensen, Keiding
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& Grandjean, 2001; Jensen, Kluxen & Ritz, 2019). As continuous data typically reflects a
response and not an adverse effect, the hybrid approach ‘‘transform’’ the continuous
response measurements to the probability of observing an adverse effect by using a cut-off.
The hybrid approach is defined as in e.g., Jensen, Kluxen & Ritz, 2019. Specifically, the
hybrid approach defines BMD as the dose corresponding to a predefined increase (BMR)
in the probability of the response values falling below (or exceeding) a certain cut-off
value on the response scale, i.e., the cut-off divides the continuous response scale into
normal and abnormal values. In contrast to binomial data, the background response
level, p0, of abnormal responses is not directly given by the data but has to be specified
using a pre-specified cut-off, possibly based on historical data (Jensen, Kluxen & Ritz,
2019). Assuming a normal distribution for the unexposed (background) population the
background probability of an adverse event, p0, may be specified as

p0= 1−8
(
x0− f (0,β)

σ

)
, (3)

where x0 is the organism response level considered to be adverse,8 denotes the cumulative
distribution function for a standard normal distribution, and σ is the standard deviation
for the control group. With this definition of the background response level (Eq. (3)),
the hybrid approach leads to the definition of the BMD as the dose solving the following
equations:
Hybrid approach (additional definition)

BMR= 1−8
(
x0− f (BMD,β)

σ

)
−p0 (4)

Hybrid approach (excess definition)

BMR=
1−8

(
x0−f (BMD,β)

σ

)
−p0

1−p0
(5)

For some outcomes, it may be a ‘‘natural’’ choice to choose a specific level, x0, on
the response scale to define the cut-off for adverse response levels. However, the most
common case is to use a cut-off in terms of a pre-specified number of standard deviations,
circumventing the need to decide on an absolute level. For example, US EPA recommends
using a cut-off of 1 standard deviation (US Environmental Protection Agency, 2012). Both
options for defining the background level are available in bmd. When using the hybrid
approach (Eq. (4)), typical values of BMR are 5% or 10% (US Environmental Protection
Agency, 2012).

Count or continuous response data
Additional definitions that are also used in the literature were included in bmd available
for both continuous and count response data (Wheeler & Bailer, 2009; Davis, Gift & Zhao,
2011; Slob, 2017):
Added response

BMR= f (BMD,β)− f (0,β) (6)

Jensen et al. (2020), PeerJ, DOI 10.7717/peerj.10557 5/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.10557


Extra response

BMR=
f (BMD,β)− f (0,β)
f (∞,β)− f (0,β)

(7)

Relative response

BMR =
f (BMD,β)− f (0,β)

f (0,β)
(8)

In definitions (6)–(8), BMR is defined as an absolute or relative change in the response
from the background response level f (0,β), as estimated by the model. The added response
definition expression mathematically corresponds to the additional risk definition for
binomial data where the response is an adverse event. Suppose the upper limit is 1 (for
increasing dose–response models or the lower limit is 0 for decreasing dose–response
relationships). In that case, the extra response definition corresponds mathematically to
the excess risk definition for binomial data. The relative response definition (Eq.(8)) is
sometimes referred to as deriving the critical effect size (Slob, 2017). US EPA recommends
reporting the critical effect size and results from the hybrid approach using BMR values of
5% or 10% as appropriate (US Environmental Protection Agency, 2012). EFSA recommends
reporting the critical effect size with the default BMR value of 5% (Hardy et al., 2017).

All types of response data
Finally, it is an option in bmd to specify directly the response level for which to find the
dose.
Directly defined

BMR= f (BMD,β).

Estimation
All types of BMD estimates are calculated in an after-fitting step when using the package
bmd. After-fitting refers to deriving estimates and corresponding standard errors for
parameters that do not directly enter the model parameterization and hence have to be
estimated in a subsequent step using the delta method. The BMD estimating function in
bmd is called bmd() and takes a drc object (model fit) as its first argument. The alternative
to after-fitting would be to re-parameterize the model to include the BMD of interest as
a model parameter. The after-fitting approach has, however, the advantage that it suffices
to fit the dose–response model once in a parameterization that has proven to be the most
robust for estimation (Ritz et al., 2015). Accordingly, after-fitting provides an improvement
over the sometimes quite unstable re-parameterization approach. This is especially the case
when estimating a BMD corresponding to a very low BMR value, which may then be in an
area with little or no information in data.

Choice of dose–response model
A key distinguishing feature of bmd is that it inherits flexibility in available models from
the package drc (Ritz et al., 2019). Among others, the parametric dose–response models
available include the well-known and often used multi-stage, log–logistic and Weibull
models and the flexible class of fractional log–logistic models proposed by Namata et
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al. (2008). As a non-parametric alternative, the function bmdiso() monotonizes the
sequence of response values based on the pool-adjacent-violators algorithm. Based on
the monotonized sequence, linear interpolating splines are used to build an isotonic
regression model as the dose–response model used for BMD estimation (Piegorsch et al.,
2012; Piegorsch et al., 2014; Lin, Piegorsch & Bhattacharya, 2015). Table S2 lists all models
from drc available for BMD estimation in bmd. All the models shown are available for
binomial, continuous, and count response data. Even more model expressions may be
estimated by fixing one or more parameters. We refer to Ritz et al. (2019) for more details.

