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ABSTRACT

Turtles are a successful clade of reptiles that originated in the Late Triassic. The group
adapted during its evolution to different types of environments, ranging from dry land
to ponds, rivers, and the open ocean, and survived all Mesozoic and Cenozoic extinction
events. The body of turtles is characterized by a shell, which has been hypothesized
to have several biological roles, like protection, thermal and pH regulation, but
also to be adapted in its shape to the ecology of the animal. However, only few
studies have investigated the relationships between shell shape and ecology in a global
context or clarified if shape can be used to diagnose habitat preferences in fossil
representatives. Here, we assembled a three-dimensional dataset of 69 extant turtles and
three fossils, in particular, the Late Triassic Proganochelys quenstedtii and Proterochersis
robusta and the Late Jurassic Plesiochelys bigleri to test explicitly for a relationship
between shell shape and ecology. 3D models were obtained using surface scanning
and photogrammetry. The general shape of the shells was captured using geometric
morphometrics. The habitat ecology of extant turtles was classified using the webbing
of their forelimbs as a proxy. Principal component analysis (PCA) highlights much
overlap between habitat groups. Discriminant analyses suggests significant differences
between extant terrestrial turtles, extant fully aquatic (i.e., marine and riverine) turtles,
and an unspecialized assemblage that includes extant turtles from all habitats, mostly
freshwater aquatic forms. The paleoecology of the three fossil species cannot be
determined with confidence, as all three fall within the unspecialized category, even
if Plesiochelys bigleri plots closer to fully aquatic turtles, while the two Triassic species
group closer to extant terrestrial forms. Although the shape of the shell of turtles indeed
contains an ecological signal, it is overall too weak to uncover using shell shape in
paleoecological studies, at least with the methods we selected.

Subjects Computational Biology, Ecology, Paleontology, Zoology, Statistics

Keywords Turtles, Geometric morphometrics, Paleoecology, Testudinata, Proganochelys
quenstedstii, Proterochersis robusta

INTRODUCTION

Turtles represent a remarkable group of tetrapods due to the presence of an ossified shell.
The clade Testudinata (sensu Joyce, Parham ¢ Gauthier, 2004) is defined by the presence
of this trait and is represented by more than 350 extant species (Turtle Taxonomy Working
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Group, 2017) and a rich fossil record that reaches back to the Late Triassic (Mlynarski,
1976). A number of other groups of tetrapods convergently acquired an armored body
plan as well, in particular armadillos (Chen et al., 2011), ankylosaurs (Hayashi et al., 2010),
aetosaurs (Desojo et al., 2013), and placodonts (Westphal, 1976), but none have proven
to be particularly successful, at least in regard to phylogenetic longevity, biogeographic
distribution, diversity, or disparity.

The turtle shell

The shell is a common characteristic of all turtles but subject to substantial morphological
variation from one species to the other (Pritchard, 2008). It is universally composed of
the dorsal carapace and the ventral plastron. From an anatomical perspective, the shell
is a composite of the dermis with underlying, preexisting structures, in particular the
dorsal ribs, dorsal vertebrae, gastralia, the clavicle, interclavicle, and cleithra (Lyson et
al., 2013a; Lyson et al., 2013b). The resulting bones of the carapace of a typical turtle are
called the neurals, costals, nuchal, peripherals, and pygals (Fig. 1D), those of the plastron
the entoplastron and the epi-, hyo-, meso-, hypo-, and xiphiplastra (Zangerl, 1969, Fig.
1E). The bony shell is protected towards the outside by a layer of keratinous, epidermal
scutes, but these are secondarily reduced in trionychids (softshell turtles), carettochelyids
(pig-nosed turtles), and dermochelyids (leatherback turtles). The scutes of the carapace
of a typical turtle are termed cervicals, vertebrals, pleurals, and marginals (Fig. 1D), and
those of the plastron gulars, extragulars, humerals, pectorals, abdominals, femorals, and
anals (Zangerl, 1969; Hutchison ¢ Bramble, 1981, Fig. 1E). The number and the contacts of
the bony and epidermal elements vary immensely across turtles and can both be used to
diagnose species and to reconstruct phylogenetic relationships. It is therefore not surprising
that a large body of literature is dedicated to documenting this type of variation to the
turtle shell.

The turtle shell is thought to provide several evolutionary advantages, including
protection, pH control, or thermal regulation (Jackson, 2000; Pritchard, 2008; Magwene
¢ Socha, 2013). The presence of this full body armor, however, is thought to constrain
other bodily functions, in particular feeding, locomotion, reproduction, and respiration.
A number of shell shapes have developed as a compromise. For instance, teardrop-shaped
shells (e.g., the chelonioid Chelonia mydas) are more typical for turtles with aquatic
habits, especially those that live in open marine environments (Wyrneken, 1996), while
highly domed shells (e.g., the testudinid Stigimochelys pardalis) are prevalent among turtles
with terrestrial habitats (Domokos & Virkonyi, 2008). A large diversity of additional
morphologies can be observed, including the oval and tectiform shells of many riverine
turtles (e.g., emydid Graptemys geographica) or the rounded and greatly flattened shells of
many trionychids (e.g., Apalone spinifera). Given that correlations appear to exist between
shell shape and ecology, paleontologists have historically been tempted to reconstruct the
paleoecology of fossil turtles by reference to their shell shape, but studies have been lacking
that explicitly tested this relationship.

Dziomber et al. (2020), PeerJ, DOI 10.7717/peerj.10490 2/35


https://peerj.com
http://dx.doi.org/10.7717/peerj.10490

Peer

Figure 1 Landmarks configuration used in the study composed of 10 fixed landmarks and 12
semilandmark-curves imposed onto a 3D model of Melanochelys trijuga (FMNH 224247). (A) Left
lateral view. (B) Anterior view. (C) Posterior view. (D) Dorsal view (grey: epidermal scutes; brown: dermal
bones). (E) Ventral view. (grey: epidermal scutes; brown: dermal bones). Abbreviations: ab, abdominal
scute; an, anal scute; cv, cervical scute; co, costal; ent, entoplastron; epi, epiplastron; fe, femoral scute; gu,
gular scute; hu, humeral scute; hyp, hypoplastron; hyo, hyoplastron; ma, marginal scute; ne, neural; nu,
nuchal; pe, pectoral scute; pl, pleural scute; per, peripheral; py, pygal; sp, suprapygal; xi, xiphiplastron.
Full-size &l DOI: 10.7717/peerj.10490/fig-1

Morphometrics in turtles

A broad selection of studies have recently focused on finding correlations between
the ecology of extant turtles and their cranial or post-cranial morphology, including
morphometrics (e.g., Joyce ¢ Gauthier, 2004; Domokos & Virkonyi, 2008; Benson et

al., 20115 Lichtig & Lucas, 2017), histology (e.g., Scheyer ¢ Sander, 2007), geometric
morphometrics (e.g., Claude et al., 2003; Claude et al., 2004; Depecker et al., 2006; Rivera,
2008; Rivera & Claude, 2008; Stayton, 2011; Foth, Rabi & Joyce, 2017; Foth et al., 2019), and
Finite Element Analysis (e.g., Stayton, 2009; Polly et al., 2016). A number of these studies
were performed with the explicit goal of finding correlations among extant turtles to
reconstruct the paleoecology of the oldest known fossil turtles, a topic with considerable
interest regarding the origin and early evolution of the group.

