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ABSTRACT
For tissues to carry out their functions, they rely on the right proteins to be
present. Several high-throughput technologies have been used to map out which
proteins are expressed in which tissues; however, the data have not previously been
systematically compared and integrated. We present a comprehensive evaluation
of tissue expression data from a variety of experimental techniques and show that
these agree surprisingly well with each other and with results from literature curation
and text mining. We further found that most datasets support the assumed but not
demonstrated distinction between tissue-specific and ubiquitous expression. By
developing comparable confidence scores for all types of evidence, we show that it is
possible to improve both quality and coverage by combining the datasets. To facilitate
use and visualization of our work, we have developed the TISSUES resource (http:
//tissues.jensenlab.org), which makes all the scored and integrated data available
through a single user-friendly web interface.

Subjects Computational Biology, Genomics
Keywords Immunohistochemistry, RNA sequencing, Tissue expression, Mass spectrometry,
Microarrays, Databases, Tissue-specificity

INTRODUCTION
Mapping out which proteins are present in each tissue is of major importance for

understanding the functional differences between tissues as well as their development

and differentiation (Pontén et al., 2009; Emig & Albrecht, 2011). Several high-throughput

experimental technologies have been used for this, the most widely used of which

are expressed sequence tags (ESTs) (Wheeler, 2003; Pontius, Wagner & Schuler, 2002),

high-density oligonucleotide microarrays (also called DNA chips) (Su et al., 2004; Clark et

al., 2007), and RNA sequencing (RNA-seq) (Krupp et al., 2012; Fagerberg et al., 2014; Uhlen

et al., 2015).

ESTs are short sequence reads—typically around 400bp—derived from 5′ or 3′ ends

of complementary DNA (cDNA) libraries from tissues or cell lines (Adams et al., 1991;

Bailey, Searls & Overton, 1998; Nagaraj, Gasser & Ranganathan, 2007). Consequently, for

a highly expressed gene, one would expect to see a correspondingly high abundance of
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ESTs derived from its transcripts. A more recent sequencing-based approach to quantifying

transcript levels is RNA-seq. The major difference to EST sequencing is that random cDNA

fragments are sequenced instead of only the 5′ and 3′ ends. The resulting reads are aligned

to a reference genome, producing a quantitative expression profile for each gene (Wang,

Gerstein & Snyder, 2009; Nagalakshmi, Waern & Snyder, 2010). Because reads are generated

from all parts of a transcript instead of only the ends, the number of reads observed for a

gene depends on both its length and its level of expression. A major advantage of RNA-seq

is the ability to resolve individual splice variants if enough reads are obtained for a gene.

Microarrays are another extensively used technology for transcriptome analysis. Gene

expression is quantified by measuring the fluorescence intensity of labeled cDNA that

hybridizes to oligonucleotide probes (Lipshutz et al., 1999; Harrington, Rosenow & Retief,

2000; Churchill, 2002). Because a microarray can contain millions of different probes, the

transcript levels of all genes can be measured simultaneously.

The above mentioned techniques are all based on measuring mRNA levels. Fewer

techniques exist for high-throughput measurement of protein levels. One of them is

multiplexed immunohistochemical staining of tissue samples embedded in paraffin blocks

(sometimes referred to as tissue microarrays). Histological analysis of the resulting images

of tissues stained with an antibody can semiquantitatively tell where the target protein is

present (Kampf et al., 2012). The main challenge to using this approach at the proteome

scale is the need for specific antibodies against all proteins (Buchwalow et al., 2011). Mass

spectrometry has also been used for measuring protein abundances in tissue samples,

mainly in bodily fluids (Adkins, 2002; Schmidt & Aebersold, 2006; Aretz et al., 2013), muscle

biopsies (Lundby et al., 2012), and tumor samples (Schwartz, 2004; Seeley & Caprioli,

2008; Paul et al., 2013). Two recent publications collected many of these experiments

into a single repository (Wilhelm, Schlegl & Hahne, 2014) and for the first time used this

technology for in-depth proteomic profiling of a broad selection of normal human tissues

(Kim et al., 2014).