Defining BMDL
Different approaches for estimating the BMDL have been proposed. They can be
summarized as three general types; asymptotic approaches, inverse regression and based on
bootstrapping. Among the asymptotic approaches, the Wald-type confidence intervals are
the most simple. The one-sided Wald-type interval needed to estimate the BMDL is found
by combining information on the parameters included in the model by using the delta
method. TheWald-type intervals may result in unrealistic negative BMDL estimates, which
in practice will be truncated at 0 because of the symmetric confidence interval. Especially
in the low dose area, this may be a problematic assumption. One way to work around
this is to use a transformation (typically the logarithm) to avoid negative values. Inverse
regression reports the BMDL as the dose associated with the upper limit of the confidence
band for the change in response reaching the predefined BMR (Buckley, Piegorsch & West,
2009; Fang, Piegorsch & Barnes, 2015).

Bootstrap methods for estimating BMDL may rely on non-parametric, parametric, and
semi-parametric strategies depending on the type of response data. The non-parametric
bootstrap is based on resampling with replacement from each dose group of the original
data set. The parametric bootstrap for continuous data samples from a normal distribution
with dose-specific mean but equal standard deviation, assuming equal variance between
groups, i.e., response values are sampled from:

Yij ≈N (E (Yi),SD(Y0))

for observation j in dose-group i. In case of binomial data, each bootstrap data set is
sampled from a binomial distribution with dose-specific numbers of observations and
probability of an event. That is, response values are sampled from:

Yij ≈Binom(Ni,
Yi
Ni

)

where Yi
Ni

denotes the observed proportion of the population in dose group i experiencing
the event.

In case a dose has only non-events or only events, shrinkage is used to avoid that the
resampling always produces 0 or 1, respectively. In this case, data is sampled from

Yij ≈Binom(Ni,
Yi+1/4
Ni+1/2

)

as suggested elsewhere (Piegorsch et al., 2012).
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Semi-parametric bootstrapping, only available for continuous response data, is done
by sampling with replacement from the residuals assuming exchangeability over all
observations.

Exploring model assumptions
For continuous data, residual plots showing standardized residuals against predicted values
can be used to assess variance homogeneity. A random scatter plot will support the model
assumptions whereas clear patterns in the plot indicate deviations frommodel assumptions.
Assessment of the normality assumption can be based on quantile–quantile plots on the
residuals. For an example on how to do a visual assessment of model assumptions, we refer
to Ritz et al. (2019). Using the visual assessment of residual and quantile–quantile plots is
associated with some degree of subjective evaluation. However, the test-based assessment
also has limitations, as it might result in overfitting, or because the assumptions underlying
the tests themselves are not fulfilled (Wang & Riffel, 2011).

Assessment of over-dispersion for binomial or count data can be done by comparing
residual deviance to degrees of freedom. If the residual deviance is higher than the degrees of
freedom, there is excess variation in data (over-dispersion) not accounted for by the model.
Alternatively, a model allowing an extra variance parameter, i.e., a negative binomial model
can be fitted and the need for the extra parameter evaluated by comparing models with and
without the extra parameter, for example, using AIC (Akaike information criteria). Finally,
the model may be estimated using sandwich estimates (see ‘Dealing with distributional
misspecification’). A large change in the standard errors indicate over-dispersion in data.

Dealing with distributional misspecification
Extreme or, by other means, deviating observations may be handled already in the model-
fitting step using robust estimation in drc. The resulting variance–covariance matrix will
be propagated to the subsequent after-fitting step where BMD and BMDL are derived.

When assumptions regarding normality and/or the variance homogeneity are not
satisfied, consistent estimates of the standard errors can be obtained by adjusting the
estimated variance–covariance matrix. One way of doing this is to use a modified variance–
covariance matrix defined as:

var
(
β̂
)
= Â−1B̂(Â−1)T

where Â is the usual estimate of the variance based on the information matrix, and B̂
is a correction term based on the first derivatives on the log-likelihood function. Due
to the form of the modified variance–covariance matrix, the resulting adjusted standard
errors are referred to as sandwich estimates. Notice that the sandwich approach only
modifies standard errors but leaves estimated model parameters unaltered. Accordingly,
the underlying assumption of a correctly specified mean function remains.

Finally, log-normal distributed data may be handled by log-transforming the response
variable before fitting the dose–response model, which leads to a change in the
interpretation of BMD and BMDL, now relating to a pre-determined change in the
response on log-scale. Alternatively, the transform-both-sides approach could be used
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such that the assumed dose–response relationship, and accordingly, BMD and BMDL will
retain their original interpretation (Carroll & Ruppert, 1988).

Model averaging
Interpolation in a dose region with little or no data, as is typically the case for BMD analysis,
is highly dependent on the fit and choice of dose–response model. To partly overcome
this issue, it has been proposed to evaluate several models and subsequently select the
best model determined by means of some goodness-of-fit criterion (Slob, 2002). However,
the uncertainty pertaining to the model selection process is not incorporated in the BMD
and the associated BMDL. Indeed, results based on a best fitting model found using a
model selection procedure may result in biased estimates of BMD and non-protecting
estimates of BMDL, i.e., too high BMDL estimates with coverage below the nominal level
(West et al., 2012; Ringblom, Johanson & Öberg, 2014). As a consequence, model averaging
has been repeatedly advocated for BMD analysis by several authors (e.g., Faes et al., 2007;
Jensen & Ritz, 2015; Kang, Kodell & Chen, 2000; Namata et al., 2008; Wheeler & Bailer,
2007;Wheeler & Bailer, 2008) as well as regulating authorities (Hardy et al., 2017). The use
ofmodel averaging has the consequence that the flexibility of the assumed candidatemodels
to some extent replaces lack of data. The package bmd offers a large set of dose–response
models and accordingly a high flexibility of the candidate set ofmodels formodel averaging.
Another advantage is that it allows for an automated approach once the candidate models
are specified.

