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ABSTRACT

The p53 activation is induced by stressors, such as DNA damage, oxidative stress,
and activated oncogenes, and can promote cell cycle arrest, cellular senescence,
and apoptosis. The large yellow croaker (Larimichthys crocea) is an important warm
temperate marine fish in the Chinese aquiculture industry. However, few studies have
investigated the role of p53 in the response of L. crocea to environmental stressors.
Therefore, the aim of the present study was to assess the spatiotemporal mRNA
expression levels of genes involved in the p53 signaling pathway of the large yellow
croaker in response to cold stress. The results showed significant changes in the
expression levels of p53, p21, MDM2, IGF-1, Gadd45, Fas, and Akt in various tissues
of the large yellow croaker in response to cold stress for different times. As compared
to the control group, p53 mRNA expression was upregulated in most of the examined
tissues at 24 h with the exception of the gill. In the liver, the expression levels of p53
and Fas were significantly decreased at 12 h, while those of p21, MDM?2, IGF-1, Gadd45
were dramatically increased. Akt expression was notably changed in response to cold in
several tissues. These results suggested that p53 was potentially a key gene in the large
yellow croaker response to cold and possibly other environmental stressors.

Subjects Agricultural Science, Aquaculture, Fisheries and Fish Science, Biochemistry, Molecular
Biology, Zoology

Keywords Large yellow croaker, Cold stress, p53 signaling pathway, mRNA expression, Gene
network

INTRODUCTION

Net cage culturing of the large yellow croaker (Larimichthys crocea) is economically
important to the marine aquaculture industry in China (Liu ¢ Han, 2011). Over the
past decade, low temperature resistance of L. crocea has gained considerable attention
because of extensive economic losses caused by cold stress in winter, especially in the East
China Sea (Xu, Chen ¢ Ding, 2012). In order to breed large yellow croaker with stronger
resistance to low temperatures and a lower death rate during the winter season, previous
studies have investigated serum expression levels of physiological and biochemical markers,
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antioxidant production, enzymatic activities, and the proteome in response to cold stress,
which showed that the serum biochemical indicators glutamate pyruvate transaminase,
glutamic oxaloacetic transaminase, and alkaline phosphatase were significantly affected (Ji
et al., 2009; Li et al., 20105 Zhang et al., 2013). More recent studies have focused on genes
in response to cold stress. Liver transcriptome analysis indicated that the expression levels
of numerous genes were either up- or down-regulated after 12 h of cold stress (Qian ¢
Xue, 2016). Moreover, the expression profile of cold-inducible RNA-binding protein was
significantly changed in different tissues of the large yellow croaker during acute cold
stress (Miao et al., 2017). Also, Li, Ran & Chen (2018) found that MIPS mRNA expression
was significantly up-regulated in gill, heart, muscle and brain, and indicated that MIPS
may participate in response to acute or chronic cold stress. As the molecular mechanisms
underlying the activation of these genes are complicated, further studies are needed to fully
understand the genetic responses of the large yellow croaker to cold stress.

The tumor suppressor p53 not only plays key roles in the inhibition of cell carcinogenesis
and tumor development, but also promotes cell cycle arrest and apoptosis (Levine ¢ Oren,
2009; Kastenhuber ¢ Lowe, 2017), and is involved in autophagy modulation, homeostatic
regulation of metabolism, pluripotency, and repression of cellular plasticity (Aylon ¢ Oren,
2016). On account of the negative regulation of MDM?2 (induced by p53), basal levels of p53
are low. The p53 gene acts as a “guardian of the genome” under physiological conditions
(Momand et al., 1992; Haupt et al., 1997; Honda, Tanaka ¢ Yasuda, 1997; Kubbutat, Jones
& Vousden, 1997) and is activated by stress signals, such as DNA damage, oncogene
activation, and environmental stress. However, the response of p53 is dependent on the
intensity of the stress signal, the cell type, and the stage of cellular differentiation (Horn
& Vousden, 2007, Kastenhuber & Lowe, 2017). Notably, the p53 response is exceedingly
flexible, as even a very low basal level of p53 can protect the cell from the accumulation of
DNA damage and subsequent carcinogenesis, which under different stress signals occurs
through two typical mechanisms: (1) the promotion of cell senescence and apoptosis in
response to severe or constant genotoxic and cellular stressors, and (2) the promotion of
temporary cell cycle arrest in order to maintain cell survival prior to DNA repair (Jones et
al., 2005; Moddocks et al., 2013; Chen et al., 2016; Pappas et al., 2017).

