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The most accepted killing model for the Permian-Triassic mass extinction (PTME)
postulates that massive volcanic eruption (i.e. the Siberian Traps LIP) to geologically
rapid global warming, acid rain and ocean anoxia. On land, habitable zones were
drastically reduced, due to the combined effects of heating, drought and acid rains. This
hyperthermal had severe effects also on the paleobiogeography of several groups of
organisms. Among those, the tetrangds, whose geographical distribution across the end-
Permian mass extinction (EPME) vQ the subject of controversy of a number@'ecent
papers. We here describe and interpret a new Early Triassic (?0lenekian) archosaur track
assemblage from the Gardetta Plateau (Briangonnais, Western Alps, Italy) which, at the
Permian-Triassic boundary, was placed at about 11° North. The tracks, both arranged in
trackways and documented by single, well-preserved imprints, are assigned to
Isochirotherium gardettae ichnosp. nov., and are here interpreted as produced by a non-
archosaurian archosauriform (erytrosuchid?) trackmaker. This new discovery provides
further evidence for the presence of archosauriformes at low latitudes during the Early
Triassic epoch, supporting a model in which the PTME did not completely vacate low-
latitude lands from tetrapods that therefore would have been able to cope with the
extreme hot temperatures of Pangaea mainland.
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ABSTRACT

The most accepted killing model for the Permian-Triassic mass extinction (PTME) postulates
that massive volcanic eruption (i.e. the Siberian Traps LIP) led to geologically rapid global
warming, acid rain and ocean anoxia. On land, habitable zones were drastically reduced, due to
the combined effects of heating, drought and acid rains. This hyperthermal had severe effects
also on the paleobiogeography of several groups of organisms. Among those, the tetrapods,
whose geographical distribution across the end-Permian mass extinction (EPME) was the subject
of controversy of a number of recent papers. We here describe and interpret a new Early Triassic
(?Olenekian) archosaur track assemblage from the Gardetta Plateau (Briangonnais, Western
Alps, Italy) which, at the Permian-Triassic boundary, was placed at about 11° North. The tracks,
both arranged in trackways and documented by single, well-preserved imprints, are assigned to
Isochirotherium gardettae ichnosp. nov., and are here interpreted as produced by a non-
archosaurian archosauriform (erytrosuchid?) trackmaker. This new discovery provides further
evidence for the presence of archosauriformes at low latitudes during the Early Triassic epoch,
supporting a model in which the PTME did not completely vacate low-latitude lands from
tetrapods that therefore would have been able to cope with the extreme hot temperatures of

Pangaea mainland.

INTRODUCTION
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The Permian-Triassic mass extinction (PTME) was the most severe biotic crisis of all times
(Erwin, 1993), eliminating > 90% of marine and terrestrial species (Erwin, 1993; Song et al.,
2013, 2015). After the mass extinction, totally new clades emerged, which include decapods and
marine reptiles in the oceans and new tetrapods on land (Chen and Benton, 2012). In the last
decade different physical environmental shocks have been identified as possible triggers for the
huge crisis, which include increased atmospheric CO, concentrations, global warming, acid rain,
ocean anoxia, ocean acidification and hypercapnia (Chen and Benton, 2012; Benton, 2018). The
most accepted killing model (e.g. Benton & Twitchett, 2003; Chen & Benton, 2012; Benton &
Newell, 2014; Shen et al., 2019) postulates an initial megascale eruption (more than 1,000
Gigatonnes of erupted lava, see Grasby et al., 2011), that released consistent amount of sulphate
aerosols and methane from clathrate reservoirs (see Berner, 2002), which led to global warming
and acid rain, causing a generalized plant die-offs and thus intensive erosion of the soil (Wignall,
2001; Benton, 2003, 2018; Benton & Twitchett, 2003; Sephton et al., 2005; Knoll et al., 2007).
On land, habitable zones were drastically reduced, due to the combination of extreme heat,
drought and acid rains, which caused progressive loss of soil and forests and had direct impact
on lacustrine organisms and any land-dwelling animal (Benton & Newell, 2014).

According to several authors (Joachimski et al., 2012; Sun et al., 2012; Schobben et al., 2014;
Song et al., 2015) the intense global warming started at the extinction horizon as testified in the
Meishan section (South China), and then continued in the Early Triassic, very likely with the
release of methane from deep ocean sediments and coals that triggered the process, and the
release of additional greenhouse gasses by interactions of the Siberian traps with local
permafrost soils, limestones, and other deposits rich in organic matter (e.g. Racki, 2003; Racki &

Wignall, 2005; Retallack & Jahren, 2008; Grasby et al., 2011).

Peer] reviewing PDF | (2020:08:51782:0:1:NEW 10 Aug 2020)


Heitor
Highlight

Heitor
Sticky Note
gases


PeerJ

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

The hyperthermal had severe effects also on the paleobiogeographic patterns. In the last years
the distribution of land tetrapods across the PTME was discussed by a number of studies which
however suggested different scenarios. By compiling literature evidence on the main skeletal
findings, Sun et al. (2012) suggested that, in the Early Triassic, terrestrial vertebrates totally
vacated the equatorial belt, the so-called ‘vertebrate equatorial-gap’, as a consequence of the
extreme hot temperatures. More recently, Bernardi et al. (2015, 2018) reviewed the Late@
Permian-Early Triassic terrestrial tetrapod record integrating skeletal and track data and
concluded that tetrapod geographic distribution was much wider than previously suggested. In
the Early Triassic it included also the low latitudes, though polarward dispersals were detected in
the Early Triassic and possibly linked to the development of super-hot temperatures in the
equatorial belt (Bernardi et al., 2018). Fossil track evidence, in particular, was key in denying the
existence of an ‘equatorial gap’ (Bernardi et al., 2018).

Archosaur tracks and trackways are in fact well-known from Lower to Middle Triassic
siliciclastic and carbonate sediments of the Upper Buntsandstein and Lower Muschelkalk (late
Olenekian-early Anisian) of Germany (Haubold, 1971a, 1971b; Klein & Haubold, 2007), the
Lower Triassic of the Holy Cross Mountains in Poland (Klein & Niedzwiedski, 2012), the
Middle Triassic of Bourgogne (Gand, 1979), Massif Central (Demathieu, 1970) and Ardeche in
France (Courel & Demathieu, 1976), the Iberian Range in Spain (Fortuny et al., 2011; Diaz-
Martinez, et al., 2015) and Sardinia in Italy (Citton et al., 2020). Further sites, often with
identical ichnotaxa and ichnoassemblages, are known from the Lower to Middle Triassic of
Great Britain (King et al., 2005), North American southwest (Klein & Lucas, 2010), Argentina
(Melchor & De Valais, 2006), Africa (Klein et al., 2011) and southern China (Xing et al., 2013).

In the Alps, chirotherian footprints were described from the Lower to Middle Triassic of the

=
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Dolomites, Piedmont and Ligurian Alps in Italy (Avanzini & Mietto, 2008; Petti et al., 2013;
Santi et al., 2015), Aar Massif in eastern Switzerland (Feldmann et al., 2009; Klein et al., 2016)
and the Aiguilles Rouges Massif (Western Alps), on the border between Switzerland and France
(Demathieu & Weidmann, 1982; Avanzini & Cavin, 2009; Cavin et al., 2012; Klein et al., 2016).

We here describe and interpret a new archosaur track assemblage from the Gardetta Plateau
(Western Alps, south-western Piedmont, Italy; Fig. 1) that was analyzed in two different field
works, during the summer 2009 and in the autumn 2017-2018.

Tracks are preserved on two distinct track surfaces, belonging to the same stratigraphic
horizon. Some of them are badly preserved but distinct trackways, up to 3 m long, can be
recognized together with other exceptionally preserved isolated tracks showing clear
morphological details of the trackmaker’s autopodium.

This discovery provides reliable evidence of the presence of archosauriforms in the
Briangonnais domain during the Early Triassic, adding further support to the occurrence of
terrestrial tetrapods at low latitudes soon after the PTME (Bernardi et al., 2015; 2018) and well-

before a full land ecosystem recovery.

