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ABSTRACT
Background. As an important class of E3 ubiquitin ligases in the ubiquitin proteasome
pathway, proteins containing homologous E6-AP carboxyl terminus (HECT) domains
are crucial for growth, development,metabolism, and abiotic and biotic stress responses
in plants. However, little is known aboutHECT genes in wheat (Triticum aestivum L.),
one of the most important global crops.
Methods. Using a genome-wide analysis of high-quality wheat genome sequences,
we identified 25 HECT genes classified into six groups based on the phylogenetic
relationship among wheat, rice, and Arabidopsis thaliana.
Results. The predicted HECT genes were distributed evenly in 17 of 21 chromosomes
of the three wheat subgenomes. Twenty-one of these genes were hypothesized to be
segmental duplication genes, indicating that segmental duplication was significantly
associated with the expansion of the wheat HECT gene family. The Ka/Ks ratios of the
segmental duplication of these genes were less than 1, suggesting purifying selection
within the gene family. The expression profile analysis revealed that the 25 wheatHECT
genes were differentially expressed in 15 tissues, and genes in Group II, IV, and VI
(UPL8, UPL6, UPL3) were highly expressed in roots, stems, and spikes. This study
contributes to further the functional analysis of the HECT gene family in wheat.

Subjects Agricultural Science, Bioinformatics, Genomics, Molecular Biology, Plant Science
Keywords Wheat, HECT genes, Evolution, Segmental duplication, Expression

INTRODUCTION
Ubiquitination is a post-translational modification that involves the covalent attachment
of ubiquitin to a protein substrate. Ubiquitination is important for cellular homeostatic
maintenance and plays essential roles in plant growth, development, and the regulation of
abiotic and biotic stresses (Downes et al., 2003; El Refy et al., 2003; Liu & Stone, 2011; Miao
& Zentgraf, 2010; Moon, Parry & Estelle, 2004; Rotin & Kumar, 2009; Stone, 2014; Wang &
Deng, 2011). At the end of a three-enzyme cascade (E1 ubiquitin activating enzyme; E2
ubiquitin conjugating enzyme; E3 ubiquitin ligase), E3 recruits substrates and promotes or
directly catalyzes ubiquitin transfer onto its targets (Huibregtse et al., 1995; Scheffner, Nuber
& Huibregtse, 1995; Wang et al., 2006; Wang & Pickart, 2005). E3 generally determines the
specificity of the ubiquitination reaction with different substrate recognition domains
(Huibregtse et al., 1995; Kim et al., 2007; Scheffner, Nuber & Huibregtse, 1995). According
to structural similarities and ubiquitination domains, plant E3 proteins can be classified
as three main types (Chen & Hellmann, 2013; Craig et al., 2009; Duplan & Rivas, 2014;
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Guzman, 2014; Huibregtse et al., 1995; Mach, 2008; Maspero et al., 2013; Qin et al., 2008;
Scheffner, Nuber & Huibregtse, 1995; Schwechheimer & Calderon Villalobos, 2004; Stone,
2014; Wang et al., 2006; Wang & Pickart, 2005; Yee & Goring, 2009): HECT (Homologous
to E6-AP C-Terminal), RING (Really Interesting New Gene), and U-box.

The HECT-type ubiquitin ligase is an important class of E3s defined by the presence
of a C-terminal catalytic HECT domain. The general features of HECT domains are an
N-terminal lobe that contains the E2-binding site and a smaller C-terminal lobe that
includes the active-site Cys residue that receives ubiquitin from E2 and links itself with the
ubiquitin molecule (Downes et al., 2003; Huibregtse et al., 1995). Classification of HECT
E3 proteins into different subfamilies is based on the N-terminal domains (Downes et al.,
2003; Grau-Bove, Sebe-Pedros & Ruiz-Trillo, 2013; Marin, 2010; Marin, 2013) responsible
for recognizing and binding protein substrates (Kamadurai et al., 2013; Kim et al., 2011;
Maspero et al., 2011; Maspero et al., 2013; Rotin & Kumar, 2009), while the conserved C-
terminal HECT domain catalyzes the transfer of ubiquitin to various substrates. Substrate
proteins usually possess recognition motifs that can directly bind to the N-terminal
domains, while the special HECT domains are essential to the prediction and evolution of
the HECT genes in plants; however, comprehensive research on these genes is limited.