Large-scale tissue expression datasets have formed the basis for many analyses and

discoveries related to correlations between data from different technologies, mainly

between transcriptomics and proteomics experiments (Waters, Pounds & Thrall, 2006;

Bitton et al., 2008), roles of housekeeping and tissue-specific genes in protein complexes

(Bossi & Lehner, 2009; Emig & Albrecht, 2011), biological processes (Zhu et al., 2008b;

Chang et al., 2011; Schaefer et al., 2013), and diseases (Shyamsundar et al., 2005; Vasmatzis

et al., 2007; Lage et al., 2008; Magger et al., 2012; Börnigen et al., 2013). However, the

majority of these studies (Shyamsundar et al., 2005; Lage et al., 2008; Bossi & Lehner, 2009;

Chang et al., 2011; Magger et al., 2012; Schaefer et al., 2013; Börnigen et al., 2013) are based

solely on microarray data from the GNF Expression Atlas (Su et al., 2004), which could bias

the results. It is thus relevant to test to which extent the different technologies and datasets

give congruent results.

We here present the first comparative evaluation of the quality of tissue associations

from a variety of different datasets and experimental methods as well as from manual

curation (The UniProt Consortium, 2014) and automatic text mining of the biomedical
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Figure 1 Summary of the tissues and number of proteins present in each dataset. For our analyses, we
mapped 9 datasets to 21 major tissues of interest. This figure shows which datasets cover which of these
major tissues and how many proteins each dataset identified.

literature (Fig. 1). We show that these datasets—despite the technological differences—

agree surprisingly well with each other and can be combined to improve quality and

coverage. Finally, as a result of the integration process, we have developed the TISSUES

resource (http://tissues.jensenlab.org), which makes the above mentioned heterogeneous

data more easily accessible to researchers by collecting them in a single place and assigning

confidence scores.

METHODS
Datasets
GNF Gene Expression Atlas
The experimental data from the Human U133A/GNF1H Gene Atlas (Su et al., 2004)

was downloaded from the BioGPS portal (http://biogps.org/). The dataset contains

information for 44,775 probe sets, which we filtered to remove probe sets associated

with multiple targets (names ending with “ [r,i,f,x] at” and control probe sets (names

starting with “AFFX”). We mapped the remaining probe sets to gene identifiers using the

probeset-to-gene annotation file (gnf1h.annot2007.tsv) and finally mapped these to 16,598

Ensembl protein identifiers using the alias file from the STRING database (Franceschini &

Szklarczyk, 2013). The GNF Gene Expression Atlas provides information for 79 tissues, 60

of which we could map to Brenda Tissue Ontology terms. We scored each gene–tissue

association based on the normalized expression units obtained from the microarray
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analysis, under the assumption that transcripts identified with higher intensity are less

likely to be false positives. When multiple probe sets mapped to the same gene, we used the

mean expression value.

Affymetrix Exon tiling array
These high-density microarrays (Clark et al., 2007) contain probe sets for more than one

million annotated and predicted exons. We downloaded the data from the Gene Expression

Omnibus (Barrett et al., 2011) (GSE5791 series matrix) and used the 565,690 probe sets

mapped to a gene identifier according to the GPL4253 platform. We mapped the latter

to 15,559 Ensembl protein identifiers. The Exon Array experiment examined 16 tissues

mainly from the nervous system studying six sub-regions of the brain. All tissues could

be mapped to BTO terms. As in the other microarray experiment, we used the mean

normalized expression units as the score for each gene–tissue association.

UniGene
The UniGene database (Wheeler, 2003; Pontius, Wagner & Schuler, 2002) clusters together

Expressed Sequence Tags (EST) that belong to a single gene and includes information

about the tissue where each EST was observed. We used the Homo sapiens UniGene

Build #236, which contains 24,289 clusters that could be mapped to 18,493 Ensembl

protein identifiers via the provided gene symbols or UniGene cluster identifiers. UniGene

Human library (Hs.lib.info) provides information for 80 tissues from which we discarded

several with ambiguous names, e.g., “retina and testis” or ”uncharacterized tissue” (Data

S1), and finally obtained 60 BTO terms. The scoring scheme for UniGene is based on

the number of ESTs clustered into a single gene that belong to the same tissue. When

multiple clusters mapped to the same gene, we used the total number of ESTs from

the clusters.