Two different approaches may be used for estimating BMD by model averaging. One
approach is to make a weighted average of the BMD estimates from all the candidate
models (e.g., Bailer, Noble & Wheeler, 2005; Kang, Kodell & Chen, 2000; Moon et al., 2005;
Namata et al., 2008). The other is to average entire curves and then find the BMD as the
dose associated with the change of interest in the response generated by this weighted
averaged model, i.e., using the appropriate definition (Wheeler & Bailer, 2007; Wheeler &
Bailer, 2008). Weights are usually based on some measure of goodness of fit. A common
choice is the AIC weights defined as:

wk =
exp

(
−1k
2

)
∑K

i=1exp
(
−1i
2

) . (9)

Here K denotes the total number of candidate models and 1k =AICk−mini AICi is
the AIC-difference for model k. Alternatively, weights based on the Bayesian information
criteria (BIC) (Claeskens & Hjort, 2008) or user-defined weights may be provided.

Estimating the BMDL corresponding to a model-averaged BMD is less straightforward
and has accordingly been the subject of much methodological research (Jensen, Kluxen &
Ritz, 2019). Three different approaches are available in bmd.

The first option is using a one-sided Wald confidence intervals with standard error
approximated by a variance inequality by Buckland, Burnham & Augustin (1997):

var(BMDMA)≤

( K∑
k=1

wk ·

√
var(BMDk)+(BMDk−BMDMA)

2

)2

.
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Here, BMDk is the BMD for model k and BMDMA is the weighted average of BMD
estimates. The second option is using a weighted average of the BMDLs from all the
candidate models, in the same way, BMD estimates are averaged to get the model-averaged
BMD (Kang, Kodell & Chen, 2000):

BMDLMA=

K∑
k=1

wk ·BMDLk

with weights, wk, specified as above, e.g., using Eq.(9). Finally, different bootstrap
approaches may be used to estimate BMDL corresponding to the model-averaged BMD.
For model averaging based on entire curves, the only option for estimating the BMDL is
to use bootstrap.

Hierarchical designs
Data obtained from designs with a hierarchical or nested structure do not comply with
the basic assumptions of independence underlying the classical dose–response regression
analysis. Hence, sticking to these models may result in biased BMDL estimates, i.e., too
high or low BMDL estimates with coverage far from the nominal level, usually 95%.
Preferably, a mixed effects dose–response model should be used to model such data in
order to take into account the correlation structure in data (Ritz, Gerhard & Hothorn,
2013). An alternative approach could be to adjust the estimated standard errors of BMD
using sandwich estimates. Another alternative is to fit dose–response models for each
independent subsample, and combine the estimates using a meta-analytic approach (Ritz
et al., 2019). This latter approach has been shown to result in estimates with stable and near
nominal coverage for the closely related effective doses (Jiang & Kopp-Schneider, 2014),
and it can therefore be used as an attractive alternative to the more complex fitting of mixed
effects dose–response models. An example of this meta-analytic approach is provided in
the last of the five examples given below. A similar two-step meta-analytic approach could
be used to integrate historical data (Ritz et al., 2019; Jensen, Kluxen & Ritz, 2019).

EXAMPLES
The R package bmd builds on the flexibility of drc, and thereby facilitates BMD and
BMDL estimation for a wide range of dose–response models. It was first mentioned as a
function in Ritz et al. (2015) but has been substantially updated since 2015 with the one
common denominator being that both versions utilizes the functionality available in drc.
The main function in the package bmd is bmd(), which uses a drc object (a dose–response
model fit) and can be easily extended by including arguments. In the following, we revisit
five data examples from the literature. R code for the different examples is provided as
supplementary material. In short, after installation of the R package from GitHub, the
basic approach is to fit a curve using drm(),
library(drc)

modelfit <- drm(. . . )

and then apply the function bmd()

library(bmd)
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bmd(modelfit, bmr = . . . , backgType = ‘‘. . . ’’, def = ‘‘. . . ’’)

with a specification of BMR, the background type (usually ‘‘modelbased’’), and the type of
definition as indicated in Table S1.

Binomial data: an earthworm toxicity test with chloroacetamide
Our first example revisits data from an earthworm toxicity test (Hoekstra, 1987). For
each of six concentrations (including a zero control), 40 earthworms were exposed to the
herbicide chloroacetamide, and the resulting number of dead earthwormswas counted. The
control or natural mortality was 3/40. Following the authors, we fitted a three-parameter
log-normal model to the data, estimating the natural mortality as a lower limit. Figure 1
shows the resulting model fit. The model-based estimated natural mortality was 0.10 (95%
CI [0.03–0.17]).

In this example, we considered a BMR of 5%, as this small change in probability of an
adverse event (death) was well covered by the dose-range. The BMD corresponding to a
BMR of 5% using the additional risk definition was the dose associated with a proportion
of dead earthworms equal to

BMR+p0= 0.10+0.05= 0.15.