MATERIALS AND METHODS

All the specimens were identified in the same outcrop, located about 1 km SE of the Gardetta

Plateau, close to Pianezza creek (44°24'5.75"N; 7° 1'45.29"E; Canosio Municipality, Cuneo

Province, NW Italy; Fig. 1).
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Most of the footprints are preserved as negative epichnia (concave epirelief) and were left in
situ in the field. The footprints were discovered by EC and MP in summer 2008. A surface of
about 10-15 m? was mapped a first time in 2009 by HF and then in 2017 by FP and HF. An
exceptionally preserved trackway, consisting of three large pes and manus imprints, was then
discovered during the 2017 and 2018 field works by EM and FP, about 10 m higher up on the
same outcropping horizon. Tracks outlines were drawn on transparency acetate film and then
digitized by a vector-based drawing software (Adobe Illustrator ©). Additional footprints were
collected by the authors and hikers from loose sandstone slabs in the creek below the track
surfaces. These isolated and usually fragmentary footprints are preserved both as concave
epirelief and well-preserved convex epirelief, the latter being preserved in the basalmost level of
the sandstone bed which overlies the track layer.

Close-range photogrammetry was used to document tracks and obtain three-dimensional
model of the best-preserved ones (Petti et al., 2008; Remondino et al., 2010; Mallison & Wings,
2014). The data processing phase was performed using Agisoft PhotoScan ® Professional
software, following the procedure indicated by Mallison & Wings (2014). In a second phase, the
software Surfer®14 (GoldenSoftware, 2002), was used to convert elevation points to contour
lines and to produce color coded maps of the studied material.

The obtained images are ideal for both precisely measure standard ichological parameters
(Haubold, 1971b; Leonardi, 1987) and for recognizing anatomy related morphologies, therefore
for the reconstruction of the trackmaker’s autopodial osteology.

Trackmaker identification was carried out employing three different and integrated
methodological approaches: 1) Synapomorphy-based correlation (Olsen, 1995; Carrano &

Wilson, 2001); ii) Phenetic correlation (Carrano & Wilson, 2001) and iii) Coincidence
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correlation (Carrano & Wilson, 2001). The synapomorphy-based method focuses on the
identification of osteologic-derived character states in the footprints that result from the
impression of synapomorphic characters in the trackmaker autopodia (see Olsen et al., 1998;
Carrano & Wilson, 2001; Wilson, 2005; Romano et al., 2015). The phenetic correlation is
closely linked to ichnotaxonomy and derives from an accurate description of the footprint and
the identification of the trackmaker through the recognition of an affinity between tracks and
limbs osteology (Carrano & Wilson, 2001; Wilson, 2005). The coincidence correlation is usually
adopted to refine trackmaker identification and is based on supplemental data including
geological age, geographic provenance, local faunal composition and distributions, and

abundances of skeletal taxa and ichnotaxa (Carrano & Wilson, 2001).

GEOLOGICAL FRAMEWORK

The Gardetta Plateau - Preit valley area is located in the southern part of the Western Alps
(Fig. 1). It encompasses the Sautron, Rouchouze, Rocca Peroni tectonic units and the Gardetta
deformation unit (sensu d’Atri et al., 2016) also known as “bande siliceuse de la Gardetta”
(Gidon, 1972).These tectonic units pertain to the Briangonnais Domain (Gidon, 1958a, 1958b,
1972; Schmid et al., 2004, 2017) and in particular to the External Briangonnais Domain which is
characterized by very low grade to anchizone metamorphism (d’Atri et al., 2016).

The upper Permian-Mesozoic sedimentary succession varies considerably within the
Briangonnais Domain s./. (Briangonnais Domain s.s. and Ligurian Briangonnais, Decarlis &

Lualdi, 2009; Fig. 2) due to the slightly different paleogeographic positions of these sectors (see
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159 Decarlis et al., 2013 for a review). The outcropping lithostratigraphic units, even if can be

160 correlated across the distinct domains, display different thickness, vertical/lateral relationships
161 and hiatuses. These differences led authors to adopt a multitude of official and unofficial names
162  for the lithostratigraphic units. Despite these minor differences, the late Permian—Early Triassic
163 sedimentation in the whole Briangonnais domain s.l. testifies to the evolution of a continental
164 margin affected by extensional tectonics. The Briangconnais domain was positioned north of the
165 westernmost sector of the Palaeotethys, in the western continental termination of the Meliata
166 oceanic back-arc basin (Ziegler & Stampfli, 2001; Decarlis et al., 2013). Adopting the

167 paleolatitude calculator developed by Van Hinsbergen et al. (2015) (model version 2.1) and

168 using the Global Apparent Polar Wander Path of Torsvik et al. (2012) as paleomagnetic

169 reference frame, the Early Triassic (250 Ma) palaeolatitude estimate for the Southern

170 Briangonnais Domain is 11.8 N.

171 In the study area the volcano-sedimentary succession starts with upper Carboniferous -

172 Permian volcanic rocks (andesitic lavas followed by rhyolites and rhyolitic ignimbrites)

173  unconformably overlain by upper Permian-Lower Triassic siliciclastic continental-to-transitional
174  deposits (the so called “semelle silicieuse” of French Authors). In particular these deposits are
175 characterized by basal coarse grained conglomerates and quartz-conglomerates, named locally
176  “Verrucano Brianzonese”, (Carraro et al., 1970; Cassinis et al., 2018) that evolve upward into
177 quartz-arenites and quartz-siltites of the “Werfenian quartzites” (Fig. 2; Gidon, 1958b; Malaroda,
178 1970; Megard-Galli & Baud, 1977; Costamagna et al., 2002; Costamagna, 2013). The

179 siliciclastic sequence indicate deposition in an alluvial environment characterized by sandy

180 braided fluvial system fed by the residual Variscan relieves (Costamagna, 2013). In the

181 southernmost part of the Briangonnais domain (External Ligurian Briangonnais Domain,
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Vanossi, 1974; 1991; Bertok et al., 2012) these latter lithostratigraphic units are known as
“Scytian quartzites” or “Ponte di Nava Quarzites” (Fig. 2; Decarlis et al., 2013, 2015). Similar to
the siliciclastic sequence of the Briangonnais Domain s.s., the “Ponte di Nava Quarzites”
originated from the dismantling and reworking of the Paleozoic igneous and metamorphic
basement.

The quartz-arenites can be topped either by greenish pelites (known as “Case Valmarenca
Pelites” in the Ligurian Briangonnais, Vanossi 1974; 1991), that have been interpreted as mudflat
deposits, or by a thin and discontinuous interval of cavernous dolostones called “Cargneules
Inférieures” representing the sedimentation in an arid environment as an evaporitic sabkha (Fig.
2). According to Lualdi & Seno (1984), in the Ligurian Briangonnais Zone the “Case
Valmarenca Pelites” could be laterally equivalent to the “Cargneules inférieures”.

The continental succession and/or the evaporitic deposits are followed by Middle Triassic
shallow water carbonates of the “couverture carbonatée” (Gidon, 1958b; Megard-Galli & Baud,
1977; Costamagna et al., 2002) comprising a lower calcareous complex (Costa Losera Fm,
Lualdi and Bianchi, 1990, corresponding to the e St. Triphon Formation of the classic
Briangonnais Domain) and an upper dolomitic complex (San Pietro dei Monti Fm, Vanossi,
1969). These carbonate deposits testify the sedimentation in a subsiding carbonate ramp.

The lower calcareous complex (Fig. 2) begins with a characteristic facies named “Marbres
Phylliteux” by French Authors made of greyish and brownish fine-grained limestones, (lower to
upper Anisian) with sericite, muscovite, chlorite laminated levels. Bedding can be locally
masked by pervasive and intense bioturbation (“Calcaires Vermiculés” tacies) assigned to the

ichnogenus Rhizocorallium. The basal complex ends with varicolored pelites, interpreted as
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cinerites (upper Anisian in age) by Caby & Galli (1964), recognizable throughout the whole
Briangonnais Domain.