Two taxa have been at the center of these studies: Proganochelys quenstedtii Baur, 1887
and Proterochersis robusta Fraas, 1913 from the Late Triassic of Germany. Proganochelys
quenstedtii was originally argued to have had been a fresh-water aquatic bottom walker
based on its low shell and details in femoral anatomy (Gaffney, 1990), while Proterochersis
robusta was tacitly assumed to be terrestrial based on its highly domed shell (e.g., Fraas, 1913;
De Lapparent de Broin, 2001). Joyce ¢ Gauthier (2004) used morphometric measurements
from forelimb bones, in particular the relative length of the humerus, ulna, and hand, as a
proxy for the habitat preferences of extant and fossil turtles. For this study, extant turtles
were classified into six different ecological categories ranging from completely terrestrial to

Dziomber et al. (2020), PeerJ, DOI 10.7717/peerj.10490 3/35


https://peerj.com
https://doi.org/10.7717/peerj.10490/fig-1
http://dx.doi.org/10.7717/peerj.10490

Peer

completely aquatic. The data shows a strong correlation between the relative length of the
hand and the ecology of extant turtles, with terrestrial turtles having shorter hands than
aquatic ones, and predicts Proganochelys quenstedtii to have been terrestrial. Proterochersis
robusta was not included in this study, as its forelimbs are not preserved. This conclusion
was broadly corroborated by Scheyer ¢ Sander (2007), who noted through a study of
bone histology that the bone microstructure of Proganochelys quenstedtii and Proterochersis
robusta more closely resembles that of extant terrestrial turtles than that of extant aquatic
turtles. Benson et al. (2011) concluded based on shell cross-section morphometrics of the
shell of extant turtles, as quantified from photographs, that Proterochersis robusta was likely
semi-aquatic, although it is important to note that the habitat categories of Benson et al.
(2011) do not overlap with those of Joyce &~ Gauthier (2004). The recent study of Lichtig
¢ Lucas (2017), finally, inferred a freshwater aquatic ecology for Proganochelys quenstedtii
and a terrestrial ecology for Proterochersis robusta using ratios from the shell, in particular
maximum carapace width to maximum plastron and carapace length to maximum carapace
height. It therefore appears that different lines of evidence yield conflicting results.

Aims of the study

Previous studies that assessed the ecology of fossil turtles using the turtle shell as a source
of information only utilized selected aspects of the shell. The initial aim of this study is to
first test for correlations between ecology and the entire shell shape of extant turtles, using
three-dimensional geometric morphometrics in combination with multivariate analyses.
The correlations observed among extant turtles are then applied to the Late Triassic turtles
Proganochelys quenstedtii and Proterochersis robusta and the Late Jurassic turtle Plesiochelys
bigleri.

MATERIAL AND METHODS

Taxonomic sampling

The sample of extant turtles includes species representing all turtle clades and habitat
preferences. Sampling was strictly limited to specimens collected as adults from the wild,
as the shell of many turtles grows into an unnatural shape when kept in captivity, such
as the pyramidal scutes seen in captive-raised tortoises (Wiesner ¢ Iben, 2003; Gerlach,
2004). To avoid biases caused by sampling different ontogenetic stages, sampling was
furthermore restricted to skeletally mature individuals. The sole exception to this rule

is the giant leatherback turtle Dermochelys coriacea, the only representative of its clade,
for which a juvenile specimen was chosen (carapace length ca. 13 cm), since no intact
adult specimens were available for this study. Finally, sampling was limited to specimens
with complete shells, including naturally articulated bridges, that lack scute abnormalities,
shell deformations (e.g., kyphosis), or pronounced asymmetry. Sex was disregarded as a
selection criterion, as most specimens housed in collections, especially skeletal specimens,
are not sexed and as the sex of turtles is only known to influence the overall shape of the
shell in a subtle manner (Pritchard, 2008). To substantially increase sample size, specimens
were included with varying preservation methods, including dry skeletal specimens,
mummified specimens, and specimens conserved in ethanol. The inclusion of ethanol
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preserved individuals particularly allowed sampling trionychids and the leatherback turtle
Dermochelys coriacea.

To optimize phylogenetic coverage, we attempted to sample at least one species of each
currently recognized genus of extant turtle (T7TWG, 2017). Several species were sampled,
however, for genera that exhibit ecological plasticity, in particular Cuora, Terrapene, and
Rhinoclemmys, genera that contain both aquatic and terrestrial species. The final primary
dataset consists of 69 species of extant turtles (see Table 1) that represent all major turtle
clades. Generic sampling exceeds 50% for all clades but Podocnemididae (detailed in
Table S1).

In addition to recent turtles, the sample furthermore includes three species of fossil
turtles: the thalassochelydian Plesiochelys bigleri Piintener, Anquetin ¢» Billon-Bruyat, 2017
from the Late Jurassic of Switzerland, Proganochelys quenstedtii from the Late Triassic
of Germany and Proterochersis robusta from the Late Triassic of Germany. For the fossil
turtles, the best-preserved specimens were chosen to represent each species (see Table 1),
except in the case of Proganochelys quenstedtii, for which a cast of SMNS 16980 was scanned
(Gaffney, 1990).

Acquisition of 3D models

We generated 3D models of turtle shells using two main techniques. The 3D scanner
Artec Space Spider, which produces 3D models utilizing structured light, was used for
most specimens with a length smaller than 60 cm. The reconstruction of the models was
done using Artec Studio Professional 10. Larger specimens were sampled using close-range
photogrammetry. The models obtained were computed using the software Agisoft Photoscan
Professional based on photographs taken with an Olympus E-M10 camera. All 3D models
were generated by us, expect the one of Plesiochelys bigleri, which was made available by
Raselli & Anquetin (2019a) and Raselli ¢ Anquetin (2019b). All 3D models reconstructed
by us for this project are available on MorphoSource (Dziomber, Joyce ¢ Foth, 2020; see
Table S2 for the DOI of these specimens).

Morphometric measurements

Some of the previous geometric morphometric studies of the turtle shell attempted to
capture its morphology by utilizing as many type-I landmarks as possible, in particular
those created by the contacts of the bones and the overlying epidermal scutes (e.g.,
Claude et al., 2003; Angielczyk ¢ Sheets, 2007). As various groups of turtles lack all or some
dermal bones or epidermal scutes (e.g., carettochelyid, dermochelyids, trionychids), use
of type-I landmarks defined by these structures precludes utilizing the full spectrum of
morphotypes developed by turtles over the course of their history. In addition, as the
shape and placement of the bones and epidermal scutes on the shell of a turtle are strongly
influenced by phylogenetic history, use of type-I landmarks defined by these structures is
optimal for capturing the phylogenetic information held by the subparts of the shell, not
the shape of the shell in itself. We therefore here implement an alternative approach that
uses a set of ten homologous landmarks and 255 semilandmarks distributed on twelve
curves (Fig. 1). The landmarks represent geometric points, in particular the anterior-most
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Table 1 Composition of the extant turtles included in the dataset of this study. Every specimen is associated with a clade, a species name, catalog
number, type of preservation (Pres.), ecological category (Cat.) based on webbing ranging (0 to 4) (see Methods) and acquisition method (Acq.).