RNA-seq atlas
The RNA-seq Atlas (Krupp et al., 2012) is a web-based resource that provides expression

data for 21,399 genes in 11 tissues. We mapped the genes to 18,063 Ensembl protein

identifiers using the STRING alias file; all the specified tissues mapped directly to BTO

terms. We used the normalized Reads Per Kilobase per Million mapped reads (RPKM) as

the confidence score for each gene–tissue association.

HPA RNA-seq data
The Human Protein Atlas version 12 (Fagerberg et al., 2014; Uhlen et al., 2015) provides

short-read high-throughput sequencing data (RNA-seq) in 27 non-disease tissues. We

mapped 20,315 Ensembl gene identifiers for which the database contained expression

levels to 18,491 Ensembl protein identifiers and all the tissue names to BTO terms.

Similarly to the scoring scheme applied to the RNA-seq Atlas dataset, we assigned the

normalized expression levels in Fragments Per Kilobase of exon per Million fragments

mapped (FPKM) as the confidence score for each gene–tissue association.
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HPA immunohistochemistry
HPA also provides an atlas of protein expression derived from immunohistochemistry

experiments over many tissues (Fagerberg et al., 2014; Uhlen et al., 2015). We obtained

information on the expression of 16,384 genes in 45 tissues (data downloaded on 21st

January 2014), which we mapped to 15,552 Ensembl Protein identifiers and 45 BTO

terms. For each antibody and tissue, HPA provides a semi-quantitative strength of

staining (staininga,t) divided into four levels, which we translated into numeric values

(not detected: 0, low: 1, medium: 3, high: 6). When only a single antibody was used to

measure a protein, we simply used the staining values from that antibody as the confidence

scores for the tissues.

When multiple antibodies for the same protein were used we used a more complex

scoring scheme to combine the staining values from the individual antibodies:

scorep,t = α · qualityp · levelp,t

where α is a scaling factor for making the multi-antibody scores comparable to the

single-antibody scores, qualityp captures the internal agreement among the antibodies

for the protein, and levelp,t is a weighted average of staining values of the antibodies for the

protein in a given tissue.

The correction factor for the quality of the antibodies follows an exponential

distribution that mimics the expected behavior of the antibodies. That is, quality will

increase with the number of antibodies, flattening as adding more antibodies will gradually

improve confidence less and less:

qualityp = e
−β

R2
p

Np

where β is a parameter optimized as described below, Np is the number of antibodies for

the protein, and R2 measures the disagreement between the antibodies across all tissues:

R2
p =


a′∈p


t∈T

R2
a′,t

where T is the set of tissues studied and R2
α,t is the disagreement in a given tissue between

one antibody and the average of the antibodies:

R2
a′,t =


staininga′,t −

1

Np


a∈p

staininga,t

2

.

We defined the level of a protein in a given tissue (levelp,t) as a weighted average of the

antibodies:

levelp,t =


a′∈p

weighta′,t · staininga′,t
a′∈p

weighta′,t
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where the weights are defined based on the disagreements between the antibodies:

weighta′,t = 1 −
R2

a′,t

R2
p

.

We validated the scoring scheme and determined the values of the free parameters by

calculating the fold enrichment (see Quality of proteomics data) against UniProtKB. The

optimal values of the parameters were α = 3.0 and β = 0.7.

Human Proteome Map
HPM is a large mass spectrometry-based catalogue of protein profiles in 30 normal

human tissues (Kim et al., 2014), which contains more than 290,000 tryptic peptides.