The HECT-type E3 ubiquitin ligases comprise a small class of E3s, and seven genes
(UPL1-UPL7) have been identified in Arabidopsis thaliana (Downes et al., 2003). UPL3 is
involved in trichome development (Downes et al., 2003; Patra, Pattanaik & Yuan, 2013),
genome endoreduplication (El Refy et al., 2003) and seed size (Miller et al., 2019). UPL5
is involved in leaf senescence (Miao & Zentgraf, 2010), and UPL1, UPL3, and UPL5
in plant immunity (Furniss et al., 2018). These seven A. thaliana HECT genes can be
classified into five subfamilies or six groups according to the phylogenetic relationships
provided in previous studies (Marin, 2013; Meng et al., 2015). However, little research
has been conducted on the HECT genes in wheat, which is one of the most important
crops produced worldwide (Choulet et al., 2014; International Wheat Genome Sequencing
Consortium, 2014; International Wheat Genome Sequencing Consortium et al., 2018). In
this research, we conducted a comprehensive genome-wide analysis of the wheat HECT
genes to identify HECT genes conserved in wheat, rice, and A. thaliana. Gene exon-intron
structure, conserved motif, domain structure, chromosomal distribution, duplication
event, and expression profile were also analyzed in detail. Our research data will provide
useful information for further functional investigation of the HECT gene family in
allohexaploid wheat and their evolution in polyploid plants.

MATERIALS & METHODS
Sequence retrieval and identification of the HECT gene family in wheat
To identify theHECT genes inwheat, the protein sequences of all HECT genes inA. thaliana
and rice were retrieved from the Phytozome v13 database (Goodstein et al., 2012) with the
Ensembl Plants (Howe et al., 2020) as a complementary sequence database. These protein
sequences were then used as queries to conducted local BlastP and tBlastN (Camacho et al.,
2009) searches using default parameters (E-value <10−5) against wheat reference sequence
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database in the Chinese Spring reference IWGSCRefSeq v1.0 (InternationalWheat Genome
Sequencing et al. 2018) from the Ensembl Plants database. The hmmsearch program in
the HMMER software (version 3.3) (Potter et al., 2018) was also used to the identification
of HECT genes with the HMM profile of the HECT domain (PF00632) in the Pfam 32.0
database (El-Gebali et al., 2019), using the default parameters (E-value < 10−5). Then, the
combined candidate HECT genes were used as queries to conduct BlastP and tBlastN
searches of the wheat genome again to obtain more potential gene candidates with the
default parameters (E-value < 10−5). The obtained protein sequences were further verified
using the InterProScan program (Jones et al., 2014) to confirm the presence of the HECT
domain. Finally, eachHECT gene was revisedmanually for conserved domain architectures
using the Pfam (El-Gebali et al., 2019), PROSITE (Sigrist et al., 2013), and SMART (Letunic
& Bork, 2018) databases. Proteins without a typical HECT domain or fewer than 300 amino
acids were removed from the final sequence dataset.

Sequence alignment and phylogenetic analysis
Multiple sequence alignments of the wheat HECT protein sequences were performed by
using MUSCLE (Edgar, 2004) with its default parameters, and MAFFT (L-INS-i strategy)
(Rozewicki et al., 2019). The phylogenetic treewas constructed and visualized usingMEGAX
software (Kumar et al., 2018) based on the full-length HECT protein sequences through
a neighbor-joining algorithm with 1,000 bootstrap repetitions. The maximum likelihood
(ML)methods implemented in PhyML3.1 (Guindon et al., 2010)were also used to construct
trees of full-length HECT protein sequences with 1,000 bootstrap repetitions.

Sequence analysis
The structures ofHECT genes and the number of exons and introns were determined using
the Gene Structure Display Server (Hu et al., 2015) by aligning the coding sequences with
their corresponding genomic DNA sequences. The conserved motifs encoded by HECT
genes were identified using MEME (Multiple EM for Motif Elicitation) (Bailey et al., 2015).
The conserved domains of the HECT protein sequences within the phylogenetic trees were
visualized and annotated using EvolView (Subramanian et al., 2019).