Clade Species Catalog Number Pres Cat Acq
Carettochelyidae Carettochelys insculpta FMNH 15480 DRS 4 SC
Chelidae Platemys platycephala FMNH 267453 ETH 1 SC
Chelidae Chelus fimbriata FMNH 250681 DRS 2 SC
Chelidae Mesoclemmys dahli FMNH 82302 DRS 2 SC
Chelidae Phrynops tuberosus FMNH 73434 DRS 2 SC
Chelidae Elseya novaeguineae FMNH 14054 DRS 2 SC
Chelidae Emydura macquarii FMNH 71793 ETH 2 SC
Chelidae Hydromedusa tectifera FMNH 217272 ETH 3 SC
Chelidae Chelodina oblonga FMNH 77997 ETH 3 sC
Cheloniidae Chelonia mydas NMB 152 ETH 4 PH
Cheloniidae Caretta caretta MHNF 11858_1993 ETH 4 PH
Cheloniidae Eretmochelys imbricata NMB 5763 ETH 4 PH
Chelydridae Macrochelys temminckii NMB 14 MUM 2 PH
Chelydridae Chelydra serpentina FMNH 14710 DRS 2 SC
Dermatemydidae Dermatemys mawii FMNH 4163 DRS 2 SC
Dermochelyidae Dermochelys coriacea FMNH 61630 ETH 4 SC
Emydidae Trachemys scripta FMNH 268818 DRS 2 SC
Emydidae Terrapene carolina FMNH 211600 DRS 0 SC
Emydidae Clemmys guttata FMNH 83369 DRS 1 SC
Emydidae Emys orbicularis FMNH 15654 MUM 1 sC
Emydidae Glyptemys insculpta FMNH 283801 DRS 1 SC
Emydidae Emys blandingii FMNH 83439 DRS 1 sC
Emydidae Deirochelys reticularia FMNH 83401 DRS 2 SC
Emydidae Graptemys geographica FMNH 83367 DRS 2 SC
Emydidae Malaclemys terrapin FMNH 83411 DRS 2 SC
Emydidae Chrysemys picta FMNH 242270 DRS 2 SC
Emydidae Actinemys marmorata FMNH 211580 DRS 2 SC
Geoemydidae Geoemyda spengleri FMNH 260381 DRS 0 SC
Geoemydidae Vijayachelys silvatica FMNH 224155 ETH 0 SC
Geoemydidae Rhinoclemmys annulata FMNH 63923 DRS 1 SC
Geoemydidae Cuora amboinensis FMNH 224028 DRS 2 sSC
Geoemydidae Cyclemys dentata FMNH 224085 DRS 2 SC
Geoemydidae Heosemys spinosa FMNH 260383 DRS 2 SC
Geoemydidae Mauremys reevesii FMNH 6736 DRS 2 SC
Geoemydidae Melanochelys trijuga FMNH 224247 DRS 2 SC
Geoemydidae Notochelys platynota FMNH 224050 DRS 2 SC
Geoemydidae Orlitia borneensis FMNH 224000 DRS 2 SC
Geoemydidae Pangshura tentoria FMNH 259433 DRS 2 SC
Geoemydidae Sacalia quadriocellata FMNH 6605 ETH 2 SC
Geoemydidae Malayemys subtrijuga FMNH 255268 DRS 2 SC

(continued on next page)
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Table 1 (continued)

Clade Species Catalog Number Pres Cat Acq
Geoemydidae Morenia petersi FMNH 260377 DRS 2 SC
Geoemydidae Batagur dhongoka FMNH 224106 DRS 3 SC
Kinosternidae Claudius angustatus FMNH 4165 DRS 2 SC
Kinosternidae Staurotypus triporcatus FMNH 4164 DRS 2 SC
Kinosternidae Sternotherus odoratus FMNH 83357 DRS 2 SC
Kinosternidae Kinosternon baurii FMNH 83436 DRS 2 SC
Pelomedusidae Pelusios sinuatus FMNH 12699 DRS 1 SC
Pelomedusidae Pelomedusa subrufa FMNH 17173 DRS 2 SC
Platysternidae Platysternon megacephalum FMNH 24229 ETH 1 SC
Podocnemididae Podocnemis vogli FMNH 73419 MUM 2 SC
Testudinidae Astrochelys radiata FMNH 72598 ETH 0 SC
Testudinidae Chelonoidis carbonaria FMNH 63916 DRS 0 SC
Testudinidae Chersina angulata FMNH 83000 ETH 0 SC
Testudinidae Geochelone elegans FMNH 117829 MUM 0 SC
Testudinidae Gopherus polyphemus FMNH 83340 DRS 0 SC
Testudinidae Homopus femoralis FMNH 17178 MUM 0 SC
Testudinidae Indotestudo elongata FMNH 257382 DRS 0 SC
Testudinidae Kinixys belliana FMNH 17179 ETH 0 SC
Testudinidae Malacochersus tornieri FMNH 252435 DRS 0 SC
Testudinidae Manouria impressa FMNH 263045 DRS 0 SC
Testudinidae Psammobates tentorius FMNH 17176 DRS 0 SC
Testudinidae Pyxis arachnoides FMNH 73308 ETH 0 SC
Testudinidae Stigmochelys pardalis FMNH 29277 DRS 0 SC
Testudinidae Testudo graeca FMNH 211730 MUM 0 SC
Trionychidae Dogania subplana FMNH 241342 ETH 3 SC
Trionychidae Pelodiscus sinensis FMNH 24249 ETH 3 SC
Trionychidae Rafetus euphraticus FMNH 19492 ETH 3 SC
Trionychidae Apalone mutica FMNH 7845 ETH 3 SC
Trionychidae Lissemys punctata FMNH 73919 ETH 3 SC
— Proganochelys quenstedtii SMNS 16980 cast ? PH
— Proterochersis robusta SMNS 17561 fossil ? PH
Thalassochelydia Plesiochelys bigleri MJSN CBE-0002 fossil ? SC
Notes.

Abbreviations: DRS, dry skeletal specimen; ETH, complete specimen preserved in ethanol; MUM, complete mummified specimen; SC, 3D Scanner; PH, Photogrammetry

reconstruction.

and posterior-most points along the midline of the carapace (landmarks 1 and 2) and

plastron (landmarks 3 and 4), the anterior and posterior limits of the contact of the axillary

(landmarks 5 and 8) and inguinal buttress (landmarks 6 and 7) with the peripheral series,

and the median point between the buttresses, typically the hyo/hypoplastral contact with

the peripheral series (landmarks 9 and 10). These primary landmarks define the start

and end points of the twelve semi-landmark curves (Fig. 1), in particular the outline of

the carapace (curves Cl and C2), the doming of the carapace (curves C3 and C12), the

midline and cross section of the plastron (curves C4 and C11), the outline of the anterior
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Table 2 Description of the four different sub-dataset used in the analyses. The listed landmarks and
semilandmarks are shown in Fig. 2.

Description Landmarks SM
SET1 All landmark data is included. all all
SET2 The outline of the of the carapace 1,2 Cl,C2
SET3 The transverse cross-section of the shell 9,10 Cl11, C12
SET4 The longitudinal cross-section of the shell 1,2,3,4 C3,C4

Notes.
Abbreviations: SM, semilandmarks.

and posterior plastral lobes (curves C5, C7, C8, C10), and the bridge (i.e., contact of the
plastron with the carapace, curves C6 and C9).

Landmarks were set directly onto the 3D models using the software Checkpoint
(Stratovan). The curves were captured in a two-step process. For the first step,
semilandmarks were manually set along the curves of the specimen using the “curve”
function of Checkpoint. The resulting curves are not yet comparable to one another, as they
utilize a different number of unevenly set semilandmarks. The primary semilandmarks
curves were therefore resampled in R v3.6.3 (R Core Team, 2020) to produce an equidistant
repartition of 255 points along the curves (Gunz ¢ Mitteroecker, 2013) using the digit.curves
function of the package geomorph v3.2.1 (Adams ¢ Otdrola-Castillo, 2013; Adams, Collyer
& Kaliontzopoulou, 2020).

In order to discuss which components provide the most variation and identify which
parameters of the shell represent the best proxy to infer the ecology of turtles, we produced
four datasets with different landmarks and semilandmarks configurations (Table 2, Fig. 2)
capturing several aspects of the shell. SET 1 utilizes all landmarks, SET 2 the perimeter
of the carapace, SET 3 the transverse cross-section, a proxy for doming, and SET 4 the
cross-section, a proxy for the hydrodynamics of the shell.

