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To make sense of a sentence, a reader must keep track of dependent relationships
between words, such as between a verb and its particle (e.g. turn the music down). In
languages such as German, verb-particle dependencies often span long distances, with the
particle only appearing at the end of the clause. This means that it may be necessary to
process a large amount of intervening sentence material before the full verb of the
sentence is known. To facilitate processing, previous studies have shown that readers can
preactivate the lexical information of neighbouring upcoming words, but less is known
about whether such preactivation can be sustained over longer distances. We asked the
question, do readers preactivate lexical information about long-distance verb particles? In
one self-paced reading and one eye tracking experiment, we delayed the appearance of an
obligatory verb particle that varied only in the predictability of its lexical identity. We
additionally manipulated the length of the delay in order to test two contrasting accounts
of dependency processing: that increased distance between dependent elements may
sharpen expectation of the distant word and facilitate its processing (an antilocality effect),
or that it may slow processing via temporal activation decay (a locality effect). We isolated
decay by delaying the particle with a neutral noun modifier containing no information
about the identity of the upcoming particle, and no known sources of interference or
working memory load. Under the assumption that readers would preactivate the lexical
representations of plausible verb particles, we hypothesised that a smaller number of
plausible particles would lead to stronger preactivation of each particle, and thus higher
predictability of the target. This in turn should have made predictable target particles
more resistant to the effects of decay than less predictable target particles. The eye
tracking experiment provided evidence that higher predictability did facilitate reading
times, but found evidence against any effect of decay or its interaction with predictability.
The self-paced reading study provided evidence against any effect of predictability or
temporal decay, or their interaction. In sum, we provide evidence from eye movements
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that readers preactivate long-distance lexical content and that adding neutral sentence
information does not induce detectable decay of this activation. The findings are
consistent with accounts suggesting that delaying dependency resolution may only affect
processing if the intervening information is not neutral, i.e., it either confirms expectations
or adds to working memory load, and that temporal activation decay alone may not be a
major predictor of processing time.
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ABSTRACT11

To make sense of a sentence, a reader must keep track of dependent relationships between words,

such as between a verb and its particle (e.g. turn the music down). In languages such as German,

verb-particle dependencies often span long distances, with the particle only appearing at the end of the

clause. This means that it may be necessary to process a large amount of intervening sentence material

before the full verb of the sentence is known. To facilitate processing, previous studies have shown that

readers can pre-activate the lexical information of neighbouring upcoming words, but less is known about

whether such pre-activation can be sustained over longer distances. We asked the question, do readers

pre-activate lexical information about long-distance verb particles? In one self-paced reading and one

eye tracking experiment, we delayed the appearance of an obligatory verb particle that varied only in the

predictability of its lexical identity. We additionally manipulated the length of the delay in order to test two

contrasting accounts of dependency processing: that increased distance between dependent elements

may sharpen expectation of the distant word and facilitate its processing (an antilocality effect), or that it

may slow processing via temporal activation decay (a locality effect). We isolated decay by delaying the

particle with a neutral noun modifier containing no information about the identity of the upcoming particle,

and no known sources of interference or working memory load. Under the assumption that readers would

pre-activate the lexical representations of plausible verb particles, we hypothesised that a smaller number

of plausible particles would lead to stronger pre-activation of each particle, and thus higher predictability

of the target. This in turn should have made predictable target particles more resistant to the effects of

decay than less predictable target particles. The eye tracking experiment provided evidence that higher

predictability did facilitate reading times, but found evidence against any effect of decay or its interaction

with predictability. The self-paced reading study provided evidence against any effect of predictability

or temporal decay, or their interaction. In sum, we provide evidence from eye movements that readers

pre-activate long-distance lexical content and that adding neutral sentence information does not induce

detectable decay of this activation. The findings are consistent with accounts suggesting that delaying

dependency resolution may only affect processing if the intervening information is not neutral, i.e., it

either confirms expectations or adds to working memory load, and that temporal activation decay alone

may not be a major predictor of processing time.
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INTRODUCTION39

Keeping track of dependent relationships between words in a sentence is a crucial step in understanding40

meaning. For example, to understand the full meaning of a particle verb such as turn down, a reader41

must recognise that these two words form a dependency, even when they are separated by other sentence42

material, e.g. turn the music down. One question is whether readers anticipate the lexical content of such43

dependencies, or whether they wait to construct meaning retrospectively once the identity of the second44

word is known. In particle verb constructions in particular, anticipating the lexical identity of the particle45

would be advantageous to interpreting a potentially large amount of intervening sentence material, which46
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might otherwise be difficult without access to the full verb. The intervening material may itself further47

sharpen expectation about the identity of the particle (Levy, 2008; Hale, 2001), or may instead create48

additional working memory load and activation decay that negatively impacts processing (Van Dyke49

and Lewis, 2003; Ferreira and Henderson, 1991; Gibson, 1998; Lewis and Vasishth, 2005; Vasishth50

and Lewis, 2006). In this paper, we examine whether readers anticipatorily pre-activate the lexical51

context of verb-particle dependencies in German and how intervening material impacts this pre-activation.52

Specifically, since previous work on dependency processing has focused on working memory load and53

interference, we attempt to isolate the effects of activation decay.54

Lexical pre-activation in long-distance dependency formation.55

Contextual cues in a sentence are used to predictively pre-activate probable words and features in memory,56

such that processing of a predictable word can begin before that word is seen (Kuperberg and Jaeger, 2016;57

DeLong et al., 2005; Van Berkum et al., 2005; Wicha et al., 2004; Nicenboim et al., 2020). pre-activation58

therefore represents a processing advantage at predictable versus unpredictable words, as reflected by59

shorter reading times (Ehrlich and Rayner, 1981; Staub, 2015; Kliegl et al., 2004) and decreased event-60

related potential (ERP) components (Kutas and Hillyard, 1980, 1984; Kutas and Federmeier, 2011). It has61

also been proposed that strong pre-activation may trigger pre-integration of a specific lexical item into62

the building sentence representation in working memory (Ness and Meltzer-Asscher, 2018; Lewis and63

Vasishth, 2005; Vasishth and Lewis, 2006).64

However, evidence for the pre-activation of lexical content in long-distance dependency formation is65

sparse. While there is evidence that specific lexical items are pre-activated by their context, pre-activation66

in such studies is generally only tested at the immediately preceding word or within the noun phrase67

(DeLong et al., 2005; Van Berkum et al., 2005; Wicha et al., 2004; Nicenboim et al., 2020). To investigate68

longer distance dependency formation, researchers have demonstrated evidence that the left anterior69

negative (LAN) ERP component is larger at the initiation of long versus short syntactic wh-dependencies,70

suggesting that anticipation of a long dependency leads to greater working memory load (Fiebach et al.,71