We mapped these to Ensembl by comparing the sequences to all theoretical tryptic peptides

derived from Ensembl v75 protein sequences, allowing for up to two missed cleavages. We

assigned each tryptic peptide to the corresponding Ensembl gene identifier and mapped

these to a total of 17,038 Ensembl protein identifiers using the STRING alias file. The 30

normal human tissues were comprised of 17 adult tissues, 7 fetal tissues, and 6 primary

hematopoietic cell types. Because the corresponding adult and fetal tissues map to the

same term in BTO, the 30 tissues mapped to only 26 different BTO terms. For those tissues

mapping to the same BTO term, we averaged the number of tryptic peptides. As confidence

score for a protein being expressed in a given tissue, we used the unique number of tryptic

peptides observed.

UniProtKB tissue annotations
UniProtKB (The UniProt Consortium, 2014) provides manually curated protein annota-

tions. This includes annotations of tissue expression for 17,075 human proteins. Whereas

each protein is typically only annotated with one or a few tissues, the number of different

tissue terms used is very high; we were able to manually map UniProtKB tissues for 401

different BTO terms in total. Because the annotations are manually curated, we considered

all protein–tissue associations from UniProtKB to be of the highest confidence.

Text mining
The text mining pipeline used in this work has been described in detail elsewhere. It

relies on an efficient dictionary-based named entity recognition algorithm (Pafilis et al.,

2013) and a co-occurrence scoring scheme (Binder et al., 2014) to extract associations

from Medline abstracts. To use the pipeline to extract of protein–tissue associations, we

complemented the existing dictionary of human gene and protein names from STRING

with a dictionary of tissue and cell types constructed from BTO. As part of the text-mining

pipeline, we manually inspected random samples of associations from different score

intervals to make sure that the results were correct. The pipeline extracted more than one

million protein–tissue associations based on co-occurrences of 16,748 proteins and 5,300

BTO terms.
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Table 1 Definition of cutoffs. This table shows the different confidence cutoffs used in the analyses for each dataset, the quality score and how each
quality score is converted to the unified confidence score used in the TISSUES web resource.

Dataset Low cutoff Medium cutoff High cutoff Score Confidence score (stars)a

UniGene 1 10 20 No. of ESTs 6/(1 + 0.229 · score−7.898) − 1

GNF 50 100 250 Expression units log10(score) + 0.7

Exon array 50 100 250 Expression units 2 · log10(score) − 3.56

RNA-seq atlas 0.5 1 5 RPKMs log10(score) + 0.523

HPA RNA-seq 1 10 20 FPKMs log10(score) − 0.176

HPA IHC 0 1.1 1.9 IHC score score/5.5

HPM 1 5 10 No. of tryptic peptides score/30 + 0.5

Text mining 0 2.5 3.5 Z-score max(score/2.4)

Notes.
a These functions were calculated using the ‘Non-linear curve fitting’ functionality that xmgrace provides via its GUI.

Evaluation and calibration of scores
To evaluate the quality of the gene–tissue associations from each dataset, we compared

them to the UniProtKB gold standard. We quantified the agreement in terms of the fold

enrichment, which we define as the fraction of pairs in a dataset that are also in the gold

standard divided by the fraction expected by random chance. The latter is defined as

the fraction of possible gene–tissue pairs that are found in the gold standard. For these

fold-enrichment calculations we considered only the genes and tissues that are shared

between the dataset and the gold standard.

We calculated the fold enrichment for score windows of 100 gene–tissue associations

to capture the relationship between fold enrichment and the quality scores defined in

the previous sections. To be able to convert the quality scores from individual datasets

into confidence scores that are comparable between datasets, we first fit the relationships

between quality scores and fold enrichments with mathematical functions with only a

few parameters. For this purpose, we used the ‘Non-linear curve fitting’ functionality

that xmgrace provides via its GUI. The large number of data points (20,000–50,000

gene–tissue pairs) used to estimate at most four parameters in each fitted function ensures

the robustness to random variation in the data. We obviously cannot rule out effects of

possible systematic biases in individual datasets. We used the obtained confidence scores

to define the low-, medium-, and high-confidence cutoffs for the comparisons of the

datasets (Table 1). Next, we performed a global transformation of the fold enrichments

into the “star” confidence scores used in the COMPARTMENTS (Binder et al., 2014) and

DISEASES resources (Pletscher-Frankild et al., 2014), based on the text-mining scores,

which the three resources have in common. The combined, calibrated functions for

translating quality scores into the final confidence scores are listed in Table 1 (Fig. S3).