Classification of habitat preferences

In order to investigate the relationships between habitat preferences and shell shape among
the extant turtles in the sample, it is necessary to classify them by their ecology (Table 1).
As gradual variation is apparent between habitat categories, it is difficult to implement this
step, we used the method of Foth et al. (2019), which categorizes turtles by the development
of the webbing of their forelimbs as an ecological proxy (Table 3, Fig. 3). This is based on
the justifiable assumption that the degree of webbing correlates with the amount of time
the turtle spends in water. In contrast to defining ecological categories based on imprecise
descriptions from the literature (e.g., “terrestrial,” “poorly aquatic”, “semi aquatic” or
“fully aquatic”), this approach is more objective, as webbing can be easily observed in
museum specimens or the scientific literature (e.g., Ernst & Barbour, 1989; Bonin, Devaux
& Dupré, 1998). Our five primary categories include “no webbing” (0), “poorly webbed”
(1), “fully webbed,” with webbing reaching the base of the claws (2), “extensive webbing,”
with at least one claw being enveloped (3), and “flippers” (4). The scoring for each species
is provided in Table 1. We also tested an alternative classification, which is a combination
of the previously described categories, defined as “terrestrial” (including category 0, “not
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Figure 2 Subsamples used in this study. (A) SET1, all landmarks and semilandmarks combined. (B)
SET2, outline of the carapace only. (C) SET3, transverse cross-section only. (D) SET4, longitudinal cross-
section only. Landmarks are numbered from 1 to 10. Curves composed of semilandmarks are numerated
from C1 to C12.

Full-size Gal DOI: 10.7717/peerj.10490/fig-2

webbed”), “semi-aquatic” (including category 1 and category 2, “poorly webbed” and
“fully webbed”) and “aquatic” (including category 3 and category 4, “‘extensive webbing”
and “flippers”).

Analyses of morphometric data

In order to compare the shapes of the turtle shells we obtained, all sets of landmarks were
scaled, translated, and rotated using Generalized Procrustes superimposition (GPA: Rohlf
¢ Slice, 1990). This procedure was undertaken in R using the function gpagen in geomorph.
The semilandmarks were slid using bending energy (Gunz, Mitteroecker & Bookstein, 2005).

To test for the impact of allometric shape variation we used the log-transformed centroid
size of the specimens of each dataset and produced a linear regression against Procrustes
shape (see Drake ¢ Klingenberg, 2008). The regression was computed using the function
procD.Im in the R package geomorph. The ANOVA (analysis of variance) was performed
with 1,000 permutations.

Then, we performed a Principal Component Analysis (PCA), which is a commonly used
method to convert a set of data into a set of independent variables. The PCA was computed
using the function gm.prcomp in the R package geomorph.

We first tested for a correlation between ecology and shell shape using a linear
discriminant analysis (LDA), which distinguishes morphological differences between
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Table 3 Description of ecological categories used in this study based on the webbing of the forelimb as
a proxy.

Cat. Webbing type

Cat.0 Webbing absent. This morphology is associated with an
exclusively terrestrial ecology (Fig. 3A).

Cat.1 Minor webbing present between the first phalanges of all
fingers (Fig. 3B). This morphology is typical for turtles that
spend a moderate amount of time in water.

Cat.2 Extensive webbing present that reaches the ungual phalanx
of all digits (Fig. 3C). The associated ecology is semi-aquatic
to aquatic in behavior. This is the largest category, including
turtles that inhabit lakes, rivers, and ponds and that either
swim actively or walk at the bottom.

Cat.3 Extensive webbing present that envelopes at least one digit
completely, typically digit V (Fig. 3D). This category is
typical for highly aquatic turtles that rarely leave the water,
including several riverine testudinoids and all trionychids.

Cat.4 The forelimb is elongated, the webbing is extensive, and the
limb shaped into a soft flipper or hard paddle (Fig. 3E). This
category is represented by marine cheloniids and freshwater
aquatic carettochelyids.

Notes.
Abbreviations: Cat, category.

A B C D E

ul

Category 0 Category 1 Category 2 Category 3 Category 4

Figure 3 Webbing types of the forehand used for ecological classification. (A) Webbing absent. (B)
Poorly webbed, webbing only present at the base of the digits. (C) Fully webbed, webbing reaches the base
of the claws. (D) Webbing extensive, webbing envelopes at least one claw. (E) Manus modified into elon-
gate flipper or paddle. Digits are numbered from 1 to 5 using Roman numerals. Abbreviations: ul, ulna; ra,
radius.

Full-size Gl DOI: 10.7717/peerj.10490/fig-3

groups (Fisher, 1936; McLachlan, 2004). LDA identifies the axes that maximize the
separation between multiple classes, in our case the ecological categories we select. LDA
is based on those principal components (PC) that contain significant shape information.
The number of significant PC scores kept was estimated using the broken-stick method
(Frontier, 1976; De Vita, 1979; Jackson, 1993, see Fig. S1). The LDA tested the performance
of an a priori classification model and assigned specimens of unknown ecology to a
specific category. The LDA was performed using the function Ida from the package MASS
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(Ripley et al., 2013) and was used for the calculations. To test the accuracy of the predictions
and prevent overfitting, we performed the analysis with and without leave-one-out cross-
validation.

Furthermore, we also performed a phylogenetic flexible discriminant analysis (pFDA).
In contrast to LDA, pFDA addresses the impact of phylogeny on the data to provide
predictions (Motani & Schmitz, 2011). The phylogenetic tree used for the pFDA is based on
Pereira et al. (2017), which is the best sampled molecular tree available for extant turtles.
The original tree, which consists of 294 extant turtles, was pruned to only include the
taxa present in the sample and then time-calibrated based on Joyce, Schoch ¢ Lyson (2013).
The extinct turtles Proganochelys quenstedtii and Proterochersis robusta were then added as
stem-turtles following Joyce (2007), with Proganochelys quenstedtii as the most basal turtle
in the tree. Plesiochelys bigleri was placed as sister group to Cryptodira following Anquetin,
Piintener ¢ Joyce (2017; Fig. 4). The ages for the time calibration of the fossil taxa was
taken from Joyce (2017) and Anquetin, Piintener ¢ Joyce (2017). Alternative positions for
these taxa can be found, among others, in Szczygielski & Sulej (2016) or Evers ¢ Benson
(2019). The strength of the phylogenetic signal is estimated by the Pagel’s lambda-value
(1), which varies from 0 to 1, with 0 denoting the lack of a phylogenetic signal and 1
denoting a strong phylogenetic signal under Brownian motion (Pagel, 1999). This corrects
for the phylogenetic bias that can occur in the dataset. The discriminant analysis hereby
attempts to predict the ecology of each data point based on the input data. This step
produces the confusion matrix that summarize the results. The R code used for the pFDA
was originally published by Motani ¢» Schmitz (2011), which in return was adapted from
Hastie, Tibshirani & Buja (1994). The code was adapted for the purpose of this study.

RESULTS

Allometry

The results of the linear regression and the ANOVA indicate no correlation between
shape and log-transformed centroid size (R?> =0.0235, P-value = 0.134; Fig. 5), indicating
the absence of an interspecific allometric signal. We therefore, did not calculate the
non-allometric residuals of the Procrustes coordinates.