2002; Phillips et al., 2005). Applied to lexical pre-activation, a study of Dutch particle verbs hypothesised72

that verbs that take a large number of possible particles (e.g. spannen, to tense, which can take at least73

seven particles) should trigger pre-activation of those particles, placing a larger demand on working74

memory than verbs with a small set size (e.g. kleuren, to colour, which can take only two) (Piai et al.,75

2013). When a verb-particle dependency is initiated by a verb that takes particles, the LAN should76

therefore be larger for large versus small set verbs. Instead, the authors observed that while the LAN77

was larger for verbs that took particles than those that did not, it did not differ between small and large78

set size. The authors concluded that the particles themselves were not pre-activated, but rather that79

readers anticipated the possibility of a downstream particle and stored the verb to facilitate its retrieval80

if a particle was encountered. Another plausible interpretation is that readers anticipated a particle and81

generated a syntactic prediction for its position, but not for its specific lexical identity. Together, this82

evidence suggests that readers pre-activate the syntactic structure of long-distance dependencies, but not83

long-distance lexical content.84

Reading time studies have offered a different perspective on long-distance lexical pre-activation:85

complex predicate constructions in Hindi and Persian succeeded in eliciting a set size-type difference86

in reading times, which were faster at a target verb when a specific verb continuation was predictable87

than when no specific verb was predictable (Husain et al., 2014; Safavi et al., 2016). Although these88

studies measured reading times at the target verb, the sentence stimuli in the Hindi study – including the89

target verb – were identical across conditions. Only the head noun differed, meaning that reading time90

differences at the target verb could reasonably be attributed to differences in pre-activation at the noun,91

rather than to differences in integrating the verb into different contexts. There is thus evidence that readers92

may pre-activate the lexical content of particle verb-type dependencies, although findings are inconsistent.93

Delaying dependency resolution.94

Dependencies in English tend to be resolved relatively quickly (Futrell et al., 2015), but this is often not95

the case in languages such as Dutch, Hindi, Persian, and German. This means that if dependent lexical96

content is pre-activated, pre-activation must be sustained over a potentially large amount of intervening97

sentence material. Processing of the intervening sentence material can have either a facilitatory or a98

hindering effect on processing of the dependency, as proposed by different theoretical accounts.99
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A hindering effect of delaying dependency resolution is predicted by accounts suggesting that process-100

ing intervening sentence material places a larger demand on working memory. The introduction of new101

discourse referents in particular has been associated with a locality effect in dependency processing, where102

reading of the distant word becomes slower the more new discourse referents are introduced. Slowed103

reading is proposed to reflect the cost of storing and integrating the new referents (Gibson, 1998, 2000),104

retrieval interference (Lewis and Vasishth, 2005; Vasishth and Lewis, 2006), and/or decay of constituent105

activation over time (Gibson, 1998, 2000; Lewis and Vasishth, 2005; Vasishth and Lewis, 2006; Vosse106

and Kempen, 2000), all contributing to longer retrieval time at the distant word.107

A facilitatory effect of delaying dependency resolution may occur when the additional sentence108

material provides additional information as to the position and the identity of the distant word. This109

results in easier processing of the distant word, as reflected in faster reading times, otherwise known as an110

antilocality effect (Vasishth and Lewis, 2006). The facilitatory effect of increasing distance is captured by111

surprisal theory. Surprisal theory provides an information theoretic account of the difficulty of processing112

each new word in a sentence, represented by the negative log probability of that word appearing given113

the preceding context (Levy, 2008; Hale, 2001). According to surprisal theory, the building context of a114

sentence generates a set of licensed continuations. Each new word encountered triggers an update of the115

probability distribution of these continuations, and the degree of update is proportional to the difficulty of116

processing the new word; that is, the greater the update, the greater the processing difficulty or “surprisal”.117

In broader terms, this means the more constraining a sentence is, the fewer likely possible continuations118

it will have, meaning lower surprisal and easier processing at a predictable word. Conversely, at an119

unpredictable word, surprisal and thus processing difficulty will be higher. Thus, surprisal theory predicts120

that the greater the amount of information separating two dependent words, the more predictable and easy121

to process the distant word will become.122

The sources underlying antilocality and locality effects – predictability and working memory load123

respectively – may even interact. There is some evidence that the negative effect of high working memory124

load may only be apparent in weakly predictive contexts and that otherwise, antilocality effects are125

observed (Husain et al., 2014; Konieczny, 2000; Levy and Keller, 2013). For example, in German, it was126

found that reading times at the clause-final verb of a relative clause were faster when the verb was delayed127

by one additional constituent than when it was not delayed (an antilocality effect), but that reading times128

slowed down when the verb was delayed by two additional constituents (a locality effect; Levy and Keller,129

2013). The authors reasoned that the relative infrequency of adding the second constituent (according to a130

corpus analysis) actually reduced predictability, making the effects of increased working memory load131

more pronounced. Casting doubt on these results, however, is a replication attempt finding only locality132

effects, regardless of what information preceded the verb (Vasishth et al., 2018).133

More direct tests of an interaction between predictability and working memory load have been134

conducted in Hindi and Persian. In Hindi, increasing the separation within noun-verb complex predicates135

facilitated the reading of highly predictable verbs, but slowed the reading of low-predictable verbs,136

suggesting that high predictability outweighed the effect of additional working memory load introduced137

by the intervening sentence material (Husain et al., 2014). However, this load/predictability interaction138

was not replicated in analogous constructions in Persian, where higher working memory load induced139

by additional sentence material slowed reading of the distant verb, regardless of the verb’s predictability140

(Safavi et al., 2016). One difference between the Hindi and Persian studies was the type of information141

used to manipulate the separation distance of the complex predicate dependencies. The Persian study used142

a relative clause and a prepositional phrase as an intervener (Safavi et al., 2016). Both relative clauses and143

prepositional phrases introduce new discourse referents and interference, both of which are predicted to144

burden working memory resources and slow reading (Gibson, 1998, 2000; Lewis and Vasishth, 2005),145

although new discourse referents may not be the only source of slowing in longer dependencies (Gibson146

and Wu, 2013). In comparison, the separation in the Hindi experiments was increased with adverbials,147

which instead may have increased evidence for the position and lexical identity of the upcoming verb148

(Hale, 2001; Levy, 2008). Altogether, these findings suggest that while readers may pre-activate the149

lexical entry of an upcoming dependent word, if appearance of that word is delayed, its predictability may150

play an important role in how the intervening information impacts processing.151

Temporal activation decay.152

The effects of increased working memory load via new discourse referents and retrieval interference on153

dependency processing are well known, but the effects of temporal activation decay are less well-studied.154