Various target genes of the p53 signaling pathway involved in the arrest of cellular
growth have been investigated, which include growth arrest and DNA damage-inducible
protein (Gadd45), cyclin-dependent kinase inhibitor 1A (p21), and tumor necrosis factor
receptor superfamily member 6 (Fas) (reviewed in Levine ¢ Oren, 2009). The results of
our previous study showed that the p53 signaling pathway was significantly enriched in
the liver of the large yellow croaker in response to cold stress for 12 h, while numerous
genes related to cell cycle arrest, apoptosis, and DNA repair and damage prevention were
remarkably affected (Qian ¢ Xue, 2016). Reportedly, p53 promotes apoptosis in the gills
of the Nile tilapia (Oreochromis niloticus) and zebrafish (Danio rerio) in response to cold
stress (Wang, 2016). Similarly, p53 mRNA expression was significantly upregulated in the
muscle tissue of D. rerio under low temperature stress (Li ef al., 2018).

We found that the p53 signaling pathway was enriched significantly in our previous
study (Qian & Xue, 2016). Is the p53 signaling pathway potential pathway in response to
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acute cold stress? Basis on our previous result, the spatiotemporal expression of various
genes (i.e., p53, p21, MDM2, IGF-1, Gadd45, Fas, and Akt) in different tissues of the large
yellow croaker under cold stress were investigated in this study. The objectives of this study
were (1) to investigate the role of partial genes involved in the p53 signaling pathway in
response to cold-induced stress in the large yellow croaker, and (2) to discover the changes
of mRNA expression in different tissues of the large yellow croaker under different acute
cold stress time.

MATERIALS AND METHODS

Ethics statement

The study protocol was approved by the Medical Ethics Committee of Taizhou University
Medical College (TZYXY2019-211) and conducted in accordance with the guidelines of
the Institutional Animal Care and Use Committee. To minimize suffering, all experiment
fish in this study were anesthetized by Tricaine-S (TMS, MS-222)(50 mg /L) firstly. And
then we collected the tissues of large yellow croaker after the fish lost consciousness. Lastly,
the fish which has been taken a surgery would be sprayed with anesthetic (200 mg/L), and
let it death with euthanasia.

Fish and induction of acute cold stress

A total of 180 large yellow croakers (mean weight, 80 + 0.7 g) were purchased from a
mariculture farm located in Xiangshan Bay (Zhejiang Province, China), randomly assigned
to one of six groups (30 fish/group), and then cultured in 500-L plastic aerated tanks in
the laboratory of the Ningbo Marine and Fishery Science and Technology Innovation
Base (Zhejiang Province, China) for 7 days. During the adaption period, the fish were fed
granulated feed twice per day (04:30 and 18:30 h). A total of 90 fish cultured in three tanks
were exposed to acute cold stress with the use of ice wrapped in thick plastic bags until the
water temperature decreased to 14 °C within 2 h (cold stress group), while the other 90
fish in three tanks were cultured at environmental temperature and received no treatment
(control group). After 1, 3, 6, 12, 24, 48, and 72 h of acute cold stress, the liver, muscle, gill,
heart, spleen, intestine, brain, and kidney were collected from three fish in the cold stress
group and control group, respectively, and immediately snap-frozen in liquid nitrogen,
then stored at —80 °C.

Total RNA extraction and cDNA synthesis
Total RNA was extracted from each sample using the E.ZN.A.® Total RNA Kit I (Omega
Bio-Tek, Inc., Norcross, GA, USA) in accordance with the manufacturer’s instructions.
Total RNA was quantified with a NanoDrop™ 1000 Spectrophotometer (NanoDrop
Technologies, LLC, Wilmington, DE, USA) and RNA integrity was assessed with the use
of an Agilent 2100 Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA, USA). The
RNA integrity value of all samples was > 8. The extracted RNA was stored at —80 °C until
analysis.

First stand cDNA was synthesized from total RNA using the PrimeScript'™ RT reagent
Kit with gDNA Eraser (Takara Bio, Inc., Kusatsu, Shiga Prefecture, Japan) in accordance
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Table 1 Primers for quantitative real time PCR.