Principal Component Analysis (PCA)

For SET1 (Fig. 6A), PCI explains 28.81% of the total shape variation. Most of the variation
pertains to the height of the dome of the shell and the relative size of the plastron, in
that highly domed shells have enlarged plastra (negative PC scores) and flattened shells
have small plastra (positive PC scores). Surprisingly, turtles categorized by the presence
of flippers (category 4) are scattered across the plot. PC2 explains 14.5% of the variation.
Like PC1, it pertains to the height of the dome and the relative size of the plastron, in
that highly domed shells have a small plastron (negative PC scores) and flattened shells
possess an enlarged plastron (positive PC scores). The PCA plot for SET1 shows an overlap
of most ecological categories. Proterochersis robusta groups with non-webbed (category 0)
and poorly-webbed (category 1) turtles with domed-shells, while Proganochelys quenstedtii
and Plesiochelys bigleri are closer to turtles with flattened shells.
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Figure 4 Time-calibrated phylogeny of 72 species used in the study based on Pereira et al. (2017). Ab-
breviation: Car, Carettochelyidae; Che, Chelydridae; Pel, Pelomedusidae; Pla, Platysternidae; Pod, Podoc-
nemididae.
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Figure 5 Relationship between size and shape. The graph shows regression scores (shape) plotted
against Log(CSize) to highlight possible allometric correlations.
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SET2, which describes the outline of the carapace (Fig. 6B), PCI explains 37.41% of
the total variation. The shape of the outline of the shell varies from elongate (negative
scores) to rounded, being almost as wide as long (positive scores). PC2 explains 19.25%
of the total variation and captures shell width from broad (negative PC scores) to narrow
(positive scores). Turtles with flippers (category 4) plot closely together but are still nested
with the group of fully webbed turtles (category 2). The included fossils do not group with
any particular category. In addition, the fossils tend towards positive PC1 scores, in the left
part of the graph, which corresponds to a more rounded morphology.

PC1 of SET 3, which captures the transverse cross-sectional shape of the shell, explains
68.44% of the total variance, most of which pertains to the height of the dome, from flat
(negative scores) to highly domed (positive scores) (Fig. 6C). PC2 carries 16.71% of the
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Figure 6 Results of the PCA based on four different dataset configurations. (A) All landmarks and semilandmarks curves, SET1. (B) Outline of
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total variance and mostly explains the cross-section of the shell from domed carapaces
with a flat plastron (negative scores) to flattened carapaces with a convex plastron (positive
scores). As with the previous SETs, the ecological categories strongly overlap each other.
Proganochelys quenstedtii and Plesiochelys bigleri plot on the negative site of PC1, while
Proterochersis robusta is found on the opposite of PC1. Part of the overlap is explained
by the presence of the outliers for various categories, in particular the pancake tortoise
(Malacochersus tornieri), which is a greatly flattened terrestrial turtle, or the leatherback
turtle (Dermochelys coriacea), which is a marine turtle with a strongly convex plastron.

SET4 investigates shape variation to the longitudinal cross-section of the shell (Fig. 6D).
PC1 explains 44.4% of the total variance. Turtles represented by negative scores have a
domed morphology and a long plastron, in which the dome is accentuated in the anterior
part of the shell. Turtles represented by positive scores capture flattened carapaces with short
plastra. Here, the carapace overhangs the posterior end of the plastron. PC2 represents
27.1% of the total variance. Negative scores correspond to a flat-shaped carapace and
elongated plastron. Positive scores describe a domed carapace, with the maximum curvature
in the posterior section of the shell that overhangs the plastron. As with the other SETs, the
PCA shows a big overlap in the distribution of various ecological categories. Trionychids
nevertheless plot closely together in the positive part of PC1 scores. Proterochersis robusta
plots close to the terrestrial turtles (category 0), while Proganochelys quenstedtii plots in the
“fully webbed” range (category 2). Plesiochelys bigleri plots towards the left of the graph
(see Table S3).

Linear discriminant analysis results

The recognition of the ecological categories by the confusion algorithm for the linear
discriminant analysis (LDA) is variable depending on the subset (SET) used (Table 4,
detailed tables are provided in Table S4). The main error is in a range between 25% and
40% of misclassification for each SET. However, SET1 (25.3% of misclassification) gives
the best results as compared to the other SETs. In fact, in SET1, all categories are recognized
at least at a rate of 50%. In SET2 and SET4, species defined as “poorly webbed” (category 1)
are not well identified (38%). For the SET3, which represents the transverse cross-section,
the categories flippers (category 4, 60%, while 100% recognized for all the other SETs) and
poorly webbed (category 1, 13%) are poorly distinguished. The outcome of the confusion
matrix gives the most robust results for SET1, among all the arrangements. The use of all
data is therefore better than the use of just one component. After cross-validation, the total
error of correct identification increased moderately for SET1 (32%), SET2 (36%) and SET4
(37%, see Table 54 for all confusion matrices). While all categories are still recognized at
a rate of minimum 50% for SET1, recognition of “poorly webbed” turtles (category 1)
and “extensive webbing” (category 3) drop significantly for SET2 (38% and 25%) and
SET3 (38% and 0%). There is also a drop in the recognition for turtles having flippers for
SET3 (40%). On the other hand, “not webbed” turtles (category 0) and “fully webbed”
turtles (category 2) stayed highly stable. These results indicate overfitting of the training
data, indicating that the predictions are partially dependent on sample-size. However, the
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Table 4 Confusion matrix showing the recognition of ecological category per SET in the LDA. Each
line of the table describes the results for each of the four sub-analyses (SET1 to SET4). Each column cor-
responds to a webbing category. All results are expressed in percent. The last column of the table provides
the main error in percent.

Cat4 Cat3 Cat2 Cat1 Cat0 Error
SET1 100 50 90 63 70 25.31
SET2 100 50 90 38 94 25.61
SET3 60 50 87 13 88 40.43
SET4 100 63 84 38 76 27.93

outcome of the confusion matrix using cross-validation still reveals that SET1 performs
better than other configurations.

For SET1 (Fig. 7A), three groups of extant turtles are discriminated: (1) turtles lacking
webbing (category 0); (2) turtles ranging from non-webbed to fully webbed turtles (category
0-2); (3) and turtles with extensive webbing (category 3) and flippers (category 4). For
SET2 (Fig. 7B), which corresponds to the outline of the carapace, only turtles with flippers
(category 4) are well-discriminated, as these taxa all possess a distinctive tear-drop-shaped
shell (see mean shapes per category in Fig. 52). For SET3 and SET4 (Fig. 7C, Fig. 7D), the
webbing categories greatly overlap each other. There is a gap between the two extreme
categories (not webbed and flippers) but no category is discriminated. There is a trend
along the LD1, with terrestrial adaptations (i.e., no or minor webbing) on the negative side,
and aquatic adaptations (i.e., extensive webbing or flippers) on the positive side.

The predictions of the webbing (and thus ecology) of the fossil turtles are variable
between the SETs (see Fig. 7; Table 5). For SET1, all fossil turtles are identified as having
“fully webbed” forelimbs (category 2). However, Plesiochelys bigleri plots just at the limits
between fully webbed* (category 2) and extensively webbed* and “flipper-shaped”
forehand (category 3 and 4) and Proterochersis robusta at the limit between “poorly
webbed” (category 1) and “fully webbed” (category 2) turtles (Fig. 7A). Proganochelys
quenstedtii plots within the “fully webbed” (category 2) turtles. For SET2, the fossil turtles
are identified as either fully webbed (category 2) or poorly webbed (category 1), but plot
further away from the extant groups, except for Plesiochelys bigleri, which groups with fully
webbed (category 2) turtles but was determined to be “poorly webbed” with a probability
of 49% (see Table 5). For SET3, Proterochersis robusta is predicted to be “fully webbed”
(category 2), but only with a probability of 38%. On the other hand, Plesiochelys bigleri is
predicted to have been “extensively webbed” (category 3) with a low probability of 49%
while Proganochelys quenstedtii groups with turtles that are ”poorly webbed” (category 1),
also with a low probability (47%). Finally, for SET4, Proganochelys quenstedtii is predicted
to have been ”poorly webbed” (category 1), while Proterochersis robusta and Plesiochelys
bigleri are reconstructed as “fully webbed” (category 2), which is consistent with what can
be observed on the graph.

Phylogenetic flexible discriminant analysis results
The confusion matrix based on the phylogenetic flexible discriminant analysis (pFDA)
shows good recognition of ecological variables (expressed by the degree of webbing in the
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Figure 7 Results of the discriminant analysis (LDA) based on four different dataset configurations. (A) All landmarks and curves, SET1. (B)
Outline of the carapace, SET2. (C) Transverse cross-section, SET3. (D) Longitudinal cross-section, SET4. All data are available in the Table S4.
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forelimbs) for extant species (Table 6, detailed tables are provided in Table 54). The analysis
including all landmarks and curves (SET1) shows consistent results between 50 to 100%
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Table 5 Prediction matrix for the fossils included in the study based on four different dataset configu-
rations based on the linear discriminant analysis (LDA). Complete data are available in the Table S6.