Chromosomal location and duplication
To map all HECT genes to the wheat chromosomes, information of HECT gene
chromosomal location was obtained from Ensembl Plants. Gene duplication events of
the wheat HECT genes were inferred based on their location among the three wheat
subgenomes (A, B, and D). Firstly, all-in-all BlastP of the wheat genome was performed
to analyze sequence similarity among the three subgenomes (A, B, and D). Secondly,
MCScanX (Multiple Collinearity Scan toolkit) (Wang et al., 2012) was then used with
default parameters to detect possible gene duplication blocks. Finally, Chromosomal
location and syntenic relationships were illustrated using Circos-0.67 (Krzywinski et al.,
2009). Synonymous (Ks) and nonsynonymous substitution (Ka) rates were calculated with
TBtools (Chen et al., 2018), as previously described (Meng et al., 2015). For each gene pair,
the approximate divergence time (T, million years ago, Mya) of the duplication events for
each paralogous gene pair was estimated using the mean Ks values from T = Ks/2 λ, in
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which the mean synonymous substitution rate (λ) for wheat is 6×10−9(Wolfe, Li & Sharp,
1987;Wolfe, Sharp & Li, 1989).

Expression analyses
RNA-Seq data (Accession number ‘‘choulet_URGI’’ and ‘‘PRJNA497810’’) were
downloaded from expVIP (Borrill et al., 2019; Borrill, Ramirez-Gonzalez & Uauy, 2016;
Choulet et al., 2014; Ramírez-González et al., 2018) (Table S1–S4) and used to explore the
expression patterns of HECT genes in wheat. These transcript data were obtained from
five organs (root, stem, leaf, spike, and grain) at three developmental stages and flag
leaves harvested at 3, 7, 10, 13, 15, 17, 19, 21, 23, and 26 dpa (day post-anthesis). The
expression data were log2 based TPM (transcripts per million mapped reads) values, and
the heatmap of the expression patterns of wheat HECT genes was drawn using the R
heatmap.2 function.

RESULTS
Identification of the HECT gene family in wheat
To identify HECT genes in wheat, the HMM HECT domain profile PF00632 (El-Gebali et
al., 2019) and the HECT protein sequences from A. thaliana (Downes et al., 2003) and rice
(Meng et al., 2015) were used to search against the wheat protein sequences in Ensemble
Plants (Howe et al., 2020; International Wheat Genome Sequencing et al. 2018), then the
potential HECT genes were confirmed by InterProScan (Jones et al., 2014) with Pfam
(El-Gebali et al., 2019), Prosite (Sigrist et al., 2013) and SMART (Letunic & Bork, 2018)
databases that helped to characterize the candidates by the existence of the complete HECT
domain. Ultimately, we identified 25 putative HECT genes in the latest wheat genome
(Table 1).

Phylogenetic analysis of HECT genes in wheat
To understand the evolutionary relationship of the wheat HECT genes, phylogenetic trees
were constructed based on the alignment of the full-length protein sequences and HECT
domain sequences of 25 wheat, 7 rice, and 7 A. thalianaHECT proteins (Fig. 1 and Fig. S1).
According to the classification criteria used for A. thaliana and rice in previous studies
(Downes et al., 2003; Grau-Bove, Sebe-Pedros & Ruiz-Trillo, 2013; Marin, 2013; Meng et al.,
2015), the wheatHECT genes were categorized into seven groups (Group I, II, III, IV, V, VI
and VII), which contained 0, 3, 5, 5, 3, 5 and 4 HECT genes, respectively. Genes in Group
III, IV and VI were the most abundant and comprised 60% of the identified genes, while
genes in Group I was absent in wheat. Nevertheless, in A. thaliana, Group I included two
HECT genes, Group II did not include any HECT genes, and other Groups included one
HECT gene, respectively. These seven groups can be further classified into five subfamilies
that correspond to those described in a previous study (Marin, 2013).

Gene exon-intron structure and conserved motif and domain
architecture of the wheat HECT genes
To investigate the structural characteristics of wheat HECT genes, the exon-intron
structures of the wheat HECT genomic sequences, conserved motifs, and the domain
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Table 1 PutativeHECT genes identified in the wheat genome.

Gene
symbol

Gene locus Chromosome Gene
start (bp)

Gene
end (bp)

Gene%GC
content

length
(AA)