Web resource
To make the protein–tissue associations available for query by a web resource, we store

all data in a PostGreSQL database. The web interface is implemented through the same

Python web framework used for the COMPARTMENTS database (Binder et al., 2014). The
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body map onto which the data is visualized was manually created in Adobe Illustrator and

saved as a Scalable Vector Graphics (SVG). In the user’s browser, JavaScript is then used to

provide interactive coloring and labeling of tissues.

RESULTS AND DISCUSSION
To systematically compare the different datasets, we standardized the varying names used

for the same tissues to their respective terms in the Brenda Tissue Ontology (Schomburg

et al., 2013) (Data S1). Because this ontology is structured as a directed acyclic graph, this

also helps deal with the challenge of different datasets having different tissue resolution;

for example, some datasets study the brain as a whole whereas others study different parts

separately. We decided to base our analyses on the 21 major tissues shown in Fig. 1. These

tissues were selected as a compromise between the varying selections of tissues analyzed in

the experimental datasets that we integrate. We also made sure that the tissues were non-

overlapping, i.e., that none of the 21 ontology terms were parents/children of each other.

Tissue-specific and ubiquitous transcripts
Many studies have made the distinction between housekeeping genes, which are expressed

in most tissues, and tissue-specific ones, which are expressed in only a few tissues (Hsiao

et al., 2001; Lercher, Urrutia & Hurst, 2002; Liang et al., 2006; Dezso et al., 2008; Zhu et

al., 2008a; Zhu et al., 2008b; Eisenberg & Levanon, 2013). However, there are no strict

definitions of these two classes of genes, and it is not clear to what extent this represents

a natural classification. To answer the latter, we analyzed the expression breadth of five

transcriptome datasets, i.e., how many genes are expressed in how many tissues. As this

depends strongly on the threshold used to decide whether a gene is expressed in a given

tissue, we performed the analysis with three different cutoffs, in the following referred to as

low, medium, and high confidence (see ‘Methods’).

Figure 2 shows the expression breadths for five transcriptome datasets, each at the

three different confidence levels. Most show a clear bimodal distribution with peaks at the

extreme ends, i.e., the vast majority of genes are expressed either in only a few tissues or

in most tissues measured. We thus show that data from several sources and technologies

robustly support a natural distinction between tissue-specific and ubiquitously expressed

genes.

Zhu et al. (2008a) also showed a bimodal trend when comparing the GNF expression

atlas and EST sequencing data; however, for the latter data type the bimodality was

weak. We similarly find very few tissues-specific genes when analyzing UniGene at

the low-confidence cutoff, but show that this trend is reversed when using more

stringent cutoffs. We observe that the GNF dataset is atypical in that it identifies fewer

ubiquitously expressed genes at all cutoffs than the rest of the datasets, including the other

microarray-based study (Exon array).

Consistency of transcriptomic methods
The previous analysis showed that the global trends in terms of tissue specificity are

similar across the transcriptome datasets. That, however, does not imply that the datasets
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Figure 2 Distribution of expression breadth of the transcriptome datasets. For each of the five mRNA
datasets, the histograms show the number of protein-coding genes expressed at low, medium, and high
confidence as function of number of tissues. With the exception of UniGene, the distributions are
bimodal, with most proteins occurring in either few tissues or in most tissues measured, supporting
the notion of distinguishing between tissue-specific and ubiquitous expression.

necessarily agree on which genes are expressed where. To quantify the agreement, we

focused on the five tissues and 3,254 genes covered by all the transcriptome datasets.