SPECIES PREDICTION CAT. PROB.
SET1 Plesiochelys bigleri fully webbed 2 0.95
Proterochersis robusta fully webbed 2 0.98
Proganochelys quenstedtii fully webbed 2 0.99
SET2 Plesiochelys bigleri poorly webbed 1 0.57
Proterochersis robusta fully webbed 2 0.98
Proganochelys quenstedtii fully webbed 2 0.69
SET3 Plesiochelys bigleri extensive webbing 3 0.49
Proterochersis robusta fully webbed 2 0.38
Proganochelys quenstedtii fully webbed 2 0.47
SET4 Plesiochelys bigleri fully webbed 2 0.79
Proterochersis robusta fully webbed 2 0.88
Proganochelys quenstedtii poorly webbed 1 0.93

Table 6 Confusion matrix showing the recognition of ecological category per SET in the pFDA. Each
line of the table describes the results for each of the four subsets (SET1 to SET4). Each column corre-
sponds to a webbing category. All results are presented in percent. The last column of the table provides
the main error in percent.

Cat 4 Cat3 Cat 2 Cat1 Cat0 Error
SET1 100 50 94 63 70 24.67
SET2 100 63 94 38 94 22.47
SET3 60 50 87 13 76 42.79
SET4 100 50 83 38 76 30.43

accuracy for the different webbing categories. SET2, which describes the outline of the
carapace is slightly better regarding the correct identification of most webbing categories,
except for minor webbing (category 1). SET3 and SET4, however, fail to identify turtles
with minor webbing (category 1) and extensive webbing (category 3). The outcome in the
confusion matrix gives the most solid results for SET1 among all arrangements. Therefore,
higher accuracy is gained when using all landmarks and semilandmarks in combination
with phylogeny (Table 6).

The pFDA results for extant turtles are similar to the LDA results for SET1 and SET2.
The distribution, however, is variable for SET3 and SET4. In SET1, the graph is divided
into three major groups. One is composed of turtles with not-webbed morphologies,
one includes turtles with poorly webbed and fully webbed forelimbs, and a last one with
turtles having extensive webbing and flipper-shaped forelimbs (Fig. 8A). In SET2 only
turtles with flippers are well discriminated. The results for SET3 and SET4 show much
overlap between all categories. The predictions for fossils are not congruent depending
on the arrangement being used. All fossil turtles are predicted to be “minor-webbed”
(category 1) to “flipper-shaped” (category 4), which suggests aquatic habitat preferences.
However, there is great variability in the predictions depending on the configuration of
the dataset (SET1 to SET4). Although Plesiochelys bigleri is resolved as having flippers
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Table 7 Prediction matrix for the fossils included in the study based on four different dataset configu-
rations based on the phylogenetic flexible discriminant analysis (pFDA). Complete data are available in
Table S7.

SPECIES PREDICTION CAT. PROB.
SET1 Plesiochelys bigleri flippers 4 0.87
Proterochersis robusta fully webbed 2 0.99
Proganochelys quenstedtii fully webbed 2 NaN
SET2 Plesiochelys bigleri poorly webbed 1 091
Proterochersis robusta flippers 4 0.99
Proganochelys quenstedtii poorly webbed 1 NaN
SET3 Plesiochelys bigleri fully webbed 2 0.71
Proterochersis robusta flippers 4 0.99
Proganochelys quenstedtii extensive webbing 3 0.99
SET4 Plesiochelys bigleri fully webbed 2 0.56
Proterochersis robusta fully webbed 2 0.99
Proganochelys quenstedtii poorly webbed 1 NaN

(category 4) and plots with extant turtles for SET1, the Triassic fossil turtles are resolved as
“fully webbed” (2) but plot further away from the extant group. Proganochelys quenstedtii
and Proterochersis robusta do not group close together with any other turtle. For SET2,
Plesiochelys bigleri is grouped again within the extant group, contrary to Proganochelys
quenstedtii and Proterochersis robusta, which are found to be outliers. Plesiochelys bigleri is
predicted as poorly webbed” (category 1), while Proterochersis robusta and Proganochelys
quenstedtii are predicted to have “flippers” (category 4) and ”poorly webbed” (category 1).
In SETS3, all fossils plot outside of the extant groups, even if the algorithm gives predictions
such as extensive webbing (category 3) for Proganochelys quenstedtii, ”fully webbed”
(category 2) for Plesiochelys bigleri, and “flippers” (4) for Proterochersis robusta (Table 7).
For the SET4, the fossils plot again outside of the extant categories and are predicted to be
”fully webbed” (category 2) for Proterochersis robusta and Plesiochelys bigleri and as “poorly
webbed” (category 1) for Proganochelys quenstedtii.

Ecological categories

It is notable that the categories poorly webbed (category 1) and fully webbed (category
2) overlap each other in both LDA and pFDA, just as the categories extensive webbing
(category 3) and flippered (category 4). However, the pFDA is not very insightful concerning
the webbing/ecology of fossil turtles. To investigate the impact of the categorization done
herein, the LDA analysis was performed on the SET1 again using a different combination
of categories. In particular, the five previously used categories were reclassified for this
purpose into three novel categories, herein defined as “terrestrial” (including category 0,
not webbed), ’semi-aquatic” (including category 1 and category 2, poorly webbed and
fully webbed) and “aquatic” (including category 3 and category 4, extensive webbing and
flippers). The results of this secondary analysis are provided in the update confusion table
(Table 8) and graphs (Fig. 9B).
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Notes.
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The misclassification rate for the confusion matrix associated with the three new
categories (18.4%) is lower than what is observed in the one with five categories (25.3%).
For instance, semi-aquatic turtles are well recognized (38 of 39), but some aquatic (3
over 13) and terrestrial turtles (5 over 17) are still misclassified. However, in general, the
dataset containing three categories (Fig. 9B) gives similar results when compared with
the original dataset defined by five categories (Fig. 9A). Both groupings show no overlap
between the terrestrial and the aquatic categories (see Fig. 53). However, the third category
of semi-aquatic turtles remains poorly discriminated. When it comes to fossils specimens,
the results are similar between the two grouping classifications (Table 9). Plesiochelys
bigleri falls between fully webbed (2) and extensive webbing (3) in the first classification
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model (Fig. 9A) and remains at this position in the second plot (Fig. 9B), between the
semi-aquatic and the aquatic category. Moreover, in the model with three categories,
Proganochelys quenstedtii and Proterochersis robusta plot further away from the extant
groups. It appears that splitting the semi-aquatic category into two (poorly-webbed and
fully-webbed) gives a more precise placement for the Triassic turtles such as they plot closer
to the extant groups, even if there is poor discrimination between these two categories.

DISCUSSION

Results for extant turtles

In order to determine the paleoecology of extinct species, paleontologists often draw
from correlations found among the shape and ecology of extant organisms (e.g.,
Cassini, 2013) for ungulates; (Cooke, 2011) for platyrrhine primates; (Forrest, Plummer

& Raaum, 2018) for bovids; (Figueirido, Palmqvist ¢ Pérez-Claros, 2009) for bears;
Gémez Cano, Herndndez Ferndndez ¢ Alvarez Sierra, 2013 for rodents, Claude et al., 2004
for testudinoids, or Foth, Rabi ¢ Joyce, 2017 for turtles. This study shows that the three-
dimensional shape of the shell of extant turtles, as herein captured using landmarks and
semilandmarks curves, allows discriminating with high confidence two primary ecological
categories, in particular a terrestrial category, a polyphyletic assemblage that consists of
most testudinids and some of the emydids and geoemydids included in our sample, and
a highly aquatic category, another polyphyletic assemblage that includes all chelonioids,
most trionychids, and some chelydroids included in our sample. All remaining turtles are
left behind in a poorly diagnosed, intermediate category which unites an eclectic group of
fully terrestrial to highly aquatic turtles with what amounts to a non-specialized continental
shell shape. We therefore have confidence in using this method to assess the ecology of
fossil turtles with the caveat, however, that it is only possible to recognize two specialized
morphotypes.