TaHECT01 TraesCS1A02G059500 1A 40892389 40898032 47.13 1335
TaHECT02 TraesCS1A02G106100 1A 103311704 103326325 42.01 1010
TaHECT03 TraesCS1A02G288600 1A 485557978 485566303 43.98 1520
TaHECT04 TraesCS1B02G123400 1B 149601252 149613588 39.18 1027
TaHECT05 TraesCS1B02G298000 1B 518258672 518266604 42.38 1521
TaHECT06 TraesCS1D02G108900 1D 101929905 101943199 39.16 1030
TaHECT07 TraesCS1D02G287600 1D 386119575 386127952 44.18 1522
TaHECT08 TraesCS2A02G064700 2A 29095129 29105808 42.87 1862
TaHECT09 TraesCS2B02G076900 2B 42143087 42153426 43.11 1835
TaHECT10 TraesCS3B02G194900 3B 215607542 215618805 42.3 695
TaHECT11 TraesCS4A02G285800 4A 591699693 591709939 41.24 1036
TaHECT12 TraesCS4B02G027200 4B 20589014 20599094 41.07 1170
TaHECT13 TraesCS4D02G025000 4D 10931453 10942048 41.32 1122
TaHECT14 TraesCS5A02G121600 5A 263498258 263513761 42.56 3632
TaHECT15 TraesCS5A02G262600 5A 475656292 475662357 45.58 832
TaHECT16 TraesCS5B02G112800 5B 177183624 177199346 42.35 3628
TaHECT17 TraesCS5B02G261000 5B 445453118 445459346 44.89 858
TaHECT18 TraesCS5D02G118000 5D 154524415 154539554 42.35 3631
TaHECT19 TraesCS5D02G270200 5D 373832243 373838247 44.01 817
TaHECT20 TraesCS6A02G003300 6A 1494577 1504714 46.25 1839
TaHECT21 TraesCS6B02G000300 6B 163680 173488 45.87 1851
TaHECT22 TraesCS6D02G005600 6D 2399592 2409297 45.55 1841
TaHECT23 TraesCS7A02G244000 7A 220125320 220130919 46.62 862
TaHECT24 TraesCS7B02G313300 7B 559527374 559559604 45.86 897
TaHECT25 TraesCS7B02G496200 7B 747214104 747221564 42.45 796

architecture of the wheat HECT proteins were compared based on their phylogenetic
relationships. Each gene structure was revealed by aligning its coding sequences with the
corresponding genomic sequences (Chen et al., 2018; Hu et al., 2015). Most of the wheat
HECT genes contained abundant (more than ten) exons and only those in Group III had
only three or four exons (Fig. 2A). Closely related HECT genes in the same phylogenetic
group had similar exon-intron structures, and those with closer evolutionary relationships
were more similar in their number and length of exons and introns. The conserved motifs
of wheat HECT proteins in each group were analyzed using MEME software (Bailey et al.,
2015). Fifteen conserved motifs (motif1-motif15) were predicted and these motifs were
specific to each group (Fig. 2B). The composition of the structural motifs varied among the
different HECT groups, while similar motifs were found in the same group. Additionally,
the motifs encoding the HECT domain in the C-terminal regions of wheat HECT proteins
were relatively conserved, suggesting that the functions of the HECT proteins were
intergroup specific. The domain architecture of HECT proteins was obtained using the
InterProScan program (Jones et al., 2014) with a three-database annotation (El-Gebali et
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Figure 1 Phylogenetic relationships of 39HECT genes fromwheat (25), rice (seven), and Arabidopsis
thaliana (seven). A neighbor-joining (NJ) unrooted tree is shown and the shaded areas indicate the main
branches that correspond to the seven gene groups. MEGAX package was used to construct the NJ tree
from full-length amino acid sequence alignments (File S1) of the three plant species, with 1000 bootstrap
replicates. Numbers refer to bootstrap support in terms of percentage.

Full-size DOI: 10.7717/peerj.10457/fig-1
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Figure 2 Gene structures and conserved motifs that encode 25 wheat HECT proteins based on phylo-
genetic relationships. The unrooted neighbor-joining tree was constructed using the alignment of full-
length amino acid sequences (File S2) with the MEGAX package. The lengths of the exons and introns in
each HECT gene are displayed proportionally. The green boxes, yellow boxes, and lines indicate UTRs, ex-
ons, and introns, respectively. Conserved motifs are showed in different colors.

Full-size DOI: 10.7717/peerj.10457/fig-2

al., 2019; Letunic & Bork, 2018; Sigrist et al., 2013). In addition to the HECT domain, other
domains were found in the N-terminal regions of wheat HECT proteins (Fig. 3). The wheat
HECT genes that were derived from the same group generally had similar exon-intron
structures (Fig. 2A), motif compositions (Fig. 2B), and domain architectures (Fig. 3).