3/26PeerJ reviewing PDF | (2019:11:43364:3:0:NEW 29 Oct 2020)

Manuscript to be reviewed



Decay is proposed to affect sentence processing in the following way: At any new word in a sentence,155

there may be a number of ways the sentence structure could plausibly continue. For example, the sentence156

The secretary forgot... could continue with a direct object noun phrase (e.g. the files) or with a clause (e.g.157

that the student...). It has been proposed that both of these structures are activated, but that only one is158

pursued by the parser while the other is left to decay (Van Dyke and Lewis, 2003). Thus, if the parser159

pursues the sentence structure assuming an upcoming noun phrase, but instead encounters the word that...,160

the decayed structure must be reactivated and reading time at the word that will be slower than if the161

expected noun phrase had been encountered (Ferreira and Henderson, 1991; Gibson, 1998; Van Dyke162

and Lewis, 2003). In sentences where multiple structures are left to decay, the differing activation levels163

of these decayed constituents will play a role in determining how fast they can be reactivated. Even if164

the correct constituent is pre-integrated initially, its activation will also decay over time due to the finite165

amount of activation available to the parser (Lewis and Vasishth, 2005; Vosse and Kempen, 2000; Gibson,166

1998, 2000).167

The above example concerns plausible structural continuations of the sentence, but plausible con-168

tinuations may also include the pre-activation of specific lexical items. For example, in 1a below, the169

verb turn may trigger pre-activation of plausible sentence continuations, including a large number of170

frequent particles (turn off, turn on, turn around, turn over, etc.). If the sentence continues with the music,171

pre-activation should be constrained to a smaller group of plausible particles:172

(1) a. Turn the music... [on, off, up, down]173

b. Calm the situation... [down]174

A specific particle may even be pre-integrated while the others are left to decay. If future input indicates175

that the wrong particle was pre-integrated, e.g. up instead of down, then down must be reactivated in order176

to repair the sentence, resulting in longer reading times at the particle. As the number of plausible lexical177

items increases, reading times should therefore become slower on average, because the probability that178

the parser pursues a parse with the wrong lexical item increases and reactivation of decayed items will be179

needed more often. Alternatively, the starting activation of down in 1a may be lower than that of down in180

1b, because the latter context points strongly to down as the only plausible continuation. The stronger181

starting activation of down in 1b should mean that even as activation decays over time, it will still have182

stronger activation at matched points in the sentence than in 1a. Thus, overall, more predictable lexical183

items should be more resistant to the effects of decay than less predictable items.184

While activation decay may be a factor in sentence processing, there is evidence to suggest that it is not185

a useful predictor of processing difficulty (Van Dyke and Johns, 2012; Engelmann et al., 2019; Vasishth186

et al., 2019), and that longer word recall times and reduced accuracy over time are better explained by187

interference than decay (Lewandowsky et al., 2009). On the other hand, much of this evidence comes188

from computational modelling based largely on data from experiments testing interference rather than189

specifically testing decay. There are few empirical experiments specifically testing decay in isolation, even190

though it is generally assumed to affect word processing times in long-distance dependencies (e.g. Xiang191

et al., 2014; Ness and Meltzer-Asscher, 2019; Chow and Zhou, 2019). One empirical study demonstrated192

the effects of decay over and above those of interference (Van Dyke and Lewis, 2003), although the193

authors later attributed these results to interference (Van Dyke and Johns, 2012). Nonetheless, a basic194

account of temporal activation decay would predict that the longer the distance between two dependent195

words in a sentence, the greater the activation decay and processing difficulty. Furthermore, decay and196

processing difficulty should be most pronounced when predictability of the distant word is low. This197

contrasts directly with the surprisal account, which predicts that the further away the dependent word, the198

easier processing should become.199

The current experiments200

We tested the decay/predictability interaction using German particle verbs, which are complex predicates201

similar to the constructions used in previous studies of Hindi and Persian (Husain et al., 2014; Safavi202

et al., 2016). German particle verbs are comparable to English particle verbs in that they are composed of203

a base verb (e.g. “räumen”, to tidy) and a particle (e.g. “auf”, up) which can be separated (Müller, 2002).204

In German, however, the particle must appear after the direct object if the verb is transitive, usually at the205

right clause boundary (e.g. “Er räumte den Raum auf” he tidied the room up, but not “*Er räumte auf den206

Raum” he tidied up the room; Müller, 2002). Particle verbs form a very strong dependency because the207
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full meaning of the verb “aufräumen” (to tidy up) can only be interpreted once both the verb and particle208

are known. Delaying appearance of the particle therefore creates a very strong structural expectation209

if the context makes a particle necessary, but potentially also a strong lexical expectation for a specific210

particle. In English particle verb constructions, the delay between a base verb and its particle is usually211

not very long; consider to tidy up versus ?/*to tidy the mess left after the party on Saturday up. In German,212

however, long-distance separations are common.213

To manipulate lexical predictability of the distant particle, we compared base verbs that could take a214

large number of particles (10+) with verbs that can take only a small number of particles (six or fewer).215

We hypothesised that the set of potential particles would be pre-activated at the verb and that a larger216

set of particles would create more uncertainty (weaker predictability) about the eventual identity of the217

particle. Large set verbs therefore formed a low predictability condition and small set verbs a high218

predictability condition. Note that throughout the remainder of the article, we use set size as a proxy219

for predictability. Set size also relates to entropy, which we introduce in detail as it becomes relevant220

in the Cloze Test section. To induce decay between the verb and its particle, we manipulated distance221

with a neutral adjectival modifier. Critically, the modifier added no interference or working memory load222

through the introduction of new discourse referents (Gibson, 1998, 2000; Lewis and Vasishth, 2005), and223

did not provide semantic clues about the lexical identity of the dependency resolution. Any effects of the224

intervener on reading time were therefore attributable to temporal decay alone.225

The design was based on the study of Dutch particle verbs (Piai et al., 2013). The Dutch study found226

no evidence of a modulation of LAN amplitude according to set size. We reasoned, however, that the227

distinction between small and large particle set sizes may have been too small; i.e. small set verbs took228

two to three particles and large set verbs, at least five. We therefore categorised our German verbs into229

small set verbs that took up to six particles, and large set verbs that took at least 10 particles. Using a230

cloze test, we confirmed that each sentence required a particle. The current experiments therefore tested231

the hypotheses that (i) verbs that take particles trigger pre-activation of those particles; (ii) that delaying232

the appearance of the particle would slow reading times through temporal decay; but that (iii) higher233

predictability would make reading times at the particle less likely to be affected by decay.234