The resulting estimated BMD and BMDL were 20.02 mg/kg and 15.40 mg/kg,
respectively. The BMD corresponding to a BMR of 5% using the excess risk definition was
the dose associated with a proportion of dead earthworms equal to

BMR ·
(
1−p0

)
+p0= 0.05 ·(1−0.10)+0.10= 0.145.

The resulting estimated BMD and BMDL for the excess risk definition were 19.79 mg/kg
and 15.15 mg/kg, respectively.

Count data: a toxicity test in aquatic plants
As part of an experiment examining the toxicity of metsulfuron-methyl on different
aquatic plant species, Cedergreen, Streibig & Spliid (2004) considered the effect on
Elodea canadensis. Vegetative shoots were placed in an aquarium growth cabinet with
a photoperiod of 16 h and at day/night water temperatures of 18/15 ◦C. Six E. canadensis
shoots were exposed to each of seven different concentrations of metsulfon-methyl (0,
0.01, 0.1, 1, 10, 100, 1,000 µg/L medium) in an artificial nutrient medium. Plants were
harvested after 14 days and lateral shoots counted among other endpoints.

A three-parameter log–logistic model was fitted to the shoot counts assuming Poisson
distributed data. Figure S1 shows the resulting model fit. The figure also shows all data
points making it clear that data contains several 0s and also other ties. The fitted model
described data adequately, as also indicated by a residual plot (shown in the R code in the
Supplemental Information).

We considered an absolute change in the response of one less shoot for these data,
as biological implications on 1 less shoot can be considered relevant. That is, BMD was
estimated with the added definition and a BMR of 1 shoot. Using nonparametric bootstrap,
we found BMD equal to 0.133 µg/L and BMDL equal to 0.052 µg/L.
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If we ignored that these data were count data and instead carried out the analysis
assuming a normal distribution, the resulting BMD and BMDL would be 0.254 µg/L and
0.092 µg/L, respectively. Ignoring that these were count data would result in less protective
estimates in terms of a much higher BMD and a somewhat higher BMDL that was based
on much wider confidence intervals.

Count data: a toxicity test with copper under varying temperature
Cedergreen et al. (2016) examined the effect of varying temperature on the toxicity of copper
on the nematode Caenorhabditis elegans (Maupas). As part of the experiment, 12 nematode
worms were exposed to each of five copper concentrations (1, 3, 8, 20, 40 mg/L agar) under
varying temperatures with daily fluctuations of ±4 degrees around a mean temperature
of 20 ◦C. Besides, 36 worms were exposed to the same temperature fluctuations but were
considered controls with no copper exposure. During the experiment’s reproduction phase,
the nematodes were moved to new wells in fresh plates every day. It allowed registration
of the daily egg production and the lifespan of each nematode. The number of fertile eggs
and hatched juveniles were counted as offspring.

We followed the guidelines for continuous data from US EPA and estimated the BMD
associated with a BMRof 10%using the relative definition, i.e., the concentration associated
with a 10% reduction in the total number of offspring relative to the control group. A
three-parameter log–logistic model was fitted to data under the assumption of Poisson
distributed data. Figure S2 shows the resulting model fit. The resulting BMD and BMDL
were 10.47 mg/L agar and 9.40 mg/L agar, respectively.

It may be argued that the above model is problematic due to premature mortality
(Delignette-Muller et al., 2014). An alternative would accordingly be to use a weighted
dose–response model taking into account the lifespan of the nematodes. The BMD from
this new model should now be interpreted as the concentration associated with a 10%
change in the number of offspring per day (the lifespan unit) relative to the control group.
Because of the two different interpretations, the BMD and BMDL estimates from this
model (31.16 mg/L and 28.89 mg/L, respectively) cannot be directly compared to those
from the first model.

A second issue related to reproduction data is that count data often exhibit
overdispersion, i.e., more variation than can be explained by the model. Two different
approaches can be used to overcome this challenge; one is to change the underlying
assumed distribution, the other to adjust the standard errors. The first option would, for
example, be to use a negative binomial distribution instead of the common choice of the
Poisson distribution. The resulting BMD and BMDL were then 27.99 mg/L and 15.99
mg/L, respectively. The second option is to use sandwich estimates when estimating the
BMDL while trusting that the dose–response model function appropriately describes the
mean trend in data. The result of this approach was a BMD of 31.16 mg/L and a BMDL of
18.63 mg/L. Notice that both procedures accounting for overdispersion resulted in a large
decrease of the BMDL, indicating that overdispersion was indeed present in these data.
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Figure 2 Fitted concentration–response curve for the two-parameter exponential decay model, the
three-parameter log–logistic model and the two differentWeibull models fitted to the Rainbow trout
data, (Organisation for Economic Co-operation and Development(OECD), 2006). The curve is shown to-
gether with all data points. The Rainbow trouts were exposed to different concentrations (mg/L water) of
an unknown agent.

Full-size DOI: 10.7717/peerj.10557/fig-2

Continuous data: a fish test
OECD describe data from a 21 day fish test following the guidelines by OECD GL204 and
using the test organism Rainbow trout Oncorhynchus mykiss (Organisation for Economic
Co-operation and Development(OECD), 2006). The Rainbow trouts were held in 14−15 ◦C
water and exposed to one of 7 concentrations (6 nonzero concentrations + control) of an
unknown agent. After 28 days, the wet weight was registered. There were ten replicates
per concentration. However, for some higher doses, missing values occurred, resulting in
a final data set with only 61 observations of the weight. Ignoring such missing values may
lead to biased results, depending on the mechanism causing the missing values, but we will
ignore the potential problem here for illustrating the BMD methodology.