Gene Primer sequence (5'—3') Gene Primer sequence (5'—3')

B-actin F: TCGGTATGGAATCTTGCG Fas F: CACTCCAGCAGGGAAATGGA
R: GTATTTACGCTCAGGTGGG R: GCCATTTTGCTACGTCTCGC
F: ACTACTGCCGGCCTAATGTG F: TGCCCCAGCATGAATGAAGT

Po3 R: GCAAACTGCATGGTTGGAGG Akt R: GTTGTGGTCACTGGACACCT
F: TAGACGCCGTGCATGGATTT F: ATCAACGTGGTGCGAGTCAA

MDM?2 Gadd45

R: CCAGTTTGTTGTCATCGGCG
F: GGGAAATGGCACCAATGTCG

R: CATTGCAGTAGCGTGTGCAG
F: GTTCATTTTCGCCGGGCTTT

P21 IGF-1

R: GACGAAGAAGATGTCCGCCT R: ACAGCACATCGCACTCTTGA

with the manufacturer’s instructions and stored at —20 °C until quantitative real-time
polymerase chain reaction (QRT-PCR) analysis.

Spatiotemporal expression analysis

The qRT-PCR analyses of the spatiotemporal expression profiles of p53, p21, MDM?2,
IGF-1, Gadd45, Fas, and Akt were conducted with primers designed using Primer
Premier 5 software (Premier Biosoft, Palo Alto, CA, USA) (Table 1). B-actin was used
as a housekeeping gene. Before QqRT-PCR, the amplification efficiency of the primers was
evaluated with five 10-fold serial dilutions of cDNA of all tissues.

The qRT-PCR analysis was performed using a CFX96 Real-Time PCR System (Bio-Rad
Laboratories, Hercules, CA, USA) with a total reaction volume of 20 nL, consisting of 1 pL
of cDNA diluted to 1:5 with sterile DNase/ RNase-free distilled water, 0.6 wL of the forward
primer, 0.6 wL of the reverse primer, 9 uL of FastStart Universal SYBR Green Master mix
(Sigma-Aldrich Corporation, St. Louis, MO, USA), and 8.8 pL of sterile DNase/RNase-free
distilled water. The following thermal cycling conditions were used: 95 °C for 10 min
followed by 40 cycles at 95 °C for 15 s, 58 °C for 20 s, and 72 °C for 20 s. A melting
curve was generated. Each sample was amplified in triplicate and the relative expression
levels of p53, p21, MDM2, IGF-1, Gadd45, Fas, and Akt were normalized to that of S-actin
with the 2742¢T method (Thomas ¢ Livak, 2008). Statistical significance was determined
using one-way analysis of variance. All statistical analyses were performed using IBM SPSS
Statistics for Windows, version 21.0. (IBM Corporation, Armonk, NY, USA). A probability
(p) value of <0.05 was considered statistically significant and <0.01 as highly significant.
All qPCR data could be obtained in “Supplemental File” which named with raw data.

RESULTS
Analysis of the p53 signaling pathway

The results of our previous study showed that the expression profiles of genes involved
in the p53 signaling pathway were significantly affected and this pathway was remarkably
enriched in the liver transcriptome of the large yellow croaker in response to acute
cold stress for 12 h (Qian & Xue, 2016). Gene networks associated with cell cycle arrest,
apoptosis, p53 negative feedback, and DNA repair and damage prevention were evaluated
in the present study based on the transcriptome data of previous studies (Fig. 1). In this
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Figure 1 Putative gene networks in large yellow croaker stressed by 12 h acute cold based on the tran-
scriptome data of previous studies. Enriched gene networks associated with cell cycle arrest, apoptosis,
p53 negative feedback, and DNA repair and damage prevention. Brown indicates up-regulated, blue indi-
cates down-regulated, white indicates no changes. Full names of abbreviated genes are listed in Abbrevia-
tion.

Full-size & DOI: 10.7717/peerj.10532/fig-1

gene networks, genes expression related to apoptosis were significant changed , including
Siah, Bax, CytC, PIDD, Apaf-1 and CASP8 were increased significantly and IGF-1, Fas
were decreased significantly. Genes related to cell cycle arrest such as p21 and Gadd45
expression were increased, while CDK4/6 was decreased significantly. And the other genes
expression of p53R2, Sestrins (related to DNA repair and damage prevention), PAI, BAI-1
(related to inhibition of angiogenesis and metastasis), PTEN, TSC2 (related to inhibition
of IGF-1/mTOR pathway) were upregulated remarkably. In addition, downstream genes
of p53 including Cop-1, PIRH-2, Siah-1 were also significant increased.