We tested the hypotheses in self-paced reading and eye tracking experiments, both to confirm that235

any effects seen were not limited to a particular experimental method, but also because the two methods236

provide complementary information. Self-paced reading has the advantage of forcing readers to view each237

word in the sentence, whereas eye tracking allows words to be skipped and re-read. In the current study,238

the target word, a particle, was very short and may therefore have been more likely to be skipped, making239

self-paced reading data valuable in examining reading time effects at the particle. On the other hand, eye240

tracking has the advantage of more closely resembling natural reading and is able to measure phenomena241

such as regressive eye movements to previous regions of the sentence, and forward saccades to upcoming242

regions of the sentence. This allows us to generate hypotheses about the cognitive processes underlying243

slower or faster reading of a particular word and complements observations made in self-paced reading.244

Predictions245

It is well-established that more predictable words are associated with faster reading times than less246

predictable words, and thus we expected to see faster reading times for small set (more predictable) versus247

large set (less predictable) particles. With respect to our two distance conditions (short versus long), at248

short distance the predictions of surprisal theory and decay are the same: small set (more predictable)249

particles should be read faster than large set (less predictable) particles. This is reflected in both panels of250

Figure 1, where predicted reading times for small set particles are always faster than those for large set251

particles.252

Where the predictions of surprisal theory and decay diverge is in the long-distance condition. Under253

surprisal theory, the long-distance condition should produce an antilocality effect (faster reading times)254

at both small set and large set particles, as illustrated in Figure 1A. We attempted to quantify these255

predictions by computing surprisal values for the particles; however, the particular particle verbs used256

in the experiment were likely too infrequent in the corpora used and the parser’s surprisal estimates257

were unreliable.1 Instead, Figure 1A represents informal predictions for the surprisal account. In the258

1We attempted to compute surprisal values using the Incremental Top-Down Parser (Roark and Bachrach, 2009) and two

different types of annotated corpora (the Tiger newspaper corpus, (Brants et al., 2004); and a larger corpus of novels annotated

with the German version of the Stanford CoreNLP natural language software, (Manning et al., 2014)). However, the particles were

incorrectly categorised by the parser (e.g. as adverbs, verbs, and even nouns), making the surprisal estimates unreliable.
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absence of formal quantifications for whether surprisal theory would predict an antilocality effect for our259

sentences, these predictions should be taken as an approximation of surprisal theory’s general claim that260

long distance should always result in faster reading times and that higher lexical predictability should261

sharpen expectations (Levy, 2008).262

In contrast, the effects of temporal activation decay in the long-distance conditions should depend263

on how predictable the particle is. For more predictable (small set particles), pre-activation should be264

stronger to begin with and thus less affected by decay at long distance, whereas weaker pre-activation265

for less predictable (large set) particles may be more susceptible to decay, resulting in a locality effect266

(slower reading times) at long versus short distance. To quantify the effect of decay on reading time,267

we conducted a simulation using the decay parameter of the LV05 model (Lewis and Vasishth, 2005).268

Note that the full LV05 model was not used as it is primarily a model of interference, which we were269

not testing in the current study. To quantify predictability in the simulation, we assumed a finite pool of270

spreading activation for all of the plausible particle continuations. Dividing the finite pool of spreading271

activation among fewer particles meant a higher starting activation per particle in the small set than in the272

large set condition. Figure 1 shows that the simulation predicted a larger slow-down between small and273

large set size in the long distance condition than in the short distance condition. Code for the simulation274

is included in the R script in the paper’s OSF repository, see Appendix 1.275

Figure 1. Predicted interaction of lexical predictability (set size) and distance. A. Informal

predictions of the surprisal account suggest that reading times will be faster for more predictable particles

in the small set condition than less predictable particles in the large set condition. Reading times should

always be faster at long distance due to increased expectation for the particle. B. Predictions based on a

simulation using the decay parameter of the LV05 model also suggest that reading times should be faster

for more predictable particles in the small set condition. An effect of long distance should only be visible

when predictability is low (large set), where activation decay should result in slower reading times at long

versus short distance.

EXPERIMENT 1: SELF-PACED READING276

METHODS277

Participants278

Experiment 1 included a total of 60 participants (14 male, mean age = 24 years, SD = 6 years, range =279

18-55 years) recruited via an in-house database. Participants were screened for acquired or developmental280

reading or language production disorders, neurological or psychological disorders, hearing disorders,281

and visual limitations that would prevent them from adequately reading sentences from the presentation282

computer. All participants provided written informed consent in accordance with the Declaration of283

Helsinki. In accordance with German law, IRB review was not required for this particular study.284

Materials285

The study had a 2×2 design with set size (small versus large) and distance (short versus long) as factors.286

To develop the experimental stimuli, verbs were first selected using a corpus and dictionary search of287
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verbs and all their possible particles. Verbs and their particle sets were grouped into small (fewer than six288

particles) and large (greater than 10 particles) categories and sentences constructed by German native289

speakers around small/large set pairings. Each experimental item was a quartet of four sentences in which290

the context required a particle for the sentence to be grammatical. In the example experimental item291

below, the bolded verb merken (in this context, to note) in (2a/2b) can take only three different particles.292

Combined with the particle vor (before), its meaning is to take note of or to earmark. In contrast, stellen293

(to put) in (2c/2d) can take around 18 different particles; when combined with vor (before), its meaning is294

to introduce. To increase distance between the verb and the particle, we added a long-distance condition295

where an adjectival modifier was introduced between the verb and its particle (underlined). Crucially, the296

adjectival modifier did not introduce any new discourse referents or other features that could interfere297

with the particle’s retrieval (Gibson, 1998, 2000; Lewis and Vasishth, 2005). This meant that any slowing298

due to the additional distance could only be attributed to decay. To balance the number of words between299

conditions, in the short-distance condition, the intervener was shifted to appear before the verb.300

(2) Example item:301

a. Small set/short distance:302

Nach dem sehr überzeugenden Gespräch merkte er die Kandidatin aus England vor, weil sie ihm303

sehr gefallen hatte.304

Following the very compelling interview, he took note of the candidate from England [particle]305

because she had really impressed him.306

307

b. Small set/long distance:308

Nach dem Gespräch merkte er die sehr überzeugenden Kandidatin aus England vor, weil sie ihm309

sehr gefallen hatte.310

Following the interview, he took note of the very compelling candidate from England [particle]311

because she had really impressed him.312

313

c. Large set/short distance:314

Nach dem sehr überzeugenden Gespräch stellte er die Kandidatin aus England vor, weil sie ihm315

sehr gefallen hatte.316

Following the interview, he introduced the very compelling candidate from England [particle]317

because she had really impressed him.318

319

d. Large set/long distance:320

Nach dem Gespräch stellte er die sehr überzeugenden Kandidatin aus England vor, weil sie ihm321

sehr gefallen hatte.322

Following the interview, he introduced the very compelling candidate from England [particle]323