Following OECD (2006), we fitted a two-parameter exponential decay model to the
Rainbow trout data. Figure 2 (full line) reveals an appropriate fit to data supported by
residual and QQ plots (see supplementary material: R code for the examples).

For a BMR of 5% using the hybrid approach with 2 standard deviations as the cut-off
the BMD and BMDL were 4.23 mg/L and 2.13 mg/L, respectively.

While the two-parameter exponential decay model showed a good fit to data, other
models may give a similar fit to data. The three-parameter log–logistic and two different
three-parameter Weibull models showed similar reasonable visual fit to data (see Fig. 2).
Comparing the models using AIC also showed a similar fit of the four models (Table 1).
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Table 1 Resulting benchmark dose (BMD), benchmark dose lower limit (BMDL), Akaike information
criteria (AIC), and weight based on AIC for four different models fitted to data from a fish test with
Rainbow trout. BMD was estimated based on the hybrid approach using 2 standard deviations as the cut-
off and BMR= 0.5. The model-averaged BMDLs were based on non-parametric bootstrap.

Parameters BMD (mg/L) BMDL (mg/L) AIC Weight

Exponential decay 2 12.65 6.37 106.31 0.333
Log–logistic 3 22.91 9.05 106.65 0.237
Weibull type 1 3 22.72 8.12 106.58 0.253
Weibull type 2 3 24.26 14.26 106.94 0.177
Model averaging
(estimate averaging)

19.68 8.04

Model averaging
(curve averaging)

20.35 7.73

Model averaging based on the four models using non-parametric bootstrap for
estimating BMDL resulted in a BMD much higher and a BMDL rather close to the
corresponding estimates from the original (exponential decay) model. The alternative
model averaging approach where entire curves were averaged before finding BMD and
BMDL resulted in a slightly higher BMD but a slightly lower BMDL.

The computation time (using a standard Dell laptop) for 1000 bootstrap samples using
the four models was app. 3 min for the estimate averaging and app. 5 min for the curve
averaging. For comparison, the computation time for this data set using PROAST (web
application) was app. 6 min for model averaging based on four models and 1000 bootstrap
samples.

Binomial data in a hierarchical design: an acute toxicity test with α-
cypermethrin
Gottardi & Cedergreen (2019) investigated the toxicity of α-cypermethrin on Daphnia
magna using an acute toxicity test following OECD guidelines for testing chemicals
(Organisation for Economic Co-operation and Development (OECD), 2012b). In nine
independent experiments conducted at different times, D. magma neonates (<1 day
old) were exposed to different concentrations of α-cypermethrin or acetone control for
48 h in M7 medium. Four replicates of five organisms were used for each concentration.
The number of concentrations used in each sub-experiment varied from 6 to 7 (5 or 6 and
control).

For this example, the purpose was to estimate BMD and BMDL for a BMR of 5%
using the excess risk definition as recommended by EFSA and US EPA. However, due
to the hierarchical design with sub-experiments, a simple dose–response model may
not appropriately capture the dependence structure in data. Consequently, a two-step
meta-analytic approach was applied. In the first step, a two-parameter log–logistic model
was fitted to data from each sub-experiment. From each model fit, the estimated BMD
and the corresponding standard error were extracted. In the second step, a random effects
meta-analytic model was fitted using the R package metafor (Viechtbauer, 2010).
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Figure S3 shows the resulting model fits from step one. The estimated BMD and BMDL
resulting from themeta-analytic model in step 2 were 0.07 µg/L and 0.05 µg/L, respectively.

VALIDATION OF THE R PACKAGE
A small-scale validation of the R package was carried out by analyzing a number of datasets
using bmd and BMDS version 3.2.0 from the US. EPA and the PROAST web application
(https://shiny-efsa.openanalytics.eu/app/bmd) from EFSA.

Methods
For binomial data, the three software packages were compared for three data sets, four
different models, and two BMR levels. The three data sets used were data from experiment
4, 7, and 9 from the last of the five examples corresponding to different dose–response
shapes (see Fig. S4). These data were analyzed using a log–logistic, a log-normal, and a
Weibull model. For BMDS and bmd, two-parameter models were used, assuming lower
and upper limits to be 0 and 1, respectively. In PROAST, it was not possible to fit models
with a lower limit of 0, instead three-parameter models were fitted. BMR was set to either
5% or 10%, and BMD was defined using the excess risk definition. BMDL was estimated
using profile likelihood for both BMDS and PROAST, while three different alternatives
were used for bmd: delta method-based Wald confidence intervals, confidence intervals
obtained from inverse regression, and non-parametric bootstrap confidence intervals
obtained using resampling within dose groups from the original data set. BMDL was found
as the 5% percentile in the bootstrap distribution.

For continuous data, the three software packages were compared for nine data sets, two
models, and two BMR levels. The nine data sets were simulated from three four-parameter
log–logistic models with similar lower and upper limits (2 and 10, respectively) but
different location and shape parameters. The three different models are shown in Fig. S4.
For each model, data were generated at five doses (0.1, 0.5, 1, 5, and 10), assuming normal
distributions with (i) 10 replicates and a standard deviation of 1, (ii) 10 replicates and a
standard deviation of 0.1, or (iii) 3 replicates and a standard deviation of 0.1. These data
were analyzed using a four-parameter log–logistic model (called the Hill model in BMDS
and PROAST) and a four-parameter Weibull model (called the exponential model in
BMDS and PROAST). BMR was set to either 0.05 or 0.1, and BMD was defined using the
relative risk definition. BMDL was estimated using profile likelihood for both BMDS and
PROAST. For bmd, three alternatives for estimating BMDL were applied: delta-method-
basedWald confidence intervals, confidence intervals obtained from inverse regression, and
semi-parametric bootstrap confidence intervals obtained through resampling of residuals
from the dose–response model assuming exchangeability over all observations. BMDL was
found as the 5% percentile in the bootstrap distribution.