Comparing the five transcriptome datasets, we saw that genes are assigned to tissues with

high consistency between datasets at all three confidence levels (Fig. 3) (P < 10−15 for all

pairwise overlaps). At medium confidence 39.2% (5679/14504) of gene–tissue associations

are common to all datasets and 65.8% (9537/14504) are common to at least four of the five

datasets (Data S2).

The largest discrepancy in the comparison is the large number of gene–tissue

associations found by all datasets except GNF at all three confidence levels (Fig. 3). This

is likely because the GNF Expression Atlas was made using microarrays designed prior

to the completion of the Human Genome Project, which consequently have suboptimal

probe sets for many genes.

Conversely, the largest agreement is seen among the three most recent datasets, which

were generated using RNA-seq or exon arrays. At medium confidence, their overlap makes

up 72.65% (10538/14504) of all gene–tissue associations, 13.66% (1439/10538) of which

are not found by any other dataset.

Correlation between expression values and confidence levels
The high consistency between the mRNA datasets demonstrates their quality; however, it

does not guarantee that the selected cutoffs are comparable and represent the same level

of confidence across datasets. To assess the assumed correlation between expression values
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Figure 3 Consistency of the transcriptome datasets. We assessed the consistency of the five transcrip-
tome datasets by calculating the overlap of gene–tissue associations for the shared genes and tissues. At
all levels of confidence, we observe surprisingly good agreement, with the largest count in each Venn
diagram representing associations found by all five datasets.
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and confidence, we compared all datasets to a gold standard of gene–tissue associations

extracted from scientific literature by UniProtKB (The UniProt Consortium, 2014). While

reliable, UniProtKB annotations are very incomplete as they are restricted to what has

been published. It is thus not possible to estimate the precision of a dataset; instead, we

quantified the quality of the datasets in terms of its fold enrichment of correct gene–tissue

associations compared to random chance.

The comparison showed that fold enrichment for gold-standard associations increased

steadily with expression value from all datasets (Fig. 4A). This was expected because, in

general, the more abundant a transcript, the more reliably it can be identified. Moreover,

we find that the low-, medium-, and high-confidence cutoffs used in the preceding analyses

correspond to the same quality in all datasets. However, a dataset of lower quality will give

fewer associations at any given confidence cutoff.

The expression breadth distribution of UniProtKB is strongly skewed towards

tissue-specific proteins; only 0.72% of proteins (106/14722) are annotated as expressed

in more than five tissues. This reflects that many annotations describe proteins as widely

or ubiquitously expressed but list only a few tissues. Also, UniProtKB annotations are

incomplete, because many proteins have only been described in the literature as present in

some of the tissues where they are expressed.

In light of this and the high quality of the mRNA datasets, we built a complementary set

of gene–tissue associations, hereafter called the mRNA reference set, with high-confidence

support from at least three datasets. This set exhibits the expected bimodal distribution of

expression breadth (Fig. 4C) and provides 7,384 gene–tissue associations not present in

UniProtKB (Fig. 4D, Data S3).

Quality of proteomics data
To complement the mRNA datasets with protein-level data, we investigated the Human

Protein Atlas immunohistochemistry data (HPA IHC) (Fagerberg et al., 2014; Uhlen et al.,

2015) and the mass spectrometry data from the Human Proteome Map (HPM) (Kim et

al., 2014). To compare these with other datasets, we developed a quality scoring scheme for

each as described in the methods section.

With the scoring schemes defined, we analyzed the two proteomics datasets with

respect to enrichment for associations from both the UniProtKB and mRNA reference

sets (Fig. 5A). Higher scores were correlated with higher enrichment, validating that the

proposed scoring schemes work. Despite looking at proteins instead of transcripts, the

proteomics datasets show worse fold enrichment than the transcriptome datasets, when

compared to the UniProtKB gold standard. This is consistent with the criticism raised

over the quality of the HPM data based on an analysis of olfactory receptors expressed

in multiple tissues (Ezkurdia et al., 2014), which demonstrated a high percentage of false

positives in this dataset. In case of HPA IHC, this is especially true for data derived based

only on a single antibody.