The mRNA profiles of Akt, MDM2, p53, p21, Gadd45, Fas, and IGF-1

in liver tissue

The mRNA expression profiles of genes and gene networks in the liver of the large yellow
croaker in response to acute cold stress were investigated (Figs. 2A;_7, 2B). Liver mRNA
expression levels of p53 were significantly decreased in response to cold stress at 3, 6 and
72 h, while significantly increased at 24 and 48 h. In addition, the mRNA levels of Akt,
MDM2, p21, and Gadd45 were significantly increased at 1 and 3 h, while the expression
levels of p21 and Gadd45 were significantly upregulated with the exception of 48 h. There
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Figure 2 qPCR analysis of genes in the liver of large yellow croaker under acute cold stress. (A) Akt
(protein kinase B), (B) Fas (tumor necrosis factor receptor superfamily member 6), (C) Gadd45 (growth
arrest and DNA damage-inducible protein), (D) IGF-1 (insulin-like growth factor 1), (E)MDM2 (E3
ubiquitin-protein ligase mdm?2), (F) p21 (cyclin-dependent kinase inhibitor 1A), (G) p53 (tumor protein
p53); (H) putative gene networks based on qPCR data; orange indicates up-regulated, blue indicates
down-regulated, white indicates no changes. The results are expressed as mean fold change £ SD (n = 3
fish per treatment). Significant differences were considered at *0.01 <P < 0.05 and **P < 0.01.

Full-size Gl DOI: 10.7717/peerj.10532/fig-2

was a good agreement between the QqRT-PCR findings and previous liver transcriptome
data of the large yellow croaker in response to acute cold stress at 12 h. The changes in
mRNA expression levels of the selected genes were comparable between the two methods,
although IGF-1 expression was increased by qRT-PCR, while decreased according to the
transcriptome data. The qRT-PCR results showed that the mRNA expression levels of Akt,
MDM2, p21, and Gadd45 were significantly increased, while that of p53 was increased after
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12 h of acute cold stress, as compared to the control group, although this difference was
not statistically significant.

Spatiotemporal expression patterns of Akt, MDM2, p53, p21, Gadd45,
Fas, and IGF-1

The spatiotemporal expression profiles of Akt, MDM?2, p53, p21, Gadd45, Fas, and IGF-1
in sampled tissues of large yellow croaker were determined by qRT-PCR analysis. The
results of QqRT-PCR analysis are shown in Figs. 2A-2G and 2H (liver), 3A-3G and 3H
(muscle), 4A—4G and 4H (brain), 5A-5G and 5H (spleen), 6A—6G and 6H (gill), 7A-7G
and 7H (kidney), 8A—-8G and 8H (intestine), and 9A-9G and 9H (heart). p53 mRNA
expression levels in muscle were obviously increased after 1, 6, 12, 24, and 72 h of acute
cold stress, but were significantly decreased at 3 h. mRNA levels of Gadd45 and p21 were
increased in muscle throughout the cold stress period, although Gadd45 expression was
downregulated at 3 h. The mRNA expression levels of Akt and Fas were downregulated,
while those of MDM?2, p53, p21, Gadd45, and IGF-1 were upregulated in muscle tissue at
12 h (Figs. 3A-3H).

Brain mRNA expression levels of all selected genes were significantly affected after 1
and 48 h of acute cold treatment. Notably, p53 expression was significantly increased at 1,
12, 24, and 48 h, but not at 3, 6, and 72 h. Also, the expression levels of MDM?2 and Gadd45
were dramatically upregulated in the brain tissue of the large yellow croaker throughout
most of the treatment period (Figs. 4A—4H).

In contrast to the brain tissue, p53 mRNA expression in the spleen tissue was
obviously increased at 24 and 48 h, but not at all times. Spleen mRNA expression levels
of Gadd45 were increased after cold stress, although there was no statistical significance
at 72 h. In addition, the expression levels of Akt, MDM?2, p53, p21, Gadd45, and IGF-1
were significantly upregulated at 24 h, while that of Fas was significantly downregulated
(Figs. 5A—5H).

In the gill tissues, p53 expression was significantly downregulated at 1, 3, and 72
h, and significantly upregulated at 6 and 12 h. MDM?2 and Akt mRNA expression levels
were obviously increased at 1, 24, 48, and 72 h, and at 3, 6, and 12 h of cold stress,
respectively. MDM2 mRNA expression was not significantly affected, while Akt expression
was significantly decreased. Gill mRNA expression levels of p21 were significantly increased
throughout the cold stress period, as was that of Gadd45 with the exception at 72 h
(Figs. 6A—6H).

Kidney mRNA expression levels of p21 and Gadd45 were significantly increased
throughout the acute cold stress period, while that of Fas was obviously decreased with
the exception of 1 and 24 h. The mRNA expression levels of p53 in the kidney tissues
were significantly upregulated at 1, 6, 12, 24, and 48 h. MDM2 mRNA expression was
upregulated throughout the cold stress period, although there was no significant change at
6 and 12 h (Figs. 7A-7H).