We also compared bmd to BMDS and PROAST on five data sets used in the EFSA report
on benchmark dose modeling (Hardy et al., 2017). These data sets are described in detail
below.

Data set 1 contains continuous data from a subchronic National Toxicity Study 416
for an unknown agent. Specifically, bodyweight mean values and standard deviations are
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available for six dose groups of 10 animals (mg/kg body weight), including a control group.
Data were analyzed using a three-parameter exponential model, the relative definition, and
a BMR of 5%.

Data set 2 contains binomial data from a toxicity study examining the incidence of
gastric impaction from an unknown agent. Ten animals were used in each of four dose
groups (mg/kg body weight), which included a control group. Data were analyzed using
a three-parameter log–logistic model (with an estimated lower limit), the excess risk
definition, and a BMR of 10%.

Data set 3 comes from human dose–response study, where each individual has its
exposure limit. The binary endpoint is normal or abnormal eye-hand coordination in
individual workers exposed to different levels of CRD (unit unknown). Data were analyzed
using a one-stage model, the excess risk definition, and a BMR of 10%.

Data set 4 comes from a two-year study in male mice where body weight is reported as
mean values, standard deviations, and sample sizes for each of four dose groups (mg/kg
body weight) of an unknown agent, including a control. Data were analyzed using a
three-parameter Hill model and a three-parameter exponential model using the relative
definition and a BMR of 5%.

Finally, data set 5 contains binomial data from a two-year study in female rats examining
thyroid epithelial vacuolization incidence. Four dose groups (mg/kg body weight) of an
unknown agent, including a control, were considered. Data were analyzed using a three-
parameter log–logistic and a three-parameter log-normal model, using the excess risk
definition, and a BMR of 10%.

Results
The results for binomial and continuous data are shown in Tables 2 and 3, respectively,
while the results for the five data sets used in the EFSA report are presented in Table 4. For
the binomial data, PROAST and bmd agreed on BMD estimates to the third significant
number for all data examples and models. BMDS agreed with bmd for most of the models,
except the Weibull model in a few cases. For continuous data, bmd and BMDS agreed on
the BMD estimate to the third significant number with only a few exceptions. PROAST
gave quite different results for most scenarios.

BMDL estimates from bmd did not match those from BMDS and PROAST as these were
based on different methods. However, for binomial data the delta method derived BMDL
estimates from bmd were generally close to the BMDL estimates from both PROAST and
BMDS. For continuous data, the bootstrap BMDL estimates from bmd were generally very
close to BMDL estimated by BMDS. From the results presented here, it is not possible to
say which of the different approaches performs best.

The running time for some of the functionality involving bootstrap may be rather long.
However, it is mainly an issue for simulation purposes where hundreds or thousands of
estimates are to be found. In addition, comparisons to PROAST web-application shows
shorter run times for bmd.
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Table 2 Estimated benchmark dose (BMD) and benchmark dose lower limit (BMDL) for different binomial data sets, different models and dif-
ferent levels of BMR using PROAST, BMDS and bmd. PROAST and BMDS uses profile likelihood intervals for estimating BMDL while the R pack-
age bmd uses the delta method, inverse regression or bootstrap. For all data sets the excess risk definition was used.

BMD BMDL

Data set Modela BMR PROAST BMDS bmd PROAST
profile

BMDS
profile

bmd
delta

bmd
inverse

bmd
bootstrap

A Log–logistic 0.05 0.044 0.044 0.044 0.022 0.022 0.020 0.029 0.027
0.1 0.063 0.062 0.062 0.036 0.036 0.036 0.043 0.042

Log-normal 0.05 0.047 0.047 0.047 0.026 0.026 0.025 0.033 0.030
0.1 0.063 0.063 0.063 0.038 0.038 0.038 0.045 0.043

Weibull 0.05 0.027 0.027 0.027 0.010 0.010 0.006 0.014 0.013
0.1 0.047 0.047 0.047 0.022 0.022 0.018 0.027 0.026

B Log–logistic 0.05 0.087 0.087 0.087 0.063 0.063 0.064 0.071 0.072
0.1 0.102 0.102 0.102 0.079 0.079 0.080 0.085 0.086

Log-normal 0.05 0.089 0.089 0.089 0.066 0.066 0.066 0.074 0.075
0.1 0.102 0.102 0.102 0.079 0.079 0.080 0.085 0.087

Weibull 0.05 0.078 0.072 0.078 0.049 0.049 0.049 0.058 0.059
0.1 0.098 0.093 0.098 0.069 0.068 0.069 0.076 0.078

C Log–logistic 0.05 0.055 0.55 0.055 0.032 0.031 0.029 0.037 0.035
0.1 0.081 0.081 0.081 0.052 0.052 0.050 0.058 0.056

Log-normal 0.05 0.058 0.058 0.058 0.036 0.036 0.034 0.041 0.039
0.1 0.080 0.080 0.080 0.053 0.053 0.052 0.058 0.057

Weibull 0.05 0.046 0.046 0.046 0.024 0.024 0.020 0.029 0.028
0.1 0.077 0.077 0.077 0.046 0.046 0.043 0.051 0.051

Notes.
aAll models fitted as unrestricted models in BMDS.