The upper dolomitic complex (Fig. 2) is constituted by massive to well-bedded dolostones
followed by cyclically arranged carbonates (“Calcaires rubanés” — upper Anisian — upper
Ladinian; Gidon, 1958b; Megard-Galli & Baud, 1977; Costamagna et al., 2002; Decarlis &
Lualdi, 2009) characterized by subtidal crinoidal wackestones, intertidal oolitic limestones and
supratidal dolomitic mudstones capped by reddish paleosols, that testify shallowing-upward
cycles. The dolomitic succession includes dark limestones, dark fossiliferous and/or oolithic
dolostones, meter-thick autoclastic breccias and gypsum—anhydrite pseudomorphs witnesses of
major emersion events. These lithofacies, dated to the uppermost Ladinian, are known in the
different Brianconnais domains as “Dolomies blanches” or “Dolomies grises” or “Couches a C.

goldfussi” or “Complexe schisto-dolomitique basal”.

THE PIANEZZA STRATIGRAPHIC SUCCESSION

In the framework of the abovementioned stratigraphic setting the footprint-bearing level is
located in the Pianezza area along the track connecting Colle del Preit (2100 m a.s.l.) to Grange
Isoardi (Pianezza area, 2275 m a.s.l.) (Fig. 2). The outcrop is located along the SW flank of a
narrow antiformal anticline belonging to the Sautron Tectonic Unit which overthrusts the
Rouchouze Tectonic Unit. Here the volcano-stratigraphic succession begins by meta-andesites
and andesitic schists pertaining to the upper Carboniferous-Permian volcanic complex. The

sedimentary succession continues upward with a thin and discontinuous (up to 1 meter) level of
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graphitic schists, deriving from the weathering of the volcanic basement (Lorenzoni & Zanettin,
1958) and is then followed by up to 100 meters of quartz-conglomerates (“Verrucano
Brianzonese”) and by fine to very fine quartz-arenite and quartz-siltite with ripple marks and
cross bedding (“Werfenian quartzites™). The track-bearing horizon occurs at the top of the latter
clastic interval. The succession continues upward with 15 meters of gypsum/anhydrite deposits
of the lower cargneule. In the Pianezza area the Middle Triassic “couverture carbonatée” is only

represented in the north-eastern flank of Sautron Unit anticline.

CHRONOSTRATIGRAPHIC FRAMEWORK OF THE STUDY AREA

The sedimentary rocks belonging to the quartz-rich clastic succession does not allow precise
dating because of the lack of biostratigraphic markers as commonly happen for these kind of
deposits. They are here referred to the upper Permian-Lower Triassic on the base of their
stratigraphic position in the Sautron Unit, similar to that of the well-comparable quartz-
conglomerate and quartzarenite rocks occurring not only in the Briangonnais Domain, but also in
the Southern Alps, Sardinia and Provence. For this reason, in order to constrain the age of the
track-bearing horizon, some considerations are required: 1) the coarse quartz-conglomerates
(“Verrucano Brianzonese”) are commonly referred to the late Permian-earliest Triassic (Gidon,
1958b; Carraro et al., 1970; Megard-Galli & Baud, 1977; Decarlis & Lualdi, 2009); ii) the Lower
Triassic age can be hypothesized considering the occurrence of Estheria minuta Alberti and
Myacites fassaensis Bittner within the “Ponte di Nava Quarzites” (Decarlis & Lualdi, 2009); 1ii)

the “lower cargneule” unit and its lateral equivalent “Case Val Marenca Pelites” are generally
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attributed to the late Early Triassic (Gidon, 1958b; Carraro et al., 1970; Megard-Galli & Baud,
1977, Decarlis & Lualdi, 2009); iv) the lower part of “Marbres Phylliteux” are considered early
Anisian in age, on the basis of the occurrence of Rhizocorallium, that is regarded to be an early
Anisian marker all over the Tethyan realm (Baud, 1976); v) an early Anisian age for the base of
the lower calcareous complex (“Marbres Phylliteux” and Costa Losera Fm.) is also suggested by
the occurrence of Dasycladacean algae and crinoidal remains (Dadocrinus sp.; Carraro et al.,
1970); vi) In the northern Briangonnais of southwestern Switzerland a find of the ammonoid
Beyrichites cadoricus in the upper part of the St-Triphon Formation indicate a middle Anisian
age (Baud et al., 2016).

Additionally, it is worth mentioning that both in the Geological Map of the Argentera Massif
(Malaroda, 1970; Carraro et al., 1970) and in the Geological Map of France at the scale 1: 50.000
(Sheet 896, Larche; Gidon, 1978) the studied outcrop was attributed to Lower Triassic. All the
above reported data thus point to a probable attribution of the trampled horizon to the late Early

Triassic.

SYSTEMATIC ICHNOLOGY

Most footprints are preserved as natural molds (concave epirelief) on top of a 3-4 cm thick
bed of fine sandstone. The tracks are shallow, less than 2 cm deep, but most of them are cut by
small-scale tectonic cracks/fissures and strongly weathered. Two possible trackways with lengths
of 4-5 m were identified on a track surface. Only one isolated track was visible on the

underlying sandstone bed, also preserved as concave epirelief. Three solitary small footprints,
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preserved as convex epirelief of the directly overlying sandstone bed, were collected from loose
slabs. The upper surface of this 1-2 c¢cm thick sandstone bed is marked by symmetric wave
ripples, exposed on a spectacular bedding plane (Fig. 3).

An exceptionally preserved trackway, made of three consecutive manus-pes sets was found on
another surface, belonging to the same stratigraphic horizon, upstream of the previously
described ones (Fig. 4). The general features of the herein studied ichnoassemblage are typical

for chirotherian tracks (Haubold & Klein, 2002).

Ichnogenus Chirotherium Kaup, 1835

Type ichnospecies: Chirotherium barthii Kaup, 1835

Chirotherium isp.
(Figs 3, 7)

Referred specimens: two trackways preserved as concave epirelief (GT-1 and GT-2). GT-1
consists of four clear and two weakly impressed imprints, arranged in a 2.10 m-long trackway in
the lower part of the outcrop, just 2 meters above the creek level (Fig. 3). Its direction on the
steep bedding plane points upwards to southeast. Trackway GT-2 is 2.40-m-long, is preserved in
the lower part of the same bedding plane, about 2 meters above the creek level, running from

northwest to southeast.

Description: pentadactyl and semi-digitigrade pes imprint. Pes is longer than wide, (Foot

Length [FL] =13 to 16 cm; Foot Width [FW] = 8-10 cm; FL/FW = 1.6 to 2.0) with digit group

Peer] reviewing PDF | (2020:08:51782:0:1:NEW 10 Aug 2020)


Heitor
Realce
were them housed in some institution? If yes, provide where.


PeerJ

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

II-IV roughly asymmetrical. Pedal digit impressions gradually increase from I to IV, with II sub-
equal or shorter than digit IV; digit III is the longest. In the best-preserved track (GT1-3; Figs 3,
7), digit I is pointed and placed posteriorly with respect to digit group II-IV. Digit V is oval and
tapers distally; it is positioned posteriorly and laterally to digit I-IV and directed antero-laterally.
No digital pad impressions can be observed on digit II-IV. Digit V shows a large rounded pad
impression and a possible sub-triangular shaped claw mark. Manus tracks are absent or faintly
preserved as small semi-circular imprints, placed in front of the pedal footprints. An isolated
tetradactyl imprints, measuring 4.5 cm in length and 7 cm in width, and another isolated circular
pentadactyl imprint 5.5 cm long are interpreted as possible manus imprints.

In the trackway the oblique pace varies between 26 and 41 cm, with a mean value of 36 cm.

The pes pace angulation varies between 145° and 165°, with a mean value of 157°.