because she had really impressed him.324

In each experimental item, contexts were matched word-for-word, with the exception of the verb. This325

was to ensure that the properties of the verb were the only factors contributing to reading times. Ideally,326

these properties included the number of particles each verb could take. Naturally, it cannot be ruled out327

that some factor resulting from the internal properties of each verb or its combination with the context328

contributed to differences in reading times (for example, taking note of may not generate as narrow an329

expectation for specific object features as introducing). Furthermore, due to the difficulty of creating330

sentences with different verbs in matched contexts, it was also not possible to match the frequency of the331

base verb between conditions. Both of these factors are taken into consideration in interpretation of the332

results; however, the fact that the base verb is the only word that differs between each sentence gives us333

the best possible chance to infer that any difference in reading times observed at the particle stem from334

the verb region of the sentence.335

The materials used for the self-paced reading study were 24 items selected from a cloze test, separated336

into four lists and presented in random order. The lists were compiled using a Latin square design, such337
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that each participant only saw one condition from each item. Each participant therefore saw 24 target338

sentences, six from each condition, interspersed with 72 filler items. The filler items were either sentences339

that used particle verbs in other tenses and other syntactic arrangements, or short declarative statements.340

Cloze test341

In order to confirm that our sentence stimuli (i) elicited particles, (ii) that more particles were elicited by342

the large set condition than the small set condition, and to (iii) quantify the predictability of the target343

particle, a cloze test was conducted. An initial total of 48 items, each with four conditions (a-d), was344

truncated just before the particle such that the verb and the direct object of the sentence were known.345

German native speakers completed the truncated sentences in a paper-and-pencil cloze test (N = 126, 25346

male, mean age 25 years, standard deviation 7 years, range 17-53 years). The 48 sentences were split into347

four lists such that each participant saw only one condition from every item. The target sentences were348

randomly interspersed with 63 filler sentences, giving a total of 111 sentences per cloze test. Participants349

were instructed to complete each truncated sentence with the word or words that first came to mind.350

The results of the cloze test yielded 24 items that achieved the required experimental manipulation;351

that is, a particle was always elicited and more particles were elicited in the large than in the small set352

condition. It should be noted that in 8% of the stimuli, the highest cloze particle was not used as the353

target particle. This was because the target particle had to be matched across conditions and the highest354

cloze particle in one condition was therefore not always the highest cloze particle in another condition.355

Wherever possible, however, the highest cloze particle was used. Means and 95% confidence intervals of356

Beta distributions corresponding to the cloze probabilities for each factor level are presented in Table 1.357

Cloze probability Entropy

Condition Mean 95% CI Mean 95% CI

Small set 0.51 0.28, 0.73 1.10 1.09, 1.12

Large set 0.55 0.35, 0.75 1.20 1.19, 1.22

Short distance 0.52 0.31, 0.73 1.15 1.14, 1.16

Long distance 0.53 0.32, 0.75 1.15 1.13, 1.16

Table 1. Summary cloze statistics for the final set of 24 items. The 95% CIs reflect confidence

intervals of each cloze probability distribution.

Cloze probabilities provided a measure of how predictable the target particles in each condition were.358

To determine whether the cloze probability of the particle differed between small and large set conditions,359

a logistic mixed model was fit in brms (Buerkner, 2017) in R (Team, 2018) to the cloze probabilities of the360

target particles, with factor levels contrast coded as follows: small set -0.5 / large set 0.5, short distance361

-0.5 / long distance 0.5. The brms zero/one inflated Beta family was used for the likelihood to account362

for the presence of 0s and 1s in the data. Regularising priors were selected for each of the predictors set363

size, distance, and their interaction: β ∼ Normal(0,0.25). The full prior and model specification can be364

found in the code provided, see Appendix 1. The model did not suggest that either set size, distance, or365

an interaction of the two influenced cloze probability. As can be seen in Figure 2, the posteriors for the366

probability of giving the target particle were more or less centred on zero, meaning that neither set size,367

distance, or their interaction made people any more or less likely to give the target particle.368

The set size manipulation was intended to induce uncertainty about the upcoming particle’s lexical369

identity; the higher the uncertainty, the less predictable the particle. One useful way of quantifying370

uncertainty is with entropy. Entropy is a measure of how much information is carried by a new input in371

light of all possible outcomes.2 In our case, the new input is the particle. In a sentence context where372

many particles are plausible and cloze probability is uniformly low across all the plausible particles, we373

assume that uncertainty about the identity of the upcoming particle is high. Thus, each of the plausible374

particles carries a large amount of information about the meaning of the sentence and entropy is high. In a375

sentence where only few particles are plausible and one particle is much more probable than the others,376

2Entropy (H) was calculated as the negative sum of cloze probabilities (P) for all particles provided by participants for a particular

sentence in the cloze test, multiplied by their respective logs: H =−∑i Pilog2Pi. For example, if nine cloze completions were the

particle “vor” and one was “an”, then: H =−(Pvor · log2Pvor +Pan · log2Pan) =−(0.9 · log20.9+0.1 · log20.1) = 0.47
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we assume that uncertainty about that particle’s identity and the meaning of the sentence is low, and so377

encountering the high-probability particle will be less informative: this is a low entropy situation.378

To determine whether uncertainty (and thus entropy) was higher in the large set condition, a lognormal379

regression model was fitted to the entropy values with the same contrast coding as for the cloze probability380

analysis. The brms hurdle lognormal family was used for the likelihood function to account for zeros381

in the data. Regularising priors were used for the predictors set size, distance, and their interaction:382

β ∼ Normal(0,0.01). This model did not suggest that entropy varied with set size, distance, or their383

interaction, as can be seen in Figure 2, although the mean entropy was a little higher in the large than the384

small set condition.385

Figure 2. Change in cloze log odds and entropy of the target particle associated with each

predictor. A. The posterior distributions for the effect of large set size and long distance on cloze

probability relative to the grand mean of each condition (dotted line). The posteriors for the small set size

and short distance conditions can therefore be assumed to be the mirror image on the opposite side of the

dotted line. The shaded areas are the 95% Bayesian credible intervals. B. Posteriors for the effect of large

set size and long distance on entropy.