HPM exhibits bimodal distributions of expression breadth at all confidence levels

(mainly at low and medium levels) consistent with the majority of the transcriptome
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Figure 4 Quality of the transcriptome datasets. (A) To assess the correlation between expression level
and confidence, we compared the transcriptome datasets to a gold standard, namely UniProtKB. We
quantified the quality of the datasets in terms of its fold enrichment for correct gene–tissue associations
compared to random chance. The comparison shows that higher expression (continued on next page...)
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Figure 4 (...continued)

values imply higher quality and that the three confidence cutoffs (vertical dotted lines) used correspond
to equivalent quality in all datasets. (B) The distribution of expression breadth for UniProtKB is strongly
skewed towards tissue-specific proteins, contrary to what was seen for transcriptome datasets. (C) We
thus constructed a consensus mRNA reference set; its expression breadth distribution is in line with that
of the individual mRNA datasets. (D) The mRNA reference set is highly complementary to the UniProtKB
gold standard, providing 7,384 gene–tissue association that are not in the latter.

datasets (Fig. 5B). This consistency across confidence levels is in part due to a substantial

fraction (18,027/106,021) of the associations from HPM being high confidence.

Conversely, the HPA IHC dataset is dominated by low-confidence associations for proteins

studied with only a single antibody or with multiple antibodies that gave different results.

At low confidence, proteins tend to be associated with many tissues, which is likely due to

unspecific antibodies. By contrast, most proteins have higher-confidence links to only a few

tissues.

Complementary annotations from text mining
Automatic text mining of the biomedical literature has the potential to extract information

that has been either overlooked by curators, not yet curated, or not annotated due to

curation standards (Aerts et al., 2008; Van Auken et al., 2012). We used a previously

published text-mining pipeline (Pafilis et al., 2013; Binder et al., 2014), expanded with

a dictionary of tissues and cell lines, to extract associations between genes/proteins and

tissues and scored them according to their co-occurrence in sentences and abstracts.

We evaluated the quality of these associations by comparing them to both the UniPro-

tKB and mRNA reference sets (Fig. S1A). This analysis shows that co-occurrence-based

text mining performs well for this task. The high agreement with UniProtKB is not

surprising considering that text mining and curation are both based on the available

literature. The comparison to the mRNA reference set, however, shows that many of

the associations found by text mining, but not by curators, are also supported by direct

experimental evidence.

The distribution of expression breadths is, like for UniProtKB, skewed towards the

tissue-specific end (Fig. S1B), due to the same literature limitations. However, text mining

associates each gene/protein with more tissues, even at high confidence. For example,

421 are linked to more than five tissues, which is four times more than what UniProtKB

annotates. These results demonstrate the value of complementing manual annotation with

automatic text mining.

Improved tissue profiles through data integration
So far we have shown that the quality of the different datasets is comparable at each of

the chosen confidence levels. To assess the consistency and complementarity of different

data sources, we compared the medium-confidence associations from UniProtKB and

text mining to two pooled sets of high-confidence associations from transcriptomics and

proteomics experiments, respectively.
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Figure 5 Analysis of the proteomic datasets. (A) To make the data from HPA IHC and HPM comparable
with other datasets, we developed a quality scoring scheme for each. The quality scores show good
correlation with the fold enrichment for associations from the UniProtKB and the mRNA reference sets.
(B) The distribution of expression breadth is consistent with the results of the transcriptome datasets in
case of HPM, whereas the results for HPA IHC vary qualitatively between confidence levels.
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Figure 6 Consistency and complementarity of evidence types. To assess the consistency and com-
plementarity of the associations supported by different types of evidence, we compared the medium-
confidence associations from UniProtKB and text mining to two pooled sets of high-confidence asso-
ciations from transcriptomics and proteomics experiments, respectively. The white numbers show the
overlap of protein–tissue associations when considering only at the common proteins and tissues among
all sets. The black numbers show the overlap when not restricting the comparison to common proteins
and tissues. Together, these analyses show that the different sources of evidence have high consistency
across the common proteins and tissues, but that they are at the same time complementary because they
cover different proteins and tissues.