Discussion: the ichnogenus Chirotherium with its holotype Chirotherium barthii, was
described by Kaup (1835) on trackways from the “Thiiringischer Chirotheriensandstein” (Lower-
Middle Triassic) of the Thuringia region (Germany). The here described material, even if not
perfectly preserved, retains some diagnostic features of the ichnogenus Chirotherium, such as the
oval morphology and the position of digit V (slightly behind digit group II-IV), and the relative
digit length of group II-1V, with digit IV longer or sub-equal to digit II. Pes pace angulation is
also similar to the values to date reported for the ichnogenus (160°-170°). Chirotherium barthii
(Figs 7e, 7f) shows clear circular pads on digit group II-IV and digit impressions are broader
than in the studied specimens. In C. barthii, as well as in C. rex, C. moquinense and C. vorbachi
(Fig. 7h), digits I-IV are splayed whereas in the GT-1 and GT-2 trackways, pedal digits outlines

are closely arranged with only digit I medially spread. Digits II-IV seems to be almost parallel to
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each other and the digit pattern resemble that of the ichnospecies C. sickleri Kaup, 1835 (Figs 7i,
71, 7m) with digit I forming a narrow group with digits II, III and I'V. Nevertheless, digit IV,
though slightly shorter than III, is not much longer than II as observed in most of the specimens
assigned to C. sickleri. Unfortunately, the bad preservation of pes imprints in GT-1 and GT-2

trackways preclude any accurate ichnospecific assignment.

Ichnogenus Isochirotherium Haubold, 1971a (Figs 4, 5, 8)

Type ichnospescies: Isochirotherium soergeli (Haubold, 1967).

Isochirotherium gardettae ichnosp. nov.

Derivatio nominis: from the Gardetta plateau, type locality of the ichnospecies.

Type-level: “Werfenian quartzites”, Lower Triassic.

Referred specimens: a trackway made of three well-preserved and consecutive manus-pes

couples (GT-7; Fig. 4) not exceeding 2.20 m across. Another possible isolated track (GT-3)

partially preserved in the lower track surface.

Diagnosis: chirotherian track with pentadactyl pes and small and tetradactyl manus imprint

and pes digit IV noticeably shorter than II; pes digit group I-IV slightly longer than wide, pes

digit V with large ovoid metatarsal pad and a reduced phalangeal portion. Pes length ranging
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from 28 to 33 cm; cross axis equal to 90°. Trackway very narrow, pace angulation near 165°, and

ratio of stride to pes length is 4.3.

Description: pentadactyl and semi-plantigrade pes imprint, longer than wide (FL =33.4 cm;
FW =19.2 cm; FL/FW = 1.74). Digit III is the longest. It is slightly longer than II, whereas digit
IV is shorter than II. Digit I is the shortest and is thinner than those of digit group II-IV. The total
divarication I-1V is 22°; the angle between digit I and II is 8° and is equal to that between II and
III but larger than II-IV (6°). Cross axis is nearly equal to 90°. Digit impressions are robust and
pointed showing large sub-triangular claw marks. Two phalangeal pad impressions are present
on each digit of group I-IV. The metatarsal-phalangeal portion is proximally arched and could be
separated from digit V by a gap, or joined with it through a convex area, running from the
basalmost portion of digit I to the medial digit V. Digit V shows a large oval impression joined
to a rounded phalangeal-ungual portion, laterally spread out. In GT-7-2 and GT-7-3, pes digit V
has a sub-triangular shape with a wider inner margin, almost aligned with the medial margin of
digit I. Length of pes digits are: I) 118 mm; II) 173 mm; III) 186 mm; IV) 136 mm; V) 167 mm.

The manus is small, tetradactyl and digitigrade, wider than long (FL = 8.04 cm; FW = 13 cm;
FL/FW = 0.62) and is placed in front of the pes. Digits are short and pointed. Digits II and III
have nearly equal length and are longer than digits I and IV; the latter is moderately spread
outward. Digit IV is possibly the shortest. Length of manus digits are: 1) 49 mm; II) 74 mm; III)
68 mm; [V) 43 mm.

The trackway, made by three consecutive manus-pes sets, shows a clear narrow gait (pace
angulation 164°). Oblique pace is 59 cm, whereas double pace is 119 cm across. Manus-pes

couples turned slightly outward with respect to the midline (from 10° to 15° on average).
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Discussion: the ichnogenus Isochirotherium was erected by Haubold (1971a); its type
ichnospecies 1. soergeli (Haubold, 1967) comes, as for Chirotherium barthii, from the
“Thiiringischer Chirotheriensandstein” (Lower-Middle Triassic) of the Thuringia region
(Germany). The ichnogenus is reported also from the Middle Triassic of Great Britain (Tresise &
Sarjeant, 1997; King et al., 2005), from the Lower—Middle Triassic of North American
Southwest (Peabody, 1948; Klein & Lucas, 2010), the Aiguilles Rouges Massif (Western Alps)
on the border between Switzerland and France (Avanzini & Cavin, 2009; Klein et al., 2016) and
from the Middle Triassic of North-East Italy (Avanzini & Leonardi, 2002).

The main diagnostic features of this ichnogenus, retained by our specimens are: 1) the relative
digit length, with digit II longer than IV and shorter than III; ii) a marked heteropodys; iii) the pes
pace angulation around 165°; iv) the weakly impressed distal portion of digit V and v) pes-
manus couples outward rotation of about 15°. However, the studied trackway shows clear
difference to most of the ichnospecies known to date. For example, the type ichnospecies /.
soergeli Haubold, 1967 (Fig. 80), has smaller absolute dimensions, thinner pes digit marks and,
most importantly, display five clear digit impressions in the manus contrary to GT-7, where only
tetradactyl manus were observed.

Isochirotherium hessbergense Haubold, 1971a (Fig. 8m) has also a pentadactyl manus and is
clearly different from the material described in this paper for its digit group I-I'V longer than
wider and for the relative pes digit length, notably digit I is longer than IV.

Isochirotherium demathieui Haubold, 1971a (Fig. 8n) can be excluded for its pentadactyl

manus and for the shorter distance between manus and pes.
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386 Isochirotherium coltoni Peabody, 1948 (Fig. 8h) and 1. lomasi Baird, 1954 (Fig. 8i) retain
387 much slenderer digit impressions, especially in the pes imprint and most notably have manus
388 tracks more internally placed than in the studied footprints. Interestingly 1. herculis Egerton,

389 1839 (Fig. 8e) has similar dimensions (i.e. FL longer than 30 cm) but can also be excluded for 1)
390 the tridactyl manus; ii) the digit group I-1V slightly wider than longer and iii) the manus imprint
391 position, very close to that of the pes.

392 Isochirotherium marshalli Peabody, 1948 (Fig. 8f) shows similar features such as: 1) the pes
393 digit relative length; ii) the interdigital angles values; iii) the digit group I-IV as longer as wider;
394 iv) the arched metatarsal-phalangeal portion; v) the configuration of digit V whose phalangeal
395 portion is significantly smaller than the ovoidal and possibly tarsal-metatarsal pad. Nevertheless,
396 the assignment to this ichnospecies is precluded by its pentadactyl manus.

397 Isochirotherium inferni Avanzini & Leonardi, 2002 from the Illyrian (late Anisian, Middle
398 Triassic; Fig. 8g) of the Adige Valley (Bolzano, NE Italy) closely resembles the Gardetta

399 specimens for: 1) the arched metatarsal-phalangeal portion; ii) the position of the base of pes digit
400 'V, placed along the axis of digit III; iii) pes digit relative length; iv) cross axis equal to 90° v) pes
401 angulation of about 160°; vi) positive rotation of manus-pes couples respect to the midline (10°-
402 15°). However, pes digits are stouter and the manus is described as pentadactyl (even if in the
403 outline drawing only four digits are clearly appreciable). The tracks referred to Isochirotherium
404  delicatum Courel & Demathieu, 1976 and found in the Anisian-Ladinian deposits of Argentiere
405 (Ardeche, France; Courel & Demathieu, 1976; Courel et al., 1979; Demathieu, 1984; Gand,

406  1978) and Gampempass (Southern Alps, Italy; Avanzini & Lockley, 2002) show less-thick digit
407 impressions and a markedly reduced digits IV and V; the latter is also much more backward

408 positioned if compared with the studied specimens.
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We therefore erect the new ichnospecies Isochirotherium gardettae to describe a new and
well-preserved Isochirotherium trackway that differs from all the other ichnospecies for all the

features listed above.