The mRNA expression of p53 in the intestinal tissue was significantly upregulated at 1,
24, and 48 h, but downregulated at 3, 6, 12, and 72 h. At 24 and 48 h after acute cold stress,
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Figure 3 qPCR analysis of genes in the muscle of large yellow croaker under acute cold stress. (A) Akt
(protein kinase B), (B) Fas (tumor necrosis factor receptor superfamily member 6), (C) Gadd45 (growth
arrest and DNA damage-inducible protein), (D) IGF-1 (insulin-like growth factor 1), (E) MDM2 (E3
ubiquitin-protein ligase mdm2), (F) p21I (cyclin-dependent kinase inhibitor 1A), (G) p53 (tumor pro-
tein p53); (H) putative gene networks based on qPCR data; orange indicates up-regulated, blue indicates
down-regulated, white indicates no changes. The results are expressed as mean fold change £SD (n = 3
fish per treatment). Significant differences were considered at *0.01 <P < 0.05 and **P < 0.01.

Full-size & DOTI: 10.7717/peerj.10532/fig-3

the mRNA expression levels of Akt, MDM2, p53, p21, Gadd45, Fas, and IGF-1 were all
significantly increased. At 72 h, the mRNA expression levels of Akt, MDM2, p21, Gadd45,
and IGF-1 were significantly upregulated, while those of p53 and Fas were downregulated
(Figs. 8A—8H).

The qRT-PCR results indicated that in the heart tissues, the mRNA expression levels
of Akt, MDM2, p53, and Gadd45 were significantly increased, while p53 was significantly
down-regulated at 3 h with no significant difference at 1 and 12 h (Figs. 9A-9H).
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Figure 4 qPCR analysis of genes in the brain of large yellow croaker under acute cold stress. (A) Akt
(protein kinase B), (B) Fas (tumor necrosis factor receptor superfamily member 6), (C) Gadd45 (growth
arrest and DNA damage-inducible protein), (D) IGF-1 (insulin-like growth factor 1), (E) MDM2 (E3
ubiquitin-protein ligase mdm2), (F) p21I (cyclin-dependent kinase inhibitor 1A), (G) p53 (tumor pro-

tein p53); (H) putative gene networks based on qPCR data; orange indicates up-regulated, blue indicates
down-regulated, white indicates no changes. The results are expressed as mean fold change & SD (n =3
fish per treatment). Significant differences were considered at *0.01 <P < 0.05 and **P < 0.01.

Full-size Gl DOI: 10.7717/peerj.10532/fig-4

DISCUSSION

Low temperatures that exceed the tolerance range of fish are known to disrupt energy

metabolism, biochemical composition, immune function, and gene expression (Lu ef al.,
2019; Song et al., 2019). Net caged fish usually occur cold stress in winter, and the fish

maybe suffer chronic cold stress in the sea while could suffer acute cold stress in the small
waters. Chen (2015) found that there were similar changes between the mRNA expression
of genes MIPS, CIRP, SCD-1a and SCD-1b in the tissues of large yellow croaker underlying

Qian et al. (2020), PeerdJ, DOI 10.7717/peerj.10532

9/21


https://peerj.com
https://doi.org/10.7717/peerj.10532/fig-4
http://dx.doi.org/10.7717/peerj.10532

Peer

awp ) 30p e ] conl
M ol ] Control [ Coldstress
35k [ Cold stress 2 [ Coldstess oL ]L
30
s
W % [
25 8

Fold Change:
Fold Chang
Fold Changes.

N ol )

Th 3h 6h 12h 24h  48h T2k Th 3h 6h  12h 24h  48h  T2h Th 3h  6h  12h  24h  &h T2k

Hours Hours Hours
55 250 10
D E Control F .
sf ) [ Conrol % Coldst | §
[ Cold s olastess 3 [ Contrl
| old e m [ Coldsiess

Fold Changes

Fold Changes
Fold Changes

T

05

L allllaf LU | | ﬂm i ﬂﬂﬂ

Ih 3h 6h12h 24h  48h T2k Th 3h 6h 12h 24h  48h  T2h h 12h 24h 48h 2h

Hours Hours Hours

H

3  celiprocess
O Gene

ase [ Control
[ Cold stress

i

o

L

12h 24h 48h  T2h

Hours

Figure 5 qPCR analysis of genes in the spleen of large yellow croaker under acute cold stress. (A) Akt
(protein kinase B), (B) Fas (tumor necrosis factor receptor superfamily member 6), (C) Gadd45 (growth
arrest and DNA damage-inducible protein), (D) IGF-1 (insulin-like growth factor 1), (E) MDM2 (E3
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fish per treatment). Significant differences were considered at *0.01 <P < 0.05 and **P < 0.01.