This analysis raised an immediate problem with the experimental design. The categorical predictor386

set size used in the planned analysis was intended as a proxy for entropy and predictability, where a large387

set size was supposed to reflect high entropy and thus lower predictability. Although these categories may388

have reflected the number of particles licensed by each base verb, the results of the cloze test suggested389

they did not represent the range of particle completions provided by readers at the particle site. This390

can be seen in Figure 3: although the average entropy was higher in the large set than in the small391

set condition, both conditions contained high and low entropy sentences. In other words, there was392

no difference in predictability of the particle between the small and large set conditions. We therefore393

present an analysis of entropy as a continuous predictor instead, since this maps better to our planned394

manipulation of predictability (high entropy = low predictability and vice versa). For transparency, we395

present both the planned “categorical” analysis and the exploratory “continuous” analysis.396

Procedure397

Participants sat in a quiet booth in the laboratory and read the sentences in 20 point Helvetica font from398

a 22-inch monitor with 1680 × 1050 screen resolution. Participants saw seven practice items before399

the experiment proper. The sentences were presented word-by-word in random order using the masked400

self-paced reading design of Linger (Rohde, 2003). The masked words were presented as underscores401

separated by spaces. This meant that the participant had some clue as to the length of each word and of the402

sentence. Participants pressed on the space bar to reveal the next word. The previous word disappeared403

when the next word appeared, meaning that only one word was visible at any time. Linger recorded404

the time between word onset and spacebar press, and this data was exported for analysis. After each405

sentence, a yes/no question appeared which participants answered with the u (No) and r (Yes) keyboard406

keys. Feedback was not given. The questions concerned the content of the sentences; for example, in the407

example item above, the question was “Was the candidate from America?”. We ensured that the questions408

targeted a balanced range of sentence regions. A break was offered after every 50 sentences. All other409

settings were left at their defaults.410
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Figure 3. By-item entropy within small and large set categories. Violin plots show the median and

95% quantiles of the distribution of by-item entropy of the target particle.

Data analysis411

Linear mixed models with full variance-covariance matrices estimated for the random effects of participant412

and item were fitted to the exported Linger data using brms (Buerkner, 2017) in R (Team, 2018). Reading413

times of less than 100 ms were excluded. The dependent variable was reading time at the particle with414

a 1000/y reciprocal transform as suggested by the Box Cox procedure (Box and Cox, 1964). We also415

considered analysing the spillover region, but decided against it as the particle had to be followed by a416

comma and it was not clear how the clause boundary and associated sentence wrap-up effects (Rayner417

et al., 2000) might interact with reading times in the spillover region. Instead, we present mean reading418

times across the sentence in Figure 4. The predictors set size and distance were effect contrast coded: -0.5419

(small set/short distance), 0.5 (large set/long distance). The model priors were as follows:420

β0 ∼ Normal(3,0.5)421

β1,2,3 ∼ Normal(0,0.5)422

υ ∼ Normal(0,συ)423

γ ∼ Normal(0,σγ)424

συ ,σγ ∼ Normal+(0,0.25)425

ρυ ,ργ ∼ LKJ(2)426

σ ∼ Normal+(0,0.25)427

The prior distribution of the intercept was determined using domain knowledge that mean reading428

time is approximately three words per second and that 95% of reading speeds should fall within a range429

of two and four words per second. The slope adjustments, for example β1 (set size), were centred on zero.430

We assumed that the expected effect of set size would most likely be to either increase or decrease reading431

speed by, at most, one word per second. By-subject and by-trial adjustments to the slope and intercept (υ ,432

γ) were also centred on zero with respective priors reflecting their plausible standard deviations. The prior433

for the correlation parameters ρ of these random effects is a so-called LKJ prior in Stan, which takes a434

hyperparameter η ; with an η of two or more, the LKJ prior represents a distribution ranging from −1 to435

+1, but favours correlations closer to zero. Finally, the prior for the standard deviation parameter σ for436

the residual is a Normal(0,0.25) truncated at zero. The full model specification can be found in the code437

accompanying the article, see Appendix 1.438

To decide whether the effects of distance and set size were consistent with the null hypothesis that439

there was no effect, Bayes factors were computed. The Bayes factor gives the ratio of marginal likelihoods440

for one model against another (Jeffreys, 1939). We therefore compared the planned analysis model441

including all predictors (described above) against reduced models without the predictor of interest. For442

example, when we wanted to decide whether the effect of set size was not zero, we computed a Bayes443
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factor for the model with set size (referred to as model 1) versus a reduced model without set size (referred444

to as model 0), i.e. BF10. A Bayes factor of one indicates no evidence in favour of either model. A445

Bayes factor of greater than 3.0 (when the comparison is BF10) will be taken as evidence in favour of the446

model with the effect, and a Bayes factor of less than 0.3 as evidence in favour of the null hypothesis.447

We assessed the strength of the evidence with reference to the conventional Bayes factor classification448

scheme (Jeffreys, 1939). We computed Bayes factors not only for the planned models, but also for models449

with more and less informative priors. Computing Bayes factors with a variety of priors is recommended,450

since the Bayes factor is sensitive to the prior used (Lee and Wagenmakers, 2013).451

RESULTS452

Question response accuracy and reaction times453

Mean accuracy and reaction times to responses to comprehension questions in all four conditions are set454

out in Table 2.455

Accuracy (%) Reaction time (ms)

Condition Mean 95% CI Mean 95% CI

(a) Small set, short distance 92 89, 95 1944 1862, 2031

(b) Small set, long distance 93 90, 95 2020 1918, 2128

(c) Large set, short distance 94 91, 96 1996 1897, 2100

(d) Large set, long distance 93 91, 96 1963 1872, 2058

Table 2. Experiment 1: Summary of question response accuracy and reaction times for

comprehension questions. The mean and 95% confidence interval (CI) per condition are presented.

Planned analysis456

Set size as a categorical predictor457

Mean self-paced reading speed by condition are shown in Table 3 and the model estimates in Table 4.458

The 95% credible intervals of each of the posteriors contain zero, suggesting that there was uncertainty459

about how these factors influenced reading speed, if at all. The Bayes factors for all effects were between460

weakly and strongly in favour of the null hypothesis.461

Mean reading

Condition time (ms) 95% CI

(a) Small set, short distance 442 421,464

(b) Small set, long distance 451 429,474

(c) Large set, short distance 428 408,448

(d) Large set, long distance 429 409,449

Table 3. Experiment 1: Summary statistics of self-paced reading times by condition using set size

as a categorical variable. The mean and 95% confidence interval (CI) per condition are presented.