TRACKMAKER IDENTIFICATION

Grounding on previous studies and new observations Bernardi et al. (2015) showed that
chirotherian footprints, such as Protochirotherium, Chirotherium, Brachychirotherium and
Isochirotherium, can be confidently attributed to archosauriforms, based on the presence of a
digit IV shorter or as long as digit III. Being metatarsal length directly proportionate to digit
length, this assumes that metatarsal IV is shorter than or as long as metatarsal III, a
synapomorphy of the archosauriforms (Nesbitt, 2011). Other characters useful to identify
archosauriforms traces are: 1) the presence of a compact digit group I-IV; ii) a posterolateral
positioned and strongly reduced digit V; ii1) a massive metatarsal-phalangeal region, shorter than
or as long as digit I. However, the first character occurs in archosauriforms and non
archosauromorphs diapsids (Haubold, 1971a, 1971b; Smith & Evans, 1996) whereas the second
is present in archosauriforms, lepidosaurs and basal archosauromorphs (Haubold, 1971a, 1971b;
Evans & Wang, 2005; Gottman-Quesada & Sander, 2009).Other features suggesting an archosaur
affinity for chirotherian footprints (observed also in the here described traces), are narrow
trackways linked to the disposition of limbs under the body, and the presence of small manus
relative to the pes, which indicate a possible early tendency toward bipedal posture and gate (see

Haubold, 1971a, 1971b, 1984, 2006; Klein et al., 2010).
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To reconstruct the hind- and fore-limb autopodial bones, we assumed an arthral position for
the joint articulations within digital pad impressions (Fig. 9a).

In our opinion, the sub-elliptical to pyriform impression behind group -1V in Isochirotherium
could be the result of the coalescence of the impression of the phalangeal-metatarsal portion of
digit V and of a thick fleshy pad beneath the astragalus, the calcaneus and some of the tarsal
bones. Overall, the trackmaker’s pes may have had a semi-plantigrade posture, as evidenced by
the gap between digit group I-IV and digit V, corresponding to the part of the foot held up during
locomotion. The manus has a marked digitigrade posture and its tetradactyly might result by the
fact that manual digit V likely held off the ground during the touch-down and weight bearing
phases (sensu Manning, 2004).

The reconstructions thus obtained shows the following pes and manus phalangeal formulas:
pes 2-3-4-4-1 and manus 1-2-3-3. They are compared with the anterior and posterior limbs of the
main groups of archosauriforms known in the Triassic period (Huene, 1902; Broom, 1903; 1905;
Romer, 1971; Welles, 1947; Young, 1964; Zhang, 1975; Peyer et al., 2008; Ezcurra et al., 2013;
Sookias & Butler, 2013; Trotteyn et al., 2013).

The first considered non-archosaurian archosauriforms groups are Proterosuchidae (Ezcurra et
al., 2013), Proterochampsidae (Trotteyn et al., 2013) and Euparkeriidae (Sookias & Butler,
2013). In all the three representatives Proterosuchus fergusi Broom, 1903 (South Africa,
Induan—?early Olenekian; Fig. 9¢), Chanaresuchus bonapartei Romer, 1971 (Argentina,
Ladinian; Fig. 91) and Euparkeria capensis Broom, 1913 (South Africa, Anisian; Fig. 9h), the IV
metarsal has a length similar or greater than that of the III but the digit II is much shorter than

digit I1I and nearly equal to digit IV, in contrast to what we observe in specimens GT-7-1, GT-7-
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2 and GT-3. No fore- or hind limb bones are known for the Doswelliidae, another clade of non-
archosaurian archosauriforms (Middle-Late Triassic; Sues et al., 2013).

Diedrich (2015) recently attributed the Isochirotherium tracks to Arizonasaurus Welles, 1947,
a member of Poposauroidea (archosaurian archosauriforms) found in the Moenkopi Formation
(Arizona, USA, Anisian,), from the same levels as Isochirotherium tracks. Unfortunately, no
bones of the fore- and hind-limbs are known from Arizonasaurus, as well as from
Ctenosauriscus koeneni (Huene, 1902) (Germany, latest Olenekian), the Lower Triassic
poposauroid arehesaur; and additionally findings are needed to test Diedrich’s hypothesis.

The hind-limb bones are known in Lotosaurus adentus Zhang, 1975 (China, Ladinian; Fig.
9d), another member of Poposauroidea with semi-plantigrade posture. If compared with the
restored autopodium, it is characterized by larger fore-limbs, V digit positioned further forward,
longer metatarsals of digit group I-IV and different digit proportions.

The pedal phalangeal relative length of the rauisuchid archosaur Postosuchus alisonae Peyer
et al., 2008 (USA, Norian; Fig. 9¢); is similar but all the five metatarsals are much longer,
implying a digitigrade posture, as in the reconstruction proposed by Peyer et al. (2008).

Postosuchus kirkpatricki Chatterjee, 1985 (USA, Norian; Fig. 9b), is also characterized by
very long metatarsals and thus excluded as a possible trackmaker. The smaller but complete
skeleton of Ticinosuchus ferox Krebs, 1965 (see Lautenschlager & Desojo, 2011 for a review of
the species) from the uppermost Anisian of Monte San Giorgio (southern Switzerland), shows
long metatarsals and a digit IV longer than digit IT and is commonly considered as the producer
of Chirotherium trackway (Haubold, 1984, 1986).

By contrast, the hind limbs of the non-archosaurian archosauriform clade of Erythrosuchidae

(Ezcurra et al., 2013) are characterized by relative digit length very similar to that outlined for
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Isochirotherium gardettae and a pedal phalangeal formula that is approximately 2-3-4-5-3
(Young, 1964; Cruickshank, 1978; Gower, 1996).

Metatarsals II and III are sub-equal and slightly longer than IV in Erythrosuchus africanus
Broom, 1905 (South Africa, lower Anisian; Fig. 9f. See also Cruickshank, 1978; Gower, 1996).

Metatarsals II and III are the longest in Shansisuchus shansisuchus Young, 1964 (Fig. 9g),
another member of Erythrosuchidae found in upper Anisian deposits of China; S. shansisuchus
also possesses a hook-shaped proximal end of metatarsal V and its relative digit proportion
closely fits that of our individual, but as for E. africanus digit V seems to be too forwardly
positioned. However, digit V impression in /. gardettae likely records only the distal metatarsal
and phalangeal (ungual) portions. During locomotion the former was held off the ground
whereas the latter was likely being retracted due to the presence of a thick fleshy pad beneath
calcaneum and astragalus.

The morphology of the acetabulum and proximal end of the femur in erythrosuchids suggests
a distinctly sprawling gait (Gower, 2003; Ezcurra et al., 2013), that clashes with the narrow
trackway seen in /. gardettae. Nevertheless, the prominence of metatarsal II and III is evidenced
only in non-archosaurian archosauriforms (Gower, 1996) and thus an individual belonging to this
group, possibly a yet unknown taxon and with a more erect stance and characterized by a marked

heteropody, is the most suitable producer (Fig. 10).

BIOCHRONOLOGY AND BIOGEOGRAPHY
The Gardetta ichnoassemblage represented by Chirotherium and Isochirotherium is typical
for terrestrial deposits of the late Olenekian and early Anisian (Klein & Haubold, 2007) and the

Gardetta chirotheriid tracks correlate with the international Chirotherium barthii Assemblage
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Zone of Klein & Lucas (2010a). This biochron is characterized by the occurrence of
Chirotherium and Isochirotherium, but also by two other ichnogenera not present at Gardetta,
Rotodactylus, and Synaptychium. The Chirotherium barthii Assemblage Zone ranges from the
late Early to early Middle Triassic (late Olenekian — early Anisian), and independently confirms
the Early Triassic (?Olenekian) age, derived by stratigraphic correlation with other sections in
the Briangonnais of the Western Alps.