DISCUSSION
We have described in detail the functionality of the R package bmd for BMD estimation.
The usefulness and flexibility of bmd were illustrated by means of a number of examples,
covering both simple and more complex data structures. In the first example, binomial
data for a single dose–response curve was used to estimate BMD and BMDL. In the second
and third example, we revisited a data set with count data and considered different ways of
approaching the related challenges, including potential overdispersion of the counts. The
fourth data example illustrated the flexibility of the package to estimate a model-averaged
BMD and BMDL, whereas the last example showed how to handle data frommore complex
experimental designs.

The package bmd differs from the existing specialized BMD software packages BMDS
and PROAST as it provides BMD estimation for several types of response data, including
count data and time-to-event data, two types of data that often occur in ecotoxicology.
Count data are often handled by assuming a normal or log-normal distribution ignoring
that such data cannot be negative, may present ties and usually experience variances that are
a function of the mean and accordingly violates the assumption of variance homogeneity,
i.e., for the special case of Poisson distributed variables, the variance equals the mean.
Though transformations may accommodate some of the issues related to count data, it has
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Table 3 Estimated benchmark dose (BMD) and benchmark dose lower limit (BMDL) for different continuous data sets, different models and
different levels of BMR using PROAST, BMDS and bmd. PROAST and BMDS uses profile likelihood intervals for estimating BMDL while the R
package bmd uses the delta method, inverse regression or bootstrap. For all data sets, the relative definition of BMD was used.

BMD BMDL

Data
set

Std Rep Model BMR PROAST BMDS bmd PROAST
profile

BMDS
profile

bmd
delta

bmd
inverse

bmd
bootstrap

A 1 10 Log–logistica 0.05 0.088 0.144 0.144 0 0.050 0.037 0.082 0.051
0.1 0.129 0.200 0.200 0 0.080 0.077 0.119 0.080

Weibull2 0.05 0.040 0.126 0.126 0 0.018 0.004 0.063 0.017
0.1 0.070 0.183 0.183 0 0.034 0.038 0.097 0.032

0.1 10 Log–logistic 0.05 0.101 0.107 0.107 0.091 0.105 0.097 0.097 0.096
0.1 0.148 0.154 0.154 0.135 0.151 0.142 0.140 0.140

Weibull 0.05 0.049 0.074 0.074 0.041 0.060 0.061 0.061 0.061
0.1 0.086 0.115 0.115 0.073 0.097 0.099 0.098 0.098

0.1 3 Log–logistic 0.05 0.092 0.097 0.097 0.080 0.078 0.075 0.077 0.079
0.1 0.138 0.140 0.140 0.121 0.1156 0.114 0.114 0.117

Weibull 0.05 0.043 0.066 0.066 0.031 0.040 0.037 0.043 0.043
0.1 0.076 0.105 0.105 0.058 0.067 0.066 0.072 0.072

B 1 10 Log–logistic 0.05 0.003 0.092 0.092 0 0.005 0 0.035 0.005
0.1 0.008 0.148 0.149 0 0.011 0 0.06 0.012

Weibull 0.05 0 0.045 0.045 0 0.015 0 0.014 0.003
0.1 0.002 0.085 0.085 0 0.030 0 0.029 0.007

0.1 10 Log–logistic 0.05 0.033 0.032 0.032 0.019 0.023 0.024 0.023 0.023
0.1 0.07 0.067 0.067 0.043 0.050 0.054 0.051 0.05

Weibull 0.05 0.008 0.056 0.016 0.003 0.051 0.011 0.011 0.011
0.1 0.022 0.112 0.038 0.012 0.102 0.029 0.027 0.027

0.1 3 Log–logistic 0.05 0.029 0.036 0.036 0.016 0.028 0.024 0.023 0.023
0.1 0.064 0.074 0.074 0.038 0.051 0.055 0.051 0.051

Weibull 0.05 0.008 0.056 0.019 0.004 0.049 0.012 0.012 0.012
0.1 0.023 0.113 0.044 0.012 0.099 0.031 0.029 0.03

C 1 10 Log–logisticc 0.05 – 0.717 0.717 – 0.047 0 0.261 0.079
0.1 – 0.971 0.971 – 0.098102 0 0.369 0.155

Weibull 0.05 – 0.666 0.666 – 0.051 0 0.224 0.067
0.1 – 0.930 0.930 – 0.102 0 0.329 0.134

0.1 10 Log–logistic 0.05 0.847 0.843 0.843 0.737 0.832 0.683 0.696 0.693
0.1 1.137 1.126 1.126 1.010 1.111 0.954 0.953 0.957

Weibull 0.05 0.827 0.833 0.833 0.705 0.677 0.651 0.679 0.677
0.1 1.155 1.132 1.132 1.010 0.950 0.929 0.948 0.952

0.1 3 Log–logistic 0.05 1.724 3.262 2.621 1.070 3.219 0 1.501 0.821
0.1 2.054 3.491 2.905 1.380 3.459 0 1.684 1.107

Weibull 0.05 2.007 3.533 2.647 1.090 3.431 0 1.513 0.802
0.1 2.382 3.753 2.956 1.450 3.329 0 1.716 1.095

Notes.
aHill model for BMDS and PROAST. The Hill model was fitted as an unrestricted model in BMDS.
bExponential model in BMDS and PROAST. The exponential model was fitted as a restricted model in BMDS.
cNo model fitted for this data set using PROAST.
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Table 4 Estimated benchmark dose (BMD) and benchmark dose lower limit (BMDL) for five data sets used in the Benchmark dose report from EFSA (Hardy et al.,
2017). Data were analyzed using PROAST, BMDS and bmd. PROAST and BMDS uses profile likelihood intervals for estimating BMDL while the R package bmd uses the
delta method, inverse regression or bootstrap.