Chromosomal location and duplication of wheat HECT genes
To decide the chromosomal locations of the wheat HECT genes, the 25 putative wheat
HECT genes were located in the 21 chromosomes of the wheat genome database available
from Ensembl Plants (Howe et al., 2020; International Wheat Genome Sequencing et al.
2018). The wheat HECT genes were randomly distributed in 17 of 21 chromosomes;
chromosome 2D, 3A, 3D, and 7D contained no HECT genes, chromosome 1A contained
three HECT genes, chromosome 1B, 1D, 5A, 5B, 5D, and 7B each contained two HECT
genes, and the other chromosomes each contained only one HECT gene (Fig. 4). The 25
wheat HECT genes were approximately evenly distributed among the A (9), B (10), and
D (6) subgenomes, which was in accordance with the observation that most HECT genes
have three homoeologous sequences located across three subgenomes. However, theHECT
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Figure 3 Domain architecture of 25 wheat HECT proteins according to their phylogenetic relation-
ships. Each domain is represented by a colored box. UBA: Ubiquitin associated domain, DUF: Domain of
Unknown Function, ARM: Armadillo repeats, IQ; IQ Short calmodulin-binding motif, UBL: Ubiquitin-
like domain.

Full-size DOI: 10.7717/peerj.10457/fig-3

genes were not randomly distributed among the different chromosomal groups of the
three subgenomes. The chromosomal Group II, III, and VII contained two, one, and three
sequences, respectively. The remaining 19 sequences were more evenly distributed across
chromosomal Group I, IV, V, and VI, and ranged from three to seven genes per group.
An interesting finding was that the location of the HECT genes on chromosome 4A was
opposite with those of the homoeologous genes on chromosome 4B and chromosome 4D
(Fig. 4).

Segmental and tandem duplication are considered two essential factors for gene family
expansion in plants (Cannon et al., 2004; Panchy, Lehti-Shiu & Shiu, 2016;Qiao et al., 2019;
Zhu et al., 2014). To examine duplication patterns of the wheat HECT genes, we identified
tandem and segmental duplication events using MCscanX (Wang et al., 2012) employing
default parameters with TBtools (Chen et al., 2018). No tandem duplicated HECT gene
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Figure 4 Chromosome locations ofHECT genes and segmentally duplicated gene pairs in the wheat
genome. Chromosomes are shown in different colors and in a circular form. The approximate distribu-
tion of each wheat HECT gene is marked on the circle with a short black line. Colored curves denote the
details of syntenic regions between the wheat HECT genes. The purple curves represent the estimated time
of duplication events that occurred 100–112 Mya, and the other curves represent the estimated time of du-
plication events 2–12 Mya.

Full-size DOI: 10.7717/peerj.10457/fig-4

pairs were identified in the 25 wheatHECT genes; however, 21 of the 25 wheatHECT genes
were involved in segmental duplication. Twenty segmental duplicated HECT gene pairs
were identified (Fig. 4 and Table 2), indicating that the segmental duplication events had
contributed to HECT gene family expansion. To date the gene duplication time of these
segmentally duplicated HECT genes, the Ks and Ka distances, as well as the Ka/Ks ratios
were calculated. The Ka/Ks ratios for segmentally duplicated HECT gene pairs ranged
from 0.07 to 0.44, with an average value of 0.20 (Table 2), implying that these segmentally
duplicated HECT genes were under purifying selection, as indicated by the Ka/Ks ratios
were less than 1. The divergence time of duplication events were inferred by Ks (Table 2).
Results showed that within six existed phylogenetic groups, the two closest wheat HECT
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Table 2 Estimates of the segmental duplication events in the wheatHECT gene pairs.

Group Gene 1 Gene 2 Ka Ks Ka/Ks Mya

TraesCS5A02G121600 TraesCS5B02G112800 0.01 0.04 0.16 2.93
II

TraesCS5A02G121600 TraesCS5D02G118000 0.00 0.03 0.14 2.87
TraesCS5A02G262600 TraesCS5B02G261000 0.01 0.08 0.18 6.29
TraesCS5A02G262600 TraesCS5D02G270200 0.01 0.07 0.18 6.09
TraesCS5A02G262600 TraesCS7A02G244000 0.55 1.34 0.41 111.99
TraesCS5B02G261000 TraesCS5D02G270200 0.01 0.06 0.23 4.79
TraesCS5B02G261000 TraesCS7A02G244000 0.55 1.29 0.42 107.74

III

TraesCS5D02G270200 TraesCS7A02G244000 0.55 1.24 0.44 103.15
TraesCS1A02G106100 TraesCS1B02G123400 0.00 0.04 0.07 3.07
TraesCS1A02G106100 TraesCS1D02G108900 0.00 0.03 0.15 2.44IV