The Gardetta outcrop enlarges also the knowledge on biogeography of archosaurs in the
Lower Triassic of Europe, so far based on archosaur ichnosites discovered in Italy (Val Marenca,
Santi et al., 2015; Sardinia, Citton et al., 2020), Spain (Moncayo and Tagamanent, Diaz-Martinez
& Pérez-Garcia, 2012), Switzerland (Cascade d’Emaney and Vieux Emosson; Cavin et al.,
2012), Austria (Drau Range; Krainer et al., 2012), Germany (Bundsandstein; Klein & Haubold,
2007) and Poland (Widry, Holy Cross Mountains, Klein & Niedzwiedzki, 2012).

Early Triassic erythrosuchid skeletal fossils are known from the late Olenekian of Russia,
South Africa, China and India (see Gower, 2003; Ezcurra et al., 2013, 2019, 2020; Gower et al.,
2014; Ezcurra, 2016). The Gardetta ichnosite testifies the presence of erythrosuchids and more
generally of Archosauriformes at low latitudes (11.8° N) also during the Early Triassic (Fig. 11).
This supports the conclusions of Bernardi et al. (2015, 2018) that Early Triassic ichnosites are
mainly distributed along the tropics, contrasting the pattern described by skeletal findings and the
hypothesis of a low-latitude vacancy of continental tetrapods during or soon after the PTME

(Sun et al., 2012).

Discussion and conclusions
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The Gardetta ichnosite is characterized by archosaur footprints assigned to Chirotherium isp.
and to the new ichnospecies Isochirotherium gardettae ichnosp. nov. They represent the first
record of terrestrial tetrapods in the Briangonnais domain of the Western Alps and expand the
record of archosaur footprints in the Lower Triassic of Central Europe.

The morphological characters of the tracks assigned to Isochirotherium gardettae ichnosp.
nov. suggest a non-archosaurian archosauriform (Erythrosuchidae?) as possible trackmaker
candidate (even though the presence of crown-archosaurs cannot be excluded), thus providing
crucial information about continental tetrapod occurrence in Europe in the Early Triassic. Based
on a phylogenetic dataset made by 108 middle Permian—early Late Triassic species, Ezcurra &
Butler (2015) investigate principal patterns of early archosauromorph biodiversity change across
the Permo-Triassic mass extinction. The study, performed using phylogenetic diversity,
morphological disparity, number of species and rates of phenotypic evolution across 35 million
years of early archosauromorph evolution, indicates consistent phylogenetic diversification of
the clade in the Olenekian. In particular, the basal diversification of main taxa, which include
erythrosuchids, rhynchosaurs and tanystropheids, resulted in significantly high evolutionary
rates, with a diversification interpreted by the authors as a radiative response to vacant ecological
space, made available by the EPME (Ezcurra & Butler, 2015). If the trackmakers’ attribution for
the here described footprints is correct, the material from Gardetta could represent an evidence
from Europe of such radiation, with an archosauromorph fauna composed at least by
?erythrosuchids (Isochirotherium gardettae) and pseudosuchids (Chirotherium isp.). Such clades
as putative trackmaker for the Gardetta traces are well-compatible with an Early Triassic (likely
late Early Triassic) age, considering that the early history of Archosauriformes is represented

essentially by members of Proterosuchidae and Erythrosuchidae (Charig & Reig, 1970;
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Cruickshank, 1972; Charig & Sues, 1976; Gower & Sennikov, 2000; Gower, 2003; Ezcurra et
al., 2013).

Following the huge Permo-Triassic biotic crisis, unfavorable environmental conditions
characterized much of the Early Triassic, testifying one of the slowest recoveries for ecosystems
after an extinction in Earth history. A period between five and nine million years for a full
recovery has been proposed in several contributions (Hallam, 1991; Erwin, 1992, 2001; Payne et
al., 2004, 2011; Algeo et al., 2011; Whiteside & Ward, 2011), inferring a fully restored complex
ecosystems only at the beginning of the Middle Triassic (see Chen & Benton, 2012). Such long
recovery time led to a revolution on both marine and terrestrial ecosystems (Chen & Benton,
2012), with a major influence in the evolution of crucial vertebrates clades in the rest of
Mesozoic and Cenozoic eras (Sepkoski, 1984; Benton, 2010). The recovery period led to the
emergence of totally new groups, with a rapid diversification of several lineages of sauropsid
both on sea and land (Nesbitt et al., 2010; Butler et al., 2011; Gower et al., 2014; Scheyer et al.,
2014; Motani et al., 2015a, 2015b; Peecook et al.,2018). Avemetatarsalians (which include
dinosaurs and pterosaurs) originated in this period (Brusatte et al., 2010; Nesbitt et al., 2010;
Chen & Benton, 2012; Benton et al., 2014), along with the evolution of crucial modern group
ancestors, including crocodiles, lizards, turtles, frogs and mammals. All these aspects highlight
the crucial importance of the Early Triassic in the ecosystems restructuring after the Permo-
Triassic mass extinction.

Retallack et al. (2011) propose that the long recovery from the mass extinction was strongly
influenced by repeated greenhouse crises during the Early Triassic, with consistent negative
excursions in carbon isotope ratios indicating at least five greenhouse crises in the 5 Myr

following the EPME (Induan-Anisian) (see Kidder & Worsley, 2004; Retallack, 2005, 2009,
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2013; Graisby et al., 2011; Retallack et al., 2011; Sun et al., 2012; Chen & Benton, 2012). In this
regard, according to Sun et al. (2012) the entire Early Triassic was characterized by temperatures
consistently in excess with respect to the modern equatorial annual sea surface temperatures
(SSTs), thus exceeding a tolerable threshold for life in both oceans and land. Inferring SSTs
approaching 40°C, according to Sun et al. (2012) the temperature on land very likely fluctuated
to even higher levels, with terrestrial tetrapods generally absent between 30°N and 40°S in the
Early Triassic.

In this framework, and although some uncertainties on the chronological attribution persists,
the Gardetta ichnosite provides important evidence to the low latitude distribution of archosaurus
during the Early Triassic period, soon after the PTME, confirming the pattern described by
Bernardi et al. (2018). In particular, the new discovery provides further evidence for an early
recovery terrestrial ecosystems and the presence at low latitudes of archosauriformes during the
Early Triassic. Such evidences support a model in which the EPME did not completely vacate
low-latitude lands from tetrapods that, therefore would, have been able to cope with the extreme
hot temperatures of Pangaea mainland.

According to Botha and Smith (2006), Archosauromorpha (along with Procolophonomorpha)
could be pre-adapted to extremely arid and hot environment conditions, considering that extant
reptiles rarely drink water, excrete quite dry fecal pellets, and are characterized by solute-linked
water reabsorption mechanisms, water-resistant integument and low ventilation rates (Withers,
1992; Pough et al., 1996). Such physiological aspects and water conserving mechanisms,
probably suggest that the archosaurus response to the extreme hot condition of the Early Triassic

(Benton, 2018) have probably been much more efficient and plastic than previously thought, and
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did not necessarily imply massive dispersal towards higher latitudes as previously suggested
(Sun et al., 2012).