Results for fossil turtles

We find the results of our pFDA analyses to be dubious, as the Triassic fossil turtles are
not grouping anywhere close to any extant turtle, in contrast to the PCA and LDA, where
these turtles plot within the morphospace defined by extant members of the group. This
placement of the Triassic turtles as outliers in the pFDA graph could be a direct result of
time calibration combined with the phylogenetic placement of these turtles at the base
of the turtle tree. This hypothesis was explored with a series of tests, including, among
others, use of an ultrametric tree (i.e., all fossils were coded as living in the Present) and
use of an artificial outgroup (i.e., an all 0 outgroup, an all 1 outgroup, and an outgroup
with random values) with changing ecology (i.e., terrestrial versus unknown). In the plots
resulting from the use of an ultrametric tree, the Triassic fossils pool with extant turtles,
even though their phylogenetic distance has actually increased (see Fig. 54 and Fig. S5).
This makes us question the application of this method on this dataset. The problematic
placement of the Triassic fossils as outliers is not solved in any of the six variant analyses
using an artificial outgroup, as their position remains mostly unchanged (see Fig. S6 and
Fig. S7). As all pFDA performed resulted in an optimal A = 0, none of the subsets of
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Table 9 Prediction of the ecology fossil turtles based on the LDA for SET1. Results are presented for the
analyses using five versus three ecological categories.

Species Predictions CAT. prob.
5 categories Plesiochelys bigleri fully webbed 3-4 0.95
Proterochersis robusta fully webbed 3-4 0.98
Proganochelys quenstedtii fully webbed 3-4 0.99
3 categories Plesiochelys bigleri intermediate 1-2 0.87
Proterochersis robusta intermediate 1-2 0.99
Proganochelys quenstedtii intermediate 1-2 0.98

the data contain a phylogenetic signal under Brownian motion (Pagel, 1999; Motani ¢
Schmitz, 2011). This may have led to the curious placements of Proterochersis robusta and
Proganochelys quenstedtii. As shell shape seems to be independent from turtle phylogeny,
a phylogenetic correction of the data is unjustified. Consequently, we restrict ourselves to
discussing the LDA results only.

Paleoecology of Plesiochelys bigleri

Plesiochelys bigleri was included in the study to test the impact of fossils on the study, but
also because the paleoecology of plesiochelyids remains poorly resolved as either riverine
(Riitimeyer, 1873), near-shore marine (Billon-Bruyat et al., 2005), or marine (Brim, 1965).
This uncertainty is based, in part, on the realization that the sediments that preserve
plesiochelyids contain a mixture of continental to marine faunas (Comment, 2015), the fact
that no complete limbs are yet preserved (Anquetin, Piintener & Joyce, 2017), and that the
geochemical study of Billon-Bruyat et al. (2005) lacks catalog numbers for the specimens
included in the study that would allow a verification of their results (Anquetin, Piintener ¢
Joyce, 2017).

In the LDA using five categories, Plesiochelys bigleri is predicted to be “fully webbed” and
plots at the margin of “fully webbed” turtles close to turtles with “extensive webbing”. The
equivalent analysis using three categories predicts this fossil to be “intermediate,” but it
plots again within this group towards the margin with “specialized aquatic turtles.” These
predictions translate into a non-specialized aquatic morphology that is broadly consistent
with riverine to costal habitats. Although this does not clarify the ecology of this turtle
beyond the debate outlined above, it at least provides independent support for a highly
aquatic lifestyle and make the prediction that this animal will reveal to have relatively
elongate limbs, but not fully formed flippers.

Paleoecology of Proterochersis robusta

Proterochersis robusta has traditionally been thought to have had been a terrestrial turtle
(Fraas, 1913; Mlynarski, 1976; De Lapparent de Broin, 2001), but this was likely based on
the highly domed habitus of the shell combined with the continental sediments from
which it was recovered. The study of Scheyer ¢» Sander (2007) confirmed this assertion
more recently using bone histology, but Benson et al. (2011) soon after concluded upon
a semi-aquatic lifestyle based on the cross-section of this animal. Lichtig ¢ Lucas (2017)
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finally concluded upon terrestrial habitat preferences, once again, mostly based on shell
ratios that pertain to the doming.

The LDA that utilizes five categories predicts that Proterochersis robusta is “fully webbed”.
It also plots at the margin of “fully webbed”, but close to turtles that are “poorly webbed”
such as the emydid Emys blandingii and the chelid Platemys platycephala, which are poor
swimmers, but also the geoemydids Cuora amboinensis and Melanochelys trijuga, which
are described as semi-aquatic turtles (Ernst & Barbour, 1989). The analysis that utilizes
three categories, by contrast, predicts an “intermediate” ecology, which corresponds to a
non-specialized shell shape consistent with continental habitat preferences, including fully
aquatic, semi-terrestrial, or fully terrestrial. It is interesting to note that this highly domed
species does not group with today’s highly domed specialized terrestrial tortoises, but rather
with the emydid Emys orbicularis, and the geoemydids Mauremys reevesii and Heosemys
spinosa, which are also described as semi-aquatic (Ernst ¢ Barbour, 1989). We therefore
interpret these results as deeply ambiguous but note that depositional environments
strongly favor a dry continental setting for this turtle, which is consistent with shell
histology, and not contradicted by shell shape either.

Paleoecology of Proganochelys quenstedtii

Proganochelys quenstedtii was initially believed to be terrestrial, despite its relatively low
domed shell, which was interpreted as being crushed (Fraas, 1899; Jaekel, 1914). Gaffney
(1990) noted similarities in the shape of the femur with Macrochelys temminckii and
concluded upon a possible bottom walking adaptation by reference to the work of Zug
(1971). Joyce ¢ Gauthier (2004) suggested terrestrial habitat preferences for this taxon
based on forelimb proportions, which was soon after confirmed by Scheyer ¢ Sander
(2007) using bone histology. Joyce (2015), more recently, presented several additional lines
of evidence for a terrestrial habitat preference of this taxon, including the presence of
osteoderms on the neck and the tail and depositional context, in particular the observation
that this turtle is found with continental upland faunas, not intermixed with the rich
aquatic low land faunas of the time. Lichtig ¢> Lucas (2017), by contrast, concluded upon
semi-aquatic habitat preferences using shell metrics.

The LDA using with five ecological categories predicts for Proganochelys quenstedtii to
have been “fully webbed” (category 2). The analysis with three ecological categories on the
other hand suggests “intermediate” habitat preference, though the species plots together
with Proterochersis robusta towards the edge of the plot, but once again close to semi-
aquatic turtles, such as the testudinoids Glyptemys insculpta, Heosemys spinosa, and Emys
orbicularis. In our opinion, the analysis suggests that this turtle has a non-specialized shell
shape broadly consistent with continental habitat preferences ranging from fully aquatic
to fully terrestrial. The majority of independent sources of information nevertheless still

point towards a more dry continental signal.