BMD BMDL

Data set Data type Definition BMR Model PROAST BMDS bmd PROAST
profile

BMDS
profile

bmd
delta

bmd
inverse

bmd
bootstrap

1 Continuous Relative 5% Exponential 235.1 233.7 235.5 170 170.4 201.5 203.3 201.1
2 Binomial Excess 10% Log–logistic 399 398.6 398.7 171 171.0 204.2 291.4 61.9
3 Binary Excess 10% One-stage 173 172.7 172.7a 92.4 92.3 35.4 95.2 75.2
4 Continuous Relative 5% Exponential 0.297 0.302 0.304 0.198 0.229 0.112 0.162 0.277

Hillbc 0.297 – 0.309 0.198 – 0.159 0.189 0.287
5 Binomial Excess 10% Log–logistic 3.2 3.2 3.2 1.84 1.84 1.63 2.1 1.42

Log-normal 3.31 3.31 3.31 1.98 1.98 1.78 2.23 1.58

Notes.
aStarting values required to get the reported results.
bPotential problem with PROAST reporting the same values for the Hill and the exponential model. In the EFSA report results for Hill were: BMD=0.302 and BMDL=0.205.
cNot possible to fit a three-parameter Hill model for these data in BMDS. In bmd a three-parameter log-logistic model was used instead.
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been shown that they result in a lack of power compared to statistically sound alternatives,
such as using the Poisson or negative binomial distribution (Stroup, 2013; Stroup, 2015).

The package bmd provides BMD estimation for practically all dose–response functions
available in BMDS and PROAST. The package also allows the use of fractional polynomials,
particularly suitable for model averaging (Faes et al., 2007; Namata et al., 2008), and
several hormesis models, as well as semi-parametric alternatives (Piegorsch et al., 2014;
Lin, Piegorsch & Bhattacharya, 2015). An additional advantage of bmd is the possibility
to estimate BMDL based on sandwich variance–covariance estimates that provide
robust standard errors, thus making allowance for model misspecification related to
the distributional assumptions. This option is not available in any other specialized BMD
software packages. Several different types of bootstrap can be used to estimate BMDL, and
several options for estimating BMD and BMDL, including model averaging, are available.
Also, other available or future software extensions of R can be directly used together with
bmd.

When comparing results from bmd, BMDS, andPROAST,wemostly observed agreement
between estimated BMD and BMDL values. However, we also found some differences. We
found small differences that most likely were caused by different underlying optimization
algorithms. In some scenarios, we also found larger differences. Differences between
bmd/BMDS on one side and PROAST on the other side were most likely due to the fact
that PROAST assumed a log-normal distribution whereas BMDS/bmd assumed normal
distributions. Depending on the scale for the response, these two assumptions may lead to
fairly different results. Moreover, there could also easily be differences due to the different
methods used for obtaining confidence intervals and hence BMDL estimates.

At present, bmd can only handle models describing a single dose–response curve.
However, a future update will extend the built-in functions to handle models for multiple
dose–response curves. It would be interesting to include an approach for BMDL estimation
for model-averaged BMD where correlations between BMD estimates from the different
candidate models would be accounted for (Jensen & Ritz, 2015). Likewise, it would be
interesting to look at other approaches or models for addressing non-constant variance
than assuming log-normally distributed data. Finally, the profile likelihood approach
for finding BMDL has been found to perform better than the delta-method–based Wald
confidence intervals (Moerbeek, Piersma & Slob, 2004;US Environmental Protection Agency,
2012). This approach is currently not available in bmd but is planned to be part of a future
update.

‘Defining BMD for a predefined BMR’ illustrates that the BMD directly depends on its
formulation, which needs to be clearly defined and may thus be perceived as superficially
more technically involved than statistical testing. Thus, the BMD approach may be
considered a statistical black box, which may affect its use in practice. However, it is
accepted or even preferred to the NOAEL approach due to its benefits, as laid out in the
introduction. Further, statistical testing itself is scrutinized when used as a naïve binary
decision criterion (e.g., Wasserstein, Schirm & Lazar, 2019; Wasserstein & Lazar, 2016) and
with respect to toxicology (Kluxen & Hothorn, 2020;Hothorn & Pirow, 2020;Kluxen, 2020).
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CONCLUSION
Wehave demonstrated that theR extension package bmd allows flexible and straightforward
BMD estimation for a broad range of applications in ecotoxicology. Comparisons to
existing software showed mostly good agreement between estimates, but also some
non-negligible differences due to different statistical methods being used. However,
we observed differences between all three software programs: bmd, BMDS, and PROAST.
The freely available R software can be viewed as a reliable and user-friendly alternative
for dose–response modelling, which also covers all other conceivable practical statistical
requirements for (eco)toxicologists, including BMD analyses.
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