Despite the inherent differences between data types and technologies compared, when

looking at the common proteins and tissues, 43.4% (17,053/39,294) of all associations are

supported by at least two of the four sets (Fig. 6A). The transcriptomics and proteomics

sets show the largest pairwise agreement, which accounts for 32.12% (11,472/35,709) of

the associations from the two sets and 29.2% (11,472/39,294) of all associations (Data S4).

This agreement highlights the strong connection between transcription and final protein

abundance; indeed, transcription was recently demonstrated to explain about 80% of the

differences seen in protein expression (Li, Bickel & Biggin, 2014).

Although all the sets are consistent on the proteins and tissues they have in com-

mon, they are also highly complementary because they cover different proteins and

tissues. When not restricting the comparison to common proteins and tissues, 72.1%

(102,013/141,385) of all the reported associations are unique to a single set (Fig. 6B, Data

S4). The analysis also reveals that only 6.5% (9,225/141,385) of the associations are unique

to UniProtKB. Text mining alone captures 19.6% (5,410/27,596) of the curated literature
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Figure 7 TISSUES: all data accessible in a single resource. The TISSUES web resource integrates all
the data compared in this study, quantifies the reliability of each gene–tissue association, and thereby
makes associations from different sources comparable. When searching for a human protein, the user is
presented with a body map that provides a complete overview of where the protein is likely expressed by
coloring the 21 major tissues according to the confidence of the protein–tissue association. The body map
is interactive and allows the user to see which sources of evidence support expression in a given tissue.
The TISSUES web resource is available at http://tissues.jensenlab.org.

results and complements them with 18,741 additional protein–tissue associations, 40.5%

(7,598/18,741) of which are supported by the transcriptomics or proteomics sets.

Another way to illustrate the complementarity of the datasets is to compare the quality

and coverage obtained when integrating many datasets compared to using a single dataset.
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To this end, we looked at the union of the transcriptomics and proteomics sets and

compared it to the same number of top-scoring associations from the GNF atlas. Focusing

on the 7,445 proteins and 17 tissues that GNF and UniProtKB have in common, 76%

(11,395/14,974) of the associations from the integrated list were annotated in UniProtKB,

whereas this was only the case for 60% (8,913/14,974) of the associations from GNF.

Moreover, the integrated list includes 11,721 associations not covered by GNF (Data S5 and

Fig. S2).

The TISSUES web resource
In light of the clear advantages of combining multiple datasets, we believe the scientific

community can benefit from having a resource that integrates and provides easy access

to the available information on tissue expression. We thus developed the TISSUES web

resource that is available at http://tissues.jensenlab.org. Several other resources provide

gene–tissue associations, including TiGER (Liu et al., 2008), BioGPS (Wu et al., 2009),

TissueDistributionDB (Kogenaru et al., 2009), VeryGene (Yang et al., 2011), EBI Gene

Expression Atlas (Kapushesky et al., 2010), and the GTEx portal (Lonsdale et al., 2013).

What makes TISSUES unique is that it integrates data from many different technologies

and sources, quantifies the reliability of each gene–tissue association, and thereby makes

results from different sources comparable.

The web interface allows the user to search for a human gene and get a complete

overview of where it may be expressed. To provide an at-a-glance overview, we show a

body map with each the 21 major tissues colored according to the confidence that the gene

of interest is expressed there (Fig. 7). The figure also allows the user to see which sources

of evidence support expression in a given tissue. Three interactive tables below the body

map provide the user with more detailed information for the evidence from UniProtKB,

high-throughput experiments, and text mining. This includes information on additional

tissues, linkout to the source of the evidence whenever possible, and a unified confidence

score ranging from 1 to 5 stars (see ‘Methods’).

TISSUES holds information for 21,294 genes and 5,305 different tissues and provides

more than 2.2 million gene–tissue associations at varying confidence levels. These are all

available for download under the Creative Commons Attribution License at http://tissues.

jensenlab.org to facilitate large-scale studies.
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Figure S3. Score calibration
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