Do 2D components perform better than 3D data?
The relative performance of 2D versus 3D data in geometric morphometrics has recently
been discussed (Alvarez ¢ Perez, 2013; Cardini, 2014; Buser, Sidlauskas & Summers, 2018;
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Courtenay et al., 2018; Otdrola-Castillo et al., 2018; Hedrick et al., 2019), but the results are
divergent depending on the clade and/or the anatomical body region being studied. This
analysis utilized several subsets (SET2 to 4) of the same primary dataset of shell morphology
(SET1) of extant and fossil turtles. The confusion matrices and the plots confirm higher
accuracy in predicting the known ecology of extant turtles for SET1 and SET2. As such,
SET2, which uses the outline of the carapace only, appears to be a better proxy for
distinguishing ecological categories in extant turtles than the transverse cross-section
(SET3), which were used by Domiokos ¢ Virkonyi (2008) and Benson et al. (2011). Indeed,
the latter was found in this study to show the worst correlation with forelimb webbing and
the associated habitat preference. Nevertheless, the complete shell shape (SET1) performs
slightly better than the outline shape alone (SET2), suggesting that the full shell is needed
to characterize the ecology of a turtle.

Limits to the study

This study focused on obtaining the 3D shape of a broad set of extant turtles that samples all
major clades, but did not consider ontogenetic changes, sexual dimorphism, and variation
within genera (see Rivera, 2008, for variation within a species). These concerns may be
relevant, considering that some extant turtles display much variation during ontogeny
and between the sexes (e.g., Berry & Shine, 1980; Pritchard, 2008; Vega ¢ Stayton, 2011). A
bigger concern perhaps is that the study only includes few fossil taxa. This was done in part
to avoid circularity, but also because intact fossil shells are extremely rare in collections. This
has the unfortunate result, however, that shell morphologies not realized by extant turtles
for a particular habitat preference or shell morphologies not realized by extant turtles at all
are not included in the study, even though they plausibly may have a significant impact.
For instance, numerous fossil turtles exist that are believed to have been terrestrial using
external data, but that have shell shapes very different from their extant relatives, such as the
large, but flat, and often spiked shells of nanhsiungchelyids (e.g., Hirayama et al., 2001) or
the elongate, but flat shells of sichuanchelyids (Joyce ef al., 2016). Similarly, numerous taxa
thought to be marine, at least by reference to the depositional environment in which they are
found, have shells that are similar to freshwater aquatic turtles, such as Chedighaii barberi or
Taphrosphys sulcatus (Gaffney, Tong ¢ Meylan, 2006), or display hyperspecialized marine
morphologies, such as seen in the thalassochelydians Achelonia formosa and Tropidemys
seebachii (Joyce & Mduser, 2020) or advanced protostegids such as Archelon ischyros or
Calcarichelys gemma (Wieland, 1903; Hooks, 1998). Inclusion of these fossils, if they ever
become available in 3D, would likely render the specialized terrestrial versus specialized
marine fields categories used in this study even less diagnostic. The impact of fossils was
previously illustrated for turtle skulls by Foth, Rabi ¢ Joyce (2017). Unfortunately, the
vast majority of fossils, especially shells, show much taphonomic crushing. In this study,
we partially accounted for this by selecting material we felt to be preserved correctly in
three dimensions, but we cannot discount subtle plastic deformation. Indeed, a possible
additional source of error to our study is usage of a model of Proganochelys quenstedti,
which was produced as faithfully as possible by reference to the available, crushed fossil
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material, but may include subconscious biases of the artist, in addition to taphonomic
crushing.

As an alternative to the discriminant analysis we used herein, future studies may wish to
focus on explicitly identifying morphologies associated with particular habitat preferences.
For instance, we note informally that the tear-drop shape of extant marine turtles and
carettochelyids is uniquely associated with highly aquatic animals, that round, but tectate
shells seems to be associated with riverine environments, and self-righting shell shapes,
as previously proposed (Domokos ¢ Virkonyi, 2008) with terrestrial habitats, but that
generalized shell shapes can occur everywhere. The identification of specialization may
therefore provide better results, than the characterization of the morphospace held by all
individuals of a certain ecological category. No matter what, as no single source of ecological
information appears to be sufficient for the moment to infer the paleoecology of fossil
turtles, we recommend a multi-pronged approach, which includes limb morphology (e.g.,
Joyce & Gauthier, 2004), bone histology (e.g., Scheyer & Sander, 2007), isotopic analysis
(e.g., Billon-Bruyat et al., 2005), depositional environments, cranial morphology (e.g.,
Foth, Rabi & Joyce, 2017), and, if at all, the full morphology of the shell, not just isolated
measurements.

CONCLUSIONS

This study explicitly sought correlations between turtle shell shape and turtle ecology but
ended up questioning the utility of shell shape as a proxy for the paleoecology of fossil turtles.
Linear discriminant analysis identified two specialized shell shapes that are associated with
extant turtles with highly aquatic versus highly terrestrial habitat preferences. Although
these correlations could be applied to the fossil record, they are not particularly useful, as
the paleoecology of fossil turtles with these shapes is rarely controversial in the first place.
Instead, linear discriminant analysis also highlights that the vast majority of extant turtles
exhibit an intermediate morphology, regardless of their habitat preferences. Although we
did not include fossil turtles to avoid circularity, we presume that their inclusion would
further blur the lines, as numerous fossils we perceive to possess this intermediate shell
morphotype are otherwise thought to be highly marine and highly terrestrial. From an
evolutionary standpoint, this indicates that the shape of the turtle shell is likely controlled
by factors unrelated to ecology. We urge caution for assessing the paleoecology of fossil
turtles using shell shape alone. Most importantly, the commonly propagated rule of thumb
that a domed shell corresponds to terrestrial ecology, while a flattened one suggests an
aquatic lifestyle, should be avoided, as many turtles perceived to be highly domed have an
aquatic ecology.
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- Astrochelys radiata, M64798-116462 https://doi.org/10.17602/M2/M 116462

- Chelonoidis carbonaria, M64800-116464 https://doi.org/10.17602/M2/M 116464
- Chersina angulata, M64801-116465 https://doi.org/10.17602/M2/M 116465

- Geochelone elegans, M64802-116466 https://doi.org/10.17602/M2/M116466

- Gopherus polyphemus, M64805-116469 https://doi.org/10.17602/M2/M116469
- Homopus femoralis, M64806-116470 https://doi.org/10.17602/M2/M116470

- Indotestudo elongata, M64808-116472 https://doi.org/10.17602/M2/M116472

- Kinixys belliana, M64810-116474 https://doi.org/10.17602/M2/M116474

- Malacochersus tornieri, M64811-116475 https://doi.org/10.17602/M2/M116475
- Manouria impressa, M64812-116476 https://doi.org/10.17602/M2/M116476

- Psammobates tentorius, M64815-116479 https://doi.org/10.17602/M2/M 116479
- Pyxis arachnoides, M64817-116481 https://doi.org/10.17602/M2/M116481

- Stigmochelys pardalis, M64819-116483 https://doi.org/10.17602/M2/M 116483

- Testudo graeca, M64820-116484 https://doi.org/10.17602/M2/M116484

- Dogania subplana, M64824-116488 https://doi.org/10.17602/M2/M 116488

- Pelodiscus sinensis, M64826-116490 https://doi.org/10.17602/M2/M116490

- Rafetus euphraticus, M64827-116491 https://doi.org/10.17602/M2/M116491

- Apalone mutica, M64828-116492 https://doi.org/10.17602/M2/M 116492

- Lissemys punctata, M64829-116493 https://doi.org/10.17602/M2/M116493

- Proganochelys quenstedtii, M64830-116494 https://doi.org/10.17602/M2/M116494
- Proterochersis robusta, M64831-116495 https://doi.org/10.17602/M2/M 116495
- Chelonia mydas, M64778-116567 https://doi.org/10.17602/M2/M116567

- Macrochelys temminckii, M64779-116443 https://doi.org/10.17602/M2/M116443
- Eretmochelys imbricata, M64780-116444 https://doi.org/10.17602/M2/M116444
- Caretta caretta, M64781-116445 https://doi.org/10.17602/M2/M116445.
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