Different anatomical features described above indicate a-pessible ?Erythrosuchids as the most
probable trackmaker for the new described ichnospecies Isochirotherium gardettae. This
attribution can also be supported by track parameters such a narrow trackway and high pace
angulation, which indicate a more upright posture with respect to a classic plesiomorphic
sprawling gait (see Kubo & Benton, 2007). In particular, according to Ezcurra et al. (2013),
erythrosuchids were heavily built and characterized by a probably less sprawling gait, when
compared to the condition observed in proterosuchids. The narrow trackway, along with
consistently high pace angulation in the Gardetta material, also confirm the statement by Kubo &
Benton (2009) that, even if proterosuchids and erythrosuchids are traditionally considered as
sprawlers, ichnological evidences indicate that more derived erect-limbed archosaurian already
evolved in the Early Triassic; the latter conclusion is also supported on the base of ghost ranges
from cladograms (Sereno, 1991; Benton, 1999); and fragmentary materials from Russia (Gower
& Sennikov, 2000).

To date, Erythrosuchids are totally unknown from North America and Europe, being
described only from Russia, South Africa, China and India (see Gower, 2003; Ezcurra et al.,
2013, 2019, 2020; Gower et al., 2014; Ezcurra, 2016). The material from the Lower Triassic
deposits of Gardetta thus could represent the first occurrence of the clade in Europe, although, as
already pointed out, the attribution is for the moment only tentative; and new studies are

underway to better constrain the identity of the zoological trackmaker.
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The planned future excavations in the Gardetta ichnosite will hopefully provide additional
data to improve our knowledge of the evolutionary history of Archosauriformes in the aftermath

of the EPME.
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Fig. 1 - Geologic map of the Pianezza area. In the upper row the location of Maira Valley and
Gardetta-Pianezza area. For the geologic map: 1= volcanic complex and graphitic schist
(upper Carboniferous - Permian); 2= conglomerate, 3= quartz-conglomerate, and 4= quartz-
arenite and quartz-siltite of the quartzitic complex (upper Permian - early Lower Triassic); 5=
lower carniole complex (late Lower Triassic); 6= lower calcareous complex (lower Anisian -
early upper Ladinian); 7= upper dolomitic complex (upper Ladinian); 8= lakes and peat bog;

9= faults; 10= location of the footprint site; in white the detritic cover and moraines.

Fig. 2 - Correlation scheme among the Briangonnais s.s., the Ligurian Briangonnais, from De
Carlis & Lualdi, 1990 redrawn and modified. PNQ: “Ponte di Nava Quartzites”, CVP: Case

Val Marenca Pelites. The footprint silohuette marks the position of the track-bearing horizon.

Fig. 3 — a) Panoramic view of the track surface with the line-drawing of the chirotherian
trackways. In pale yellow the above-lying bed characterized by symmetric wave ripples; b)

Detailed view of the GT-1 and GT-2 trackways, highlighted with the black colour.

Fig. 4 — Isochirotherium gardettae ichnosp. nov. The GT-7 trackway, made of three consecutive
manus-pes couples, is here highlighted by the red chalk and preserved in the upper track-

bearing surface. Scale bar: 13 cm.

Fig. 5 — a) Isochirotherium gardettae ichnosp. nov. Colour-coded and contour line image of the

GT-7 trackway; b) Interpretative drawing of the GT-7 trackway.

Fig. 6 — Reconstruction of the trackmaker’s fore- and hind limbs, based on the 3D model and its
interpretative drawing. Dashed lines define the metatarsal of digit V held lifted off the ground

during locomotion.
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Fig. 7 — Pentadactyl tracks from the Lower and Middle Triassic, assigned to the ichnogenus

Chirotherium and their comparison with the studied tracks of the Gardetta ichnosite: a) GT-1-
3; b) GT-2-3; ¢) GT-2-8; d) GT-2-6; e), f) Chirotherium barthiii pes manus sets from type
surface of the “Thiiringischer Chirotheriensandstein”, Hildburghausen, Germany; g)
Chrotherium barthiii pes manus set from the Holbrook Member of the Moenkopi Formation
(Middle Triassic), southwest of Cameron, northern Arizona; h) Chirotherium vorbachi pes
manus set from the Lower Triassic of Aura an der Saale, Germany; 1), Chirotherium sickleri
“Thiiringischer Chirotheriensandstein”, Germany; 1) , m) Chirotherium sickleri pes manus
sets from the Wupatki Member of the Moenkopi Formation (Lower Triassic), Meteor Crater,

Arizona. Scale bar 10 cm.

Fig. 8 - Pentadactyl tracks from the Lower and Middle Triassic, assigned to the ichnogenus

Isochirotherium and their comparison with the studied tracks of the Gardetta ichnosite: a), b),
c), pes manus sets of the GT-7 trackway; d) GT-3 isolated pes imprints of the lower track
surface; ) Isochirotherium herculis pes manus set from the “Thiiringischer
Chirotheriensandstein” (Lower Triassic), Germany; f) Isochirotherium marshalli pes manus
set from the Holbrook Member of the Moenkopi Formation (Middle Triassic), Penzance,
Northern Arizona; g) Isochirotherium inferni manus pes set from the Middle Triassic (late
Anisian) of Adige Valley, Bolzano, Italy; h) Isochirotherium coltoni pes manus set from the
Wupatki Member of the Moenkopi Formation (Lower Triassic), Meteor Crater, Arizona; 1)
Isochirotherium lomasi pes manus set from the Middle Triassic (Anisian) of Cheshire, Great
Britain; 1) Isochirotherium coureli pes manus set from the Middle Triassic (Anisian-Ladinian)
of the Massif Central, France; m) Isochirotherium hessbergense pes manus set from the

“Thiiringischer Chirotheriensandstein” (Lower Triassic), Germany; n) Isochirotherium
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demathieui pes manus set from the Middle Triassic of Mont d’Or Lyonnais, France; o)
Isochirotherium soergeli pes manus set from the “Thiiringischer Chirotheriensandstein”

(Lower Triassic), Germany. Scale bar 10 cm.

Fig. 9 — Fore- and hind-limb skeletons of Triassic archosauriforms and of the Isochirotherium

gardettae trackmaker. Reconstructed right pes and manus skeletons of a) the Isochirotherium
gardettae trackmaker in anterior/dorsal view; b) Postosuchus kirkpatricki CHATTERJEE 1985,
USA, Norian; ¢) Postosuchus alisonae, PEYER et al. 2008, USA, Norian; d) Lotosaurus
adentus ZHANG, 1975, China, Ladinian; e) Proterosuchus fergusi BROOM 1903, South Africa,
Induan—?early Olenekian f) Erythrosuchus africanus BROOM 1905, South Africa, early
Anisian; g) Shansisuchus shansisuchus YOUNG 1964, China, late Anisian; h) Euparkeria
capensis Broom, 1913, South Africa, Anisian; 1) Chanaresuchus bonapartei ROMER, 1971,

Argentina, Ladinian. Scale bars: a), b), ¢), d), f) g) =10 cm; e), h) and i) = 1 cm.

Fig. 10 — Life appearance of the non-archosaurian archosauriform (?Erythrosuchid) the most

suitable producer of Isochirotherium gardettae. Simplified reconstruction of fore and hind
autopodials in bottom (a) view. Complete life reconstruction in bottom (b), back (c), frontal
(d) and lateral view (e) of the trackmaker. The gait and fore- and hind limbs were
reconstructed according to the pattern and morphologies of GT-7 trackway (artwork by the
Italian artist Fabio Manucci). See the supplementary video to get a more complete view of the

reconstruction.

Fig. 11 — Paleogeographic distribution of Early Triassic archosauriform footprints (yellow stars)

and body fossil localities across Pangea. Black square = indeterminate archosauromorphs, red
circles = non-archosauriform archosauromorphs, blue stars = archosauriforms. The

palaeolatitude estimate for the southern Briangonnais domain is 11.8 N in the Olenekian (250
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Ma), confirming that archosauriforms were distributed also at low latitudes, in the tropical
humid climatic belt. ImagePaleomap for 250 Ma downloaded from Fossilworks using data
from the Paleobiology Database (Alroy, 2003). Redrawn and modified from Bernardi et al.,

2015 and Benton (2018).
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Figure 1

Geologic map of the Pianezza area

Fig. 1 - Geologic map of the Pianezza area. In the upper row the location of Maira Valley and
Gardetta-Pianezza area. For the geologic map: (1) volcanic complex and graphitic schist
(upper Carboniferous - Permian). (2) Conglomerate. (4) Quartz-conglomerate, and quartz-
arenite and quartz-siltite of the quartzitic complex (upper Permian - early Lower Triassic). (5)
Lower carniole complex (late Lower Triassic). (6) Lower calcareous complex (lower Anisian -
early upper Ladinian). (7) Upper dolomitic complex (upper Ladinian). (8) Lakes and peat bog.