Full-size ] DOI: 10.7717/peerj.10532/fig-5

chronic cold stress and acute cold stress. In this study, the mRNA expression of genes
including p53, p21, Fas et al. were investigated in the 8 tissues of large yellow croaker
occurred acute cold stress, the results could provide basic information for molecular
mechanism in low temperature resistance in this fish. The results of our previous study of
the liver transcriptome of L. crocea in response to 12 h of acute cold stress, identified a large
number of differentially expressed genes that were enriched in the p53 signaling pathway.
Specifically, the mRNA expression levels of MDM2, p21, Gadd45, CytC, and Apaf-1 were
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Figure 6 qPCR analysis of genes in the gill of large yellow croaker under acute cold stress. (A) Akt
(protein kinase B), (B) Fas (tumor necrosis factor receptor superfamily member 6), (C) Gadd45 (growth
arrest and DNA damage-inducible protein), (D) IGF-1 (insulin-like growth factor 1), (E) MDM2 (E3
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fish per treatment). Significant differences were considered at *0.01 <P < 0.05 and **P < 0.01.

Full-size & DOTI: 10.7717/peerj.10532/fig-6

significantly increased, while those of Fas, IGF, and CDK4/6 were significantly decreased.

In addition, there was no significant change in the mRNA expression levels p53 or other

genes related to cell cycle arrest, apoptosis, inhibition of angiogenesis and metastasis,
DNA repair and damage prevention, and p53 negative feedback (Qian ¢ Xue, 2016). In the

present study, acute cold stress altered the expression profiles of genes related to cell cycle

arrest and apoptosis in the liver, muscle, brain, spleen, gill, kidney, intestine, and heart. Of

interest, the expression levels of p21 and Gadd45, which are related to cell cycle arrest, were
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Figure 7 qPCR analysis of genes in the kidney of large yellow croaker under acute cold stress. (A) Akt
(protein kinase B), (B) Fas (tumor necrosis factor receptor superfamily member 6), (C) Gadd45 (growth
arrest and DNA damage-inducible protein), (D) IGF-1 (insulin-like growth factor 1), (E) MDM2 (E3
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down-regulated, white indicates no changes. The results are expressed as mean fold change £ SD (n = 3
fish per treatment). Significant differences were considered at *0.01 <P < 0.05 and **P < 0.01.

Full-size &l DOL: 10.7717/peerj.10532/fig-7

significantly changed in the liver, muscle, and kidney tissues throughout the cold stress
period, while those of Fas and IGF-1, which are related to apoptosis, were also significantly
altered in the heart tissue. One possibility was that there has tissue-dependence of the
large yellow croaker response to acute cold stress. The tissues of liver, muscle and kidney
were more sensitive to acute cold stress, and cell cycle arrest was influenced firstly in these
tissues when the large yellow croaker occur cold stress. And to better adapt to the cold
environment, apoptosis was firstly influenced in heart response to acute cold stress.
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Figure 8 qPCR analysis of genes in the intestine of large yellow croaker under acute cold stress. (A)
Akt (protein kinase B), (B) Fas (tumor necrosis factor receptor superfamily member 6), (C) Gadd45
(growth arrest and DNA damage-inducible protein), (D) IGF-1 (insulin-like growth factor 1), (E) MDM2
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Full-size G4l DOI: 10.7717/peerj.10532/fig-8

As a guardian of the genome, p53 is remarkably sensitive to environmental factors and
is readily activated by multiple stress signals, especially in aquatic organisms in response
to temperature change. Li ef al. (2018) demonstrated that upregulation of p53 expression
in response to low temperature stress can cause tail malformation of the zebrafish. The
molecular mechanism of the p53 pathway in response to cold stress also involves MDM?2
(Wang, 2016; Sun et al., 2019). In this study, the mRNA expression levels of p53 and MDM?2
were significantly increased in the brain tissue of the large yellow croaker after 1 h of acute
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(protein kinase B), (B) Fas (tumor necrosis factor receptor superfamily member 6), (C) Gadd45 (growth
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Full-size &al DOI: 10.7717/peerj.10532/fig-9