Exploratory analysis462

Entropy as a continuous predictor463

In an exploratory analysis, entropy at the particle was refitted as a continuous predictor and its effect on464

reading speed examined. Descriptive statistics for reading times in each distance condition are shown465

in Table 5. Mean reading times according to entropy have been split into high and low categories by466

median-split for summary purposes, but entropy was used as a continuous predictor in the statistical467

model.468

Mean reading times across the whole sentence for both experiments are plotted in Figure 4. One469

feature of these data that should be mentioned is that base verbs for sentences with higher entropy at the470

particle site had a higher corpus frequency than base verbs in sentences with lower entropy at the particle471
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Bayes factors (BF10):

Predictor β̂ (words/sec) 95% CrI Informative Planned Diffuse

Intercept 2.50 2.33,2.67 - - -

Set size 0.07 −0.02,0.16 1.32 0.28 0.20

Distance −0.02 −0.09,0.06 0.31 0.07 0.05

Set size × Distance 0.02 −0.15,0.18 0.88 0.23 0.07

Table 4. Experiment 1: Self-paced reading speed model estimates for the planned analysis with

set size as a categorical predictor. The reciprocal transform means that β̂ represents the model’s

estimated effect for each of the predictors in words per second. A positive sign therefore indicates faster

reading (more words per second) and a negative sign, slower reading. The 95% Bayesian credible interval

(CrI) gives the range in which 95% of the model’s samples fell. Bayes factors are presented for a range of

β priors including, from left to right: more informative than the prior used in the planned analysis,

N(0,0.1); the prior used in the planned analysis, N(0,0.5); and more diffuse than the prior used in the

planned analysis, N(0,1). BF10 indicates the Bayes factor for the full model (1) against a reduced model

(0). Bayes factors of less than 0.3 indicate evidence for the reduced model, while Bayes factors greater

than 3.0 indicate evidence for the full model.

Mean reading

Condition time (ms) 95% CI

(a) Low entropy, short distance 443 420,466

(b) Low entropy, long distance 438 416,461

(c) High entropy, short distance 433 413,455

(d) High entropy, long distance 443 422,466

Table 5. Experiment 1: Summary self-paced reading times by condition using entropy as a

continuous variable. For the purpose of these summary statistics only, entropy was sorted into high and

low categories via median-split. The mean and 95% confidence interval (CI) per condition are presented.

site (to compare verb frequency, we divided sentences into high and low entropy categories via a median472

split; see Table A1 in Appendix 2). Higher corpus frequency of the base verb should have resulted in473

faster reading times at the verb in high entropy sentences (Kliegl et al., 2004; Rayner and Duffy, 1986),474

but this was not the case in either experiment. The lack of a frequency effect at the base verb is discussed475

in the General Discussion.476

The priors and model specification remained the same as for the planned analysis. The model477

coefficients are summarised in Table 6. As can also be seen in Figure 5, zero is well within the 95%478

credible interval for the posterior of the all predictors. The Bayes factor analysis found evidence for the479

null hypothesis for each of the predictors. In other words, there was evidence against an effect of entropy,480

distance, and their interaction on reading speed.481
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Figure 4. Mean reading times across the sentence in Experiments 1 and 2. A-B. Mean self-paced

reading times observed in Experiment 1. Error bars show 95% confidence intervals. C-D. Mean total

fixation times observed in Experiment 2.

Bayes factors (BF10):

Predictor β̂ (words/sec) 95% CrI Informative Planned Diffuse

Intercept 2.51 2.32,2.69 - - -

Entropy −0.04 −0.13,0.05 0.51 0.14 0.07

Distance −0.02 −0.11,0.07 0.42 0.10 0.05

Entropy × Distance −0.02 −0.15,0.10 0.52 0.05 0.01

Table 6. Experiment 1: Self-paced reading speed estimates for the exploratory analysis with

entropy as a continuous predictor. As for the planned analysis, the reciprocal transform means that β̂
represents the model’s estimated effect for each of the predictors in words per second. A positive sign

therefore indicates faster reading (more words per second) and a negative sign, slower reading. The 95%

Bayesian credible interval (CrI) gives the range in which 95% of the model’s samples fell. Bayes factors

are presented for a range of β priors including, from left to right: more informative than the prior used in

the planned analysis, N(0,0.1); the prior used in the planned analysis, N(0,0.5); and more diffuse than

the prior used in the planned analysis, N(0,1). BF10 indicates the Bayes factor for the full model (1)

against a reduced model (0). Bayes factors of less than 0.3 indicate evidence for the reduced model, while

Bayes factors greater than 3.0 suggest evidence for the full model.
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Figure 5. Experiment 1: Change in self-paced reading speed at the particle estimated by the

exploratory analysis with entropy as a continuous predictor. The posterior represents the estimated

change in reading time elicited by a one-unit increase in entropy. Due to the reciprocal transform, a shift

in the posterior to the left of zero indicates slower reading speeds. The dotted line represents the grand

mean of the two factor levels of each predictor and the shaded areas, the 95% credible intervals.
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Reading speed predicted by the model is plotted in Figure 6. The numerical pattern suggests an482

interesting mix of the two hypotheses; that is, when predictability was high (low entropy), reading speed483

was faster at long distance in line with the surprisal account. In contrast, when predictability was low484

(high entropy), the pattern more closely resembles that predicted by decay. However, these patterns are485

not further interpreted as the outcome of the statistical analysis did not support an interaction.486

Figure 6. Experiment 1: Predicted versus modelled self-paced reading times. A-B. Predicted

interaction patterns in line with surprisal theory and activation decay. C. Self-paced reading time patterns

estimated by the model. Shaded areas indicate 95% Bayesian credible intervals.

Interim discussion487

Neither the planned nor the exploratory analyses were consistent with the predictions in Figure 6. With488

respect to the planned (categorical) analysis, one potential explanation may lie in the very small differences489

in cloze probability and entropy at the particle site, meaning that entropy between set size conditions was490

effectively matched at that point in the sentence. Examples of entropy differences between condition491

means discussed elsewhere in the literature include 0.38 or 0.50 bits (Levy, 2008), 0.57 bits (Linzen492

and Jaeger, 2016), and reductions of up to 53 bits (Hale, 2006). In comparison, our between-category493

difference was only 0.10 bits. However, the examples given from the literature are derived from syntactic494

entropy of the rest of the sentence, while ours were based on lexical entropy at the particle. Nonetheless,495

while the small between-category difference in entropy may explain why we did not see a statistical496

difference in reading times between the large and small set categories, it does not explain why we still saw497

no difference when entropy was used as a continuous predictor. We turn now to the eye tracking results498

for further information.499

EXPERIMENT 2: EYE TRACKING500

The eye-tracking experiment was conducted using the same materials as the self-paced reading study.501

Predictability has been shown to affect reading times in both early and total eye tracking measures502

(Staub, 2015; Rayner, 1998) and the revision of disconfirmed expectations, a higher rate of regressions503