TraesCS1B02G123400 TraesCS1D02G108900 0.00 0.03 0.17 2.29
TraesCS4A02G285800 TraesCS4B02G027200 0.01 0.03 0.19 2.91
TraesCS4A02G285800 TraesCS4D02G025000 0.02 0.05 0.30 4.37V

TraesCS4B02G027200 TraesCS4D02G025000 0.01 0.06 0.24 5.04
TraesCS2A02G064700 TraesCS2B02G076900 0.00 0.03 0.15 2.66
TraesCS6A02G003300 TraesCS6D02G005600 0.01 0.12 0.08 10.01VI

TraesCS6B02G000300 TraesCS6D02G005600 0.01 0.13 0.07 11.03
TraesCS1A02G288600 TraesCS1B02G298000 0.01 0.06 0.23 5.41
TraesCS1A02G288600 TraesCS1D02G287600 0.01 0.05 0.11 4.25VII

TraesCS1B02G298000 TraesCS1D02G287600 0.01 0.08 0.17 6.43

Notes.
Ks, synonymous substitution rate; Ka, nonsynonymous substitution rate; Mya, million years ago.

genes were duplicated about 2–12 million years ago (Mya), while the other genes were
duplicated about 100–112 Mya.

Expression profiles of wheat HECT genes
To discover the potential roles of these wheatHECT genes in growth and development, we
used public RNA-seq data covering 15 tissues at different growth stages from expVIP (Borrill
et al., 2019; Borrill, Ramirez-Gonzalez & Uauy, 2016; Ramírez-González et al., 2018). Based
on the wheat RNA-seq data, the 25 wheat HECT genes were detected in all 15 tissues
at the gene level (Fig. 5, Table S1, and Table S2). Moreover, the expression of these
genes exhibits distinct expression and tissue-specific characteristics. Most HECT genes in
Group II, IV, and VI were relatively highly expressed in the roots, stems and spikes, while
those in the leaves were expressed at relatively low levels (Fig. 5). Interestingly, in wheat
grain tissues, most wheat HECT gene expression in Group II, IV, and VI were high at
2 dpa and 30 dpa and low at 14 dpa. Moreover, genes within each group or in different
groups had similar expression patterns in different tissues, such as the high expression of
genes in Group II (TraesCS5A02G121600, TraesCS5B02G112800, TraesCS5D02G118000),
Group IV (TraesCS1A02G106100, TraesCS1B02G123400, TraesCS1D02G108900),
and Group VI (TraesCS6A02G003300, TraesCS6B02G000300, TraesCS6D02G005600,
TraesCS2A02G064700, and TraesCS2B02G076900), except for TraesCS3B02G194900 and
TraesCS7B02G313300 (Fig. 5). Furthermore, the genes in Group II, IV, and VI were
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Figure 5 Heatmap of wheatHECT gene expression patterns in 15 different tissues. Transcriptional
levels were obtained from expVIP. The RNA-seq relative expression data from 15 tissues was used to re-
construct the expression patterns of the wheat genes. The sources of the samples are provided on the x-
axis.

Full-size DOI: 10.7717/peerj.10457/fig-5

relatively highly expressed in the spikes at different developmental stages and in stems at
the one cm spike stage compared to those in other tissues (Fig. 5). According to RNA-seq
data of the ten-time point expression time course of wheat senescence in the flag leaf, the
expression level of most wheat HECT genes in Group II, IV, and VI gradually increased
with the increase of dpa (Fig. 6, Table S3, and Table S4).

DISCUSSION
HECT genes play important roles in A. thaliana and diverse plant growth, developmental
and physiological processes (Downes et al., 2003; (El Refy et al., 2003); Furniss et al., 2018;
Miao & Zentgraf, 2010; Miller et al., 2019; Patra, Pattanaik & Yuan, 2013), including
trichome development (Downes et al., 2003), genome endoreduplication (El Refy et al.,
2003), seed size (Miller et al., 2019), leaf senescence (Miao & Zentgraf, 2010), and plant
immunity (Furniss et al., 2018). However, this gene family has not been investigated in
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Figure 6 Heatmap of wheat HECT gene expression patterns in wheat leaf senescence. Transcriptional
levels were obtained from expVIP. The RNA-seq relative expression data from flag leaves harvested at 3, 7,
10, 13, 15, 17, 19, 21, 23, and 26 dpa (day post-anthesis) was used to reconstruct the expression patterns of
the wheat genes. The sources of the samples are provided on the x-axis.