cold stress. Although there was no change in the p53 expression profile, MDM?2 expression
was increased at 3 and 6 h. p53 induces the expression of MDM2 and MDM?2 inhibits the
activity and promotes the degradation of p53 in a negative feedback loop (Barak et al., 1993;
Wu et al., 1993; Picksley ¢ Lane, 1993). In the present study, the expression levels of p53

and MDM?2 in response to the same cold stress period differed among tissues. In contrast to
that observed in the brain, muscle, kidney, and intestine, there was no significant change in
p53 mRNA expression in the liver after 1 h of cold stress, while MDM2 mRNA expression
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was significantly upregulated in the liver, heart, and spleen. There results may be due to

the increased expression levels of p53 in the liver (1.29-fold), heart (1.06-fold), and spleen
(1.77-fold), which may have also impacted the expression of MDM?2 after 1 h of cold stress.
In addition, the upregulation of MDM? inhibited p53 expression in the liver at 3 and 6 h.

Akt plays key roles in glucose metabolism, apoptosis, cell proliferation, transcription,
and cell migration. Activated Akt inhibits apoptosis through MDM?2 phosphorylation,
which then inactivates p53 (Song, Ouyang ¢ Bao, 2005; Farrel et al., 2009). Tt has been
reported that decreased mRNA expression of Akt and increased expression of p53 can
cause apoptosis of hepatocytes, suggesting an inverse correlation between these two genes
(Wu et al., 2016). A delicate relationship between Akt and p53 also occurred in the liver of
the large yellow croaker after 1, 3, and 12 h of cold stress. During the cold stress period, the
expression levels of Akt and MDM?2 were significantly increased, whereas p53 expression
was unchanged or decreased (Fig. 2B). The reason would be the up-regulated Akt induced
the increased MDM?2’s expression, and then inactivates p53 in the liver of large yellow
croaker under 1, 3, and 12 h of acute cold stress. In the present study MDM?2 expression
was significantly increased at 12 h, and at other stress time, there have no significant
changes in MDM?2 e xpression (Fig. 3B). It is possible that the increased p53 induced
MDM?2 expression at 12 h, and at 3, 6 h stress time, MDM2’s mRNA expression were
affected by the decreased Akt expression. In addition, it is not clear why MDM?2 expression
has no significant changes while Akt and p53 expression were both increased at 1 h stress
and decreased significantly at 72 h. One possible could be there are other biological pathway
or regulated genes affect the expression of these three genes. Furthermore, the relationships
among Akt, MDM?2, and p53 seemed to be more intricate in different tissues in response
to acute cold stress. Akt mRNA expression in the brain was significantly increased at 1 h,
returned to normal levels from 3 to 6 h, decreased at 12 h, and increased again from 24 to
72 h, while MDM?2 expression was upregulated during most of the cold stress period, but
not at 12 h (Fig. 4B). These results indicated that MDM2 was regulated by Akt as well as
p53.

Fas and p21 are target genes of the p53 pathway. The activation of p21 usually predicts
the beginning of cell cycle arrest, whereas Fas promotes apoptosis. Previous studies have
reported that short pulses of p53 activity usually lead to cell cycle arrest, as the p21
promoter is more sensitive to this signaling output, while sustained p53 signaling usually
leads to changes in Fas expression, resulting in apoptosis. However, the mRNA signal of
P53, either short or sustained, had no impact on the maximal level of the translated p53
protein (Espinosa, Verdun & Emerson, 2003; Gomes & Espinosa, 2010; Morachis, Murawsky
& Emerson, 2010; Kastenhuber ¢» Lowe, 2017). In this study, hepatic mRNA levels of p53
increased by 1.29-fold in response to cold stress at 1 h. Although this change was not
statistically significant, this slight increase in p53 expression could be sufficient to result in
a change in p21 expression. In addition, mRNA expression of p21 was remarkably increased
from 1 to 24 h, even at 72 h, although p53 expression was decreased, while Fas expression
was decreased or remained comparatively unchanged. It is not clear why there were such
differences in the expression patterns of p21 and Fas, as it seems that targeting of p53 by
these genes had no impact on the expression profiles of p53 at 3, 6, 12, 48, and 72 h in the

Qian et al. (2020), PeerdJ, DOI 10.7717/peerj.10532 15/21


https://peerj.com
http://dx.doi.org/10.7717/peerj.10532

Peer

liver tissues. Similar changes in expression levels occurred in the other tissues at certain
times. One possibility could be complex regulatory signals from other regulatory proteins
or pathway which regulate the expression levels of p21 and Fas in response to acute cold
stress. Hence, further studies are warranted to fully understand the molecular mechanism
of the correlation to other unknown regulatory genes with p21 and Fas.