(9) Faults. (10) Location of the footprint site. In white the detritic cover and moraines.
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Figure 2

Correlation scheme among the Brianconnais s.s., the Ligurian Brianconnais

Fig. 2 - Correlation scheme among the Brianconnais s.s., the Ligurian Brianconnais, from De
Carlis & Lualdi, 1990 redrawn and modified. (PNQ) “Ponte di Nava Quartzites”. (CVP) Case Val

Marenca Pelites. The footprint silohuette marks the position of the track-bearing horizon.
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Figure 3

Panoramic view of the track surface with the line-drawing of the chirotherian trackways

Fig. 3 - (a) Panoramic view of the track surface with the line-drawing of the chirotherian
trackways. In pale yellow the above-lying bed characterized by symmetric wave ripples. (b)

Detailed view of the GT-1 and GT-2 trackways, highlighted with the black colour.
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Figure 4

Isochirotherium gardettae ichnosp. nov

Fig. 4 - Isochirotherium gardettae ichnosp. nov. The GT-7 trackway, made of three

consecutive manus-pes couples, is here highlighted by the red chalk and preserved in the

upper track-bearing surface. Scale bar: 13 cm.
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Figure 5

Isochirotherium gardettae ichnosp. nov. Colour-coded and contour line image of the
GT-7 trackway

Fig. 5 - a) Isochirotherium gardettae ichnosp. nov. Colour-coded and contour line image of

the GT-7 trackway; b) Interpretative drawing of the GT-7 trackway.
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Figure 6

Reconstruction of the trackmaker’s fore- and hind limbs, based on the 3D model and its
interpretative drawing

Fig. 6 - Reconstruction of the trackmaker’s fore- and hind limbs, based on the 3D model and
its interpretative drawing. Dashed lines define the metatarsal of digit V held lifted off the

ground during locomotion.
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Figure 7

Pentadactyl tracks from the Lower and Middle Triassic, assigned to the ichnogenus
Chirotherium and their comparison with the studied tracks of the Gardetta ichnosite

Fig. 7 - Pentadactyl tracks from the Lower and Middle Triassic, assigned to the ichnogenus
Chirotherium and their comparison with the studied tracks of the Gardetta ichnosite. (a)
GT-1-3. (b) GT-2-3. (c) GT-2-8. d) GT-2-6; (e) and (f) Chirotherium barthiii pes manus sets
from type surface of the “Thuringischer Chirotheriensandstein”, Hildburghausen, Germany.
(g) Chrotherium barthiii pes manus set from the Holbrook Member of the Moenkopi Formation
(Middle Triassic), southwest of Cameron, northern Arizona. (h) Chirotherium vorbachi pes
manus set from the Lower Triassic of Aura an der Saale, Germany (i), Chirotherium sickleri
“Tharingischer Chirotheriensandstein”, Germany. (I) and (m) Chirotherium sickleri pes manus
sets from the Wupatki Member of the Moenkopi Formation (Lower Triassic), Meteor Crater,

Arizona. Scale bar 10 cm.
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Figure 8

Pentadactyl tracks from the Lower and Middle Triassic, assigned to the ichnogenus
Isochirotherium and their comparison with the studied tracks of the Gardetta ichnosite

Fig. 8 - Pentadactyl tracks from the Lower and Middle Triassic, assigned to the ichnogenus
Isochirotherium and their comparison with the studied tracks of the Gardetta ichnosite (a),
(b), (c) Pes manus sets of the GT-7 trackway. (d) GT-3 isolated pes imprints of the lower track
surface. (e) Isochirotherium herculis pes manus set from the “Thiringischer
Chirotheriensandstein” (Lower Triassic), Germany. (f) Isochirotherium marshalli pes manus
set from the Holbrook Member of the Moenkopi Formation (Middle Triassic), Penzance,
Northern Arizona. (g) Isochirotherium inferni manus pes set from the Middle Triassic (late
Anisian) of Adige Valley, Bolzano, Italy. (h) Isochirotherium coltoni pes manus set from the
Wupatki Member of the Moenkopi Formation (Lower Triassic), Meteor Crater, Arizona. (i)
Isochirotherium lomasi pes manus set from the Middle Triassic (Anisian) of Cheshire, Great
Britain. (I) Isochirotherium coureli pes manus set from the Middle Triassic (Anisian-Ladinian)
of the Massif Central, France. (m) Isochirotherium hessbergense pes manus set from the
“Thuringischer Chirotheriensandstein” (Lower Triassic), Germany. (n) Isochirotherium
demathieui pes manus set from the Middle Triassic of Mont d’Or Lyonnais, France. (o)
Isochirotherium soergeli pes manus set from the “Thuringischer Chirotheriensandstein”

(Lower Triassic), Germany. Scale bar 10 cm.
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Figure 9

Fore- and hind-limb skeletons of Triassic archosauriforms and of the Isochirotherium
gardettae trackmaker

Fig. 9 - Fore- and hind-limb skeletons of Triassic archosauriforms and of the Isochirotherium
gardettae trackmaker. Reconstructed right pes and manus skeletons of (a) The
Isochirotherium gardettae trackmaker in anterior/dorsal view. (b) Postosuchus kirkpatricki
Chatterjee 1985, USA, Norian. (c) Postosuchus alisonae, Peyer et al. 2008, USA, Norian. (d)
Lotosaurus adentus Zhang, 1975, China, Ladinian. (e) Proterosuchus fergusi Broom 1903,
South Africa, Induan-?early Olenekian. (f) Erythrosuchus africanus Broom 1905, South Africa,
early Anisian. (g) Shansisuchus shansisuchus Young 1964, China, late Anisian. (h) Euparkeria
capensis Broom, 1913, South Africa, Anisian. (i) Chanaresuchus bonapartei Romer, 1971,

Argentina, Ladinian. Scale bars: a), b), ¢), d), f) g) = 10 cm; e), h) and i) = 1 cm.

Peer] reviewing PDF | (2020:08:51782:0:1:NEW 10 Aug 2020)



Manuscript to be reviewed

PeerJ




PeerJ Manuscript to be reviewed

Figure 10

Life appearance of the non-archosaurian archosauriform (?Erythrosuchid) the most
suitable producer of Isochirotherium gardettae

Fig. 10 - Life appearance of the non-archosaurian archosauriform (?Erythrosuchid) the most
suitable producer of Isochirotherium gardettae. Simplified reconstruction of fore and hind
autopodials in bottom (a) view. Complete life reconstruction in bottom (b), back (c), frontal
(d) and lateral view (e) of the trackmaker. The gait and fore- and hind limbs were
reconstructed according to the pattern and morphologies of GT-7 trackway (artwork by the
Italian artist Fabio Manucci). See the supplementary video to get a more complete view of

the reconstruction.
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Figure 11

Paleogeographic distribution of Early Triassic archosauriform footprints and body fossil
localities across Pangea

Fig. 11 - Paleogeographic distribution of Early Triassic archosauriform footprints (yellow
stars) and body fossil localities across Pangea. Black square = indeterminate
archosauromorphs, red circles = non-archosauriform archosauromorphs, blue stars =
archosauriforms. The palaeolatitude estimate for the southern Brianconnais domain is 11.8 N
in the Olenekian (250 Ma), confirming that archosauriforms were distributed also at low
latitudes, in the tropical humid climatic belt. ImagePaleomap for 250 Ma downloaded from
Fossilworks using data from the Paleobiology Database (Alroy, 2003). Redrawn and modified

from Bernardi et al., 2015 and Benton (2018).
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