Full-size DOI: 10.7717/peerj.10457/fig-6

wheat. In this research, we conducted an extensive analysis of the wheat HECT genes,
including their evolution, gene exon-intron structure, conserved motif, domain structure,
chromosomal location, duplication event, and expression pattern.

We identified 25HECT genes in thewheat genome,which is 3.6 times the number present
in A. thaliana (Downes et al., 2003). However, a former study discovered 19 soybeanHECT
genes, which is 2.7 times the number found in A. thaliana (Meng et al., 2015). Our results
showed six more HECT genes in wheat than the number previously estimated in the
soybean genome. A possible explanation for this difference is that wheat is a hexaploid crop
with 21 chromosomes containing three subgenomes (A, B, and D) (International Wheat
Genome Sequencing Consortium, 2014; International Wheat Genome Sequencing Consortium
et al., 2018), while soybean is a diploid crop with 20 chromosomes derived from an ancient
tetraploid that may have had about two times more the number ofHECT genes than other
normal diploid species (Schmutz et al., 2010).

The phylogenetic analysis of the 25 wheat HECT genes classified them into subfamilies
similar to those characterized by previous research (Downes et al., 2003; Grau-Bove,
Sebe-Pedros & Ruiz-Trillo, 2013; Marin, 2013; Meng et al., 2015). The classification was
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according to the corresponding HECT gene sequence homology. Based on the phylogenetic
relationships among theHECT genes in wheat, rice, andA. thaliana, the wheatHECT genes
were classified into seven groups. Compared with a former report in A. thaliana (Marin,
2013), subfamily IV HECT genes were absent in wheat. Wheat subfamily V (Group I,
UPL1/2 and Group II, UPL8 in this study) contained three genes, subfamily VI (Group
III, UPL5) contained five genes, subfamily III (Group IV, UPL6) contained five genes,
Subfamily II (Group V, UPL7) contained three genes, and subfamily I (Group VI, UPL3
and Group VII, UPL4) contained nine genes. The HECT gene Group I was not observed
in the wheat genome. With the exception of Group I and II, other wheat Groups own
HECT genes orthologous with A. thaliana. This is basically consistent with the results of
a previous HECT gene investigation in plants (Marin, 2013), suggesting that A. thaliana
HECT gene Group II (UPL8 in this study) was lost, while the wheat HECT gene Group
I (UPL1/UPL2) was not observed in our analysis. Gene members of each phylogenetic
Group often possess identical gene exon-intron structures, conserved motifs, and domain
architectures, indicating that they probably recognize, bind, and might interact with same
or similar substrate protein.

Segmental duplication events, tandem duplication events, as well as transposition
events are three main evolutionary mechanisms of duplication events that expand the
members of gene family (Cannon et al., 2004; Panchy, Lehti-Shiu & Shiu, 2016; Qiao et al.,
2019; Zhu et al., 2014). Segmental duplications frequently occur in higher plants, because
they are diploidized polyploids that have maintained various duplicated chromosomal
blocks in the existing genomes (Cannon et al., 2004; Qiao et al., 2019). In this present
research, we discovered that 21 of the 25 wheatHECT genes were located in chromosomes
across the three subgenomes (A, B, D), indicating that segmental duplication obviously
contributed to expanding the wheat HECT gene family. A previous study has shown
that the allohexaploid wheat subgenomes A, B, and D were originally derived from three
diploid (2x;2n= 14) species and underwent three hybridization events (International
Wheat Genome Sequencing 2014). The A and B subgenomes diverged from a common
ancestor ∼7 million years ago and the first hybridization occurred ∼5.5 million years
ago between A and B subgenomes, leading to the D subgenome through homoploid
hybrid speciation. The second hybridization between the A and B subgenomes gave rise
to the AABB genome <0.8 million years ago via polyploidization. Wheat originated <0.4
million years ago by allopolyploidization from a third hybridization. By estimating the
approximate dates of the segmentally duplicated pairs of wheat HECT genes, we infer that
the paralogous genes in wheat HECT groups originated from a relatively recent duplication
event during the shaping of the three subgenomes (A, B, D) that occurred before the second
hybridization event in wheat evolution history, except for TraesCS7A02G244000 in Group
III, which originated from a relatively ancient duplication event before the appearance of
the common ancestor of the A and B subgenomes. Thus, segmental duplication events were
the primary driving forces for HECT gene evolution during the speciation and evolution
of allohexaploid wheat.