Gadd45 is as an important carcinogenic stress response factor that is sensitive to
physiological and environmental stressors, and usually induced by cell cycle stagnation,
DNA damage, and apoptosis (Liebermann ¢ Hoffman, 2008; Salvador, Brown-Clay &
Fornace, 2013; Peng et al., 2015). It has been observed that Gadd45 can interact with p21,
which activates p53 via p38 to maintain p53 signaling (Smith et al., 1994; Vairapandi et al.,
19965 Azam et al., 2001; Liebermann & Hoffman, 2008). In the present study, Gadd45 was
sensitive to both long- and short-term cold stress, as indicated by the consistently high
expression levels in the liver, intestine, kidney, and muscle at all-time points. Even in
the other tissues (spleen, heart, and gill), Gadd45 mRNA expression was significantly
increased at most time points. Gadd45 is known to prevent DNA damage and promote
DNA repair (Peng et al., 2015). It was possible that DNA damage was induced by acute cold
stress, which resulted in significant increases in Gadd45 expression. In addition, increased
Gadd45 expression may impact p21 expression as mentioned previously.

IGF-1 plays an important role in the growth and proliferation of cellular (Handayaningsih
et al., 2012). The level of IGF-1 mRNA expression of Nile tilapia (Oreochromis niloticus)
were significantly increased when increased water temperature (VeraCruz et al., 2006). In
our study, IGF-1 mRNA expression were decreased significantly in muscle of the large
yellow croaker at 1, 3, 24, and 72 h acute cold stress, and in the other except spleen, it has
no regularities between IGF-1 expression with stress time. We didn’t know why there were
such changes in IGF-1 expression. One possibility could be there were other regulation
protein influence this gene expression in these tissues of the large yellow croaker under
acute cold stress. In spleen, the expression of IGF-1 were increased significantly at 1 to 24
h, but significantly decreased at 48 and 72 h acute cold stress. The possible reason is that
there were other regulation genes induce the IGF-1 expression for compensatory growth
of spleen cells at 1 to 24 h acute cold stress, and at 48 to 72 h, it maybe has beyond the
tolerate cold stress time and resulted in the decrease of IGF-1 expression.

CONCLUSION

The results of the present study indicated that genes involved in the p53 signaling pathway
were largely affected by acute cold stress. There were significant changes in the mRNA
expression levels of Akt, MDM2, p53, p21, Gadd45, Fas, and IGF-1 in the liver, brain,
muscle, gill, kidney, intestine, heart, and spleen in response to acute cold stress. p53 target
p21 and Gadd45, which are involved with cell cycle arrest and were more sensitive to
cold stress than Fas. mRNA expression of Gadd45, which is involved in DNA repair, was
significantly increased in most of the studied tissues (liver, muscle, kidney, and intestine) in
response to cold stress. The results of this study are in agreement with those of prior studies,
which reported that genes involved in the p53 signaling pathway could be affected by acute
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cold stress. However, further studies are needed to elucidate the molecular mechanisms of
genes in the p53 signaling pathway that are activated by low temperature stress.

Abbreviations

p53 tumor protein p53

Akt protein kinase B

IGF-1 insulin-like growth factor 1

CytC cytochrome ¢

Apaf-1 apoptotic protease-activating factor

CASPS8 caspase 8

CHK1 serine/threonine-protein kinase

Siah E3 ubiquitin-protein ligase SIAH1

Bax apoptosis regulator BAX

Fas tumor necrosis factor receptor superfamily member 6
PIDD leucine-rich repeats and death domain-containing protein
p21 cyclin-dependent kinase inhibitor 1A

CDK4/6 cyclin-dependent kinase 4/6
Gadd45 growth arrest and DNA damage-inducible protein

P53R2 ribonucleoside-diphosphate reductase subunit M2

Sestrins sestrin 1/3

PAI plasminogen activator inhibitor 1

BAI-1 adhesion G protein-coupled receptor Bl

PTEN phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase and dual-specificity
protein phosphatase PTEN

TSC2 tuberous sclerosis 2

MDM2 E3 ubiquitin-protein ligase mdm2

Siah-1 E3 ubiquitin-protein ligase STAH1

CyclinG  cyclin G1
PIRH-2 RING finger and CHY zinc finger domain-containing protein 1
Cop-1 E3 ubiquitin-protein ligase RFWD2
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