To better understand the roles of the HECT genes during the life cycle of wheat, we
performed an expression analysis of public RNA-seq data (Borrill, Ramirez-Gonzalez &
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Uauy, 2016; Choulet et al., 2014; Ramírez-González et al., 2018) in 15 tissues at different
developmental stages. Analysis of the expression patterns of these wheat genes in 15 tissues
showed that most wheat HECT genes in Group II, IV, and VI were relatively highly
expressed in the roots, stems, and spikes. In particular, the genes in Groups II, IV, and
VI were relatively highly expressed in the spikes at different developmental stages and
in stems at the 1-cm spike stage compared to other tissues. Therefore, the expression of
these genes may be closely related to wheat spike growth and development, suggesting
that the HECT genes in highly expressed spikes may be involved in the regulation or
degradation of proteins via ubiquitination during spike development stage. Previous studies
have revealed that A. thaliana AT4G38600/UPL3 plays a specific role during trichome
development (Downes et al., 2003; Patra, Pattanaik & Yuan, 2013) and seed size (Miller et
al., 2019) and that AT4G12570/UPL5 is an important transcription factor that positively
regulates leaf senescence by the ubiquitination and degradation of AT4G23810/WRKY5 3
(Miao & Zentgraf, 2010). In our investigation, the wheat genes orthologous to A. thaliana
AT4G38600/UPL3 included five paralogous genes in Group VI. Except for grain at the
14 dpa stage, these five genes were all relatively highly expressed in wheat, particularly in
spikes. A reasonable explanation is that the relatively low expression of UPL3 at 14 dpa
stage may be related to the size of wheat seeds and is an adaptive regulation mechanism
during seed formation. This is consistent with a recent study of UPL3 in Brassica napus
(Miller et al., 2019). Miller et al. determined a mechanism in which the proteasomal
degradation of LEC2, a transcription factor controlling seed maturation, is mediated
by UPL3 and reduced UPL3 expression would increase LEC2 protein levels and seed
size. The wheat genes orthologous to A. thaliana AT4G12570/UPL5 were five paralogous
genes in Group III, which were expressed in different wheat tissues but showed distinct
features. At different developmental stages, the expression levels of TraesCS5D02G270200,
TraesCS5A02G262600, and TraesCS5B02G261000 in roots, stems, and spikes were relatively
unchanged, but gradually increased in leaves and decreased in grain. The three wheat genes
TraesCS1A02G106100, TraesCS1B02G123400, and TraesCS1D02G108900 are orthologous
toA. thaliana AT3G17205/UPL6 in Group IV, and the genes in Group II (UPL8 absent inA.
thaliana) showed similar expression patterns to those in Group VI (UPL3). RNA-seq data
of wheat leaf senescence (Borrill et al., 2019) indicated that HECT genes in Group II, IV
and VI (UPL8, UPL6, and UPL3) might also play crucial roles in plant leaf senescence. The
differential expression of paralogous HECT genes in or among groups in wheat suggests
that they might have the same or similar functions as their orthologous genes in A. thaliana
and Brassica napus; nevertheless, they might have evolved functional differences.

A former research discovered that AT4G38600/UPL3 mediated UPS-dependent
proteolysis of the two transcription factors AT5G41315/GL3 and AT1G63650/EGL3,
which interact with the ARM domains of UPL3 and function as positive regulators during
A. thaliana trichome development (Patra, Pattanaik & Yuan, 2013). The evolutionarily
closely related Group VII (UPL4) and VI (UPL3) belong to the same subfamily I defined
in previous studies (Grau-Bove, Sebe-Pedros & Ruiz-Trillo, 2013; Marin, 2013) and genes
in Group VII contain no ARM domains (Fig. 3) and thus, are differentially expressed
at relatively low levels (Fig. 5) compared to those genes in Group VI. More functional
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explorations of these genes could improve our understanding of the roles of HECT genes
in wheat and other plants during growth and development.

CONCLUSIONS
Herein, 25 identified wheat HECT genes were classified into six phylogenetic groups
and distributed evenly in 17 of 21 chromosomes of the three subgenomes. Twenty-one
hypothesized segmentally duplicated genes indicated that segmental duplication was
significantly associated with the expansion of these HECT genes. The expression analysis
revealed that most wheat HECT genes in Group II, IV, and VI (UPL8, UPL6, and UPL3)
were highly expressed in roots, stems, and spikes at different developmental stages and
gradually increased with the increase of dpa, suggesting that these genes may be involved
in wheat growth, development and leaf senescence. This study provides useful information
for further biological functional analysis of the HECT gene family in allohexaploid wheat.
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