(Clifton et al., 2007; Frazier and Rayner, 1987). Revision of disconfirmed expectations should occur more504

frequently when predictability is low and the probability of pre-integrating the “wrong” particle increases;505

we therefore analysed early and total reading times, as well as a measure of regression time. For each of506

these measures, we maintained the original hypotheses visualised in Figure 1.507

METHODS508

Participants509

Sixty German native speakers were recruited, of which one was excluded due to the presence of a510

neurological disorder. The remaining 59 (13 male) were free of current or developmental reading or511

language production disorders, hearing disorders, or vision impairments that could not be corrected512

without impeding the eye-tracker (e.g. glasses and contacts occasionally caused reflection preventing513

accurate calibration of the eye-tracker, meaning that these participants had to be excluded if they were514

unable to read without visual correction). The mean age of the participants was 26 (SD = 6, range =515
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18-47) and all were university educated. All participants provided written informed consent in accordance516

with the Declaration of Helsinki. In accordance with German law, IRB review was not required.517

Materials518

The experimental materials and presentation lists were identical to those used in the self-paced reading519

study.520

Procedure521

Right eye monocular tracking was conducted using an EyeLink 1000 eye-tracker (SR Research) with522

a desktop-mounted camera and a sampling rate of 1000 Hz. The head was stabilised using a chin and523

forehead rest which set the eyes at a distance of approximately 66cm from the presentation monitor. The524

experimental paradigm was built and presented using Experiment Builder (SR Research). The 22-inch525

presentation monitor had a screen resolution of 1680 x 1050. Sentences were presented in size 16-point526

Courier New font on a pale grey background (hex code #cccccc). Each experimental session began with527

calibration of the eye-tracker, which was repeated if necessary during the experiment. The experimental528

sentences were preceded by six practice sentences. Participants fixated on a dot at the centre left of the529

screen before each sentence was presented. Once they had finished reading, they fixated on a dot at the530

bottom right of the screen. Each of the experimental sentences was followed by the same yes/no question531

used in the self-paced reading study, which the participant answered using a gamepad. Each session lasted532

approximately 30 minutes.533

Data analysis534

Sampled data were exported from DataViewer (SR Research) and pre-processed in R using the em2535

package (Logačev and Vasishth, 2013). Trials containing blinks or track loss were excluded. Linear mixed-536

effects models with full variance-covariance matrices estimated for the random effects of participant537

and item were fitted using brms (Buerkner, 2017) in R (Team, 2018) separately to data for each of four538

reading time measures, first fixation duration, first pass reading time, total fixation time, and regression539

path duration. This range of measures was selected as both early and late measures have been found to540

be affected by predictability (Kliegl et al., 2004; Boston et al., 2008), although perhaps earlier measures541

are more sensitive (Staub, 2015). The target region of the sentence was the particle plus the immediately542

preceding word, since the particles were usually short (two to three letters) and therefore not always543

fixated. As for Experiment 1, the spillover region was not analysed, but mean reading times across the544

whole sentence are presented in Figure 4. The preceding rather than the following word was chosen545

because the target particle was at the right clause boundary. The dependent variables were first fixation546

duration, first pass reading time, total fixation time, and regression path duration at the particle, log547

transformed as indicated by the Box Cox procedure. The predictors set size and distance were effect548

contrast coded: -0.5 (small set/short distance), 0.5 (large set/long distance). The model priors were as549

follows:550

β0 ∼ Normal(5.7,0.5)551

β1,2,3 ∼ Normal(0,0.5)552

υ ∼ Normal(0,συ)553

γ ∼ Normal(0,σγ)554

συ ,σγ ∼ Normal+(0,1)555

ρυ ,ργ ∼ LKJ(2)556

σ ∼ Normal+(0,1)557

The prior distribution of the intercept was determined using domain knowledge that mean reading558

time is approximately 300 ms (5.7 on the log scale) and that 95% of reading times should fall within a559

range of 110 and 812 ms. We expected the effect of the predictors would mostly lie somewhere between a560

speed-up of 190 ms and a slow-down of 513 ms. Priors for the random effects parameters were as shown561

above. The full model specification can be found in the code in the accompanying code, see Appendix 1.562

RESULTS563

Question response accuracy and reaction times564

Mean response accuracy and reaction times for the comprehension questions in all four conditions are set565

out in Table 7.566
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Accuracy (%) Reaction time (ms)

Condition Mean 95% CI Mean 95% CI

(a) Small set, short distance 91 88, 94 2052 1967, 2141

(b) Small set, long distance 92 89, 95 2090 2007, 2177

(c) Large set, short distance 96 94, 98 2007 1928, 2089

(d) Large set, long distance 97 94, 98 2051 1978, 2126

Table 7. Experiment 2: Summary of question response accuracy and reaction times. The mean

and 95% confidence interval (CI) per condition are presented.

Planned analysis567

Set size as a categorical predictor568

Observed reading times per condition are summarised in Table 8. The model estimates for each reading569

time measure are shown in Table 9. The 95% credible interval for each of the posteriors contains zero,570

suggesting that it was uncertain whether the predictors’ effect on any reading time was positive or negative,571

or zero. However, as for the self-paced reading experiment (Experiment 1), the categorical distinction572

of large and small set size was probably inappropriate, and thus an exploratory analysis using entropy573

as a continuous predictor is presented next. A possible limitation of our approach using Bayes factor574

analyses is that we are evaluating multiple measures, without any correction for family-wise error (von575

der Malsburg and Angele, 2016). While the family-wise error rate is a frequentist concept, it may be that576

an analogous issue exists in the Bayesian framework for which we have not controlled. Our analyses577

should therefore be considered exploratory and confirmed via future replication attempts.578

Mean reading

Measure Condition time (ms) 95% CI

First fixation
duration

(a) Small set, short distance 284 269,299

(b) Small set, long distance 285 270,301

(c) Large set, short distance 292 277,309

(d) Large set, long distance 303 287,319

First pass

reading time

(a) Small set, short distance 316 297,335

(b) Small set, long distance 313 294,333

(c) Large set, short distance 324 304,345

(d) Large set, long distance 337 317,357

Total fixation
time

(a) Small set, short distance 368 343,395

(b) Small set, long distance 364 338,391

(c) Large set, short distance 370 344,397

(d) Large set, long distance 381 355,408

Regression path

duration

(a) Small set, short distance 354 330,379

(b) Small set, long distance 355 330,382

(c) Large set, short distance 359 334,386

(d) Large set, long distance 380 354,408

Table 8. Experiment 2: Summary statistics of eye-tracking reading times by condition using set

size as a categorical variable. The mean and 95% confidence interval (CI) per condition are presented.

Exploratory analyses579

Entropy as a continuous predictor580

As for the self-paced reading analysis, models were refit using entropy as a continuous predictor. Descrip-581

tive statistics for each reading time measure are shown in Table 10. Mean reading times according to582

entropy have been split into high and low categories by median-split for summary purposes, but entropy583

was used as a continuous predictor in the statistical model.584
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Bayes factors (BF10):

Measure Predictor β̂ (log ms) 95% CrI Informative Planned Diffuse

First fixation
duration

Intercept 5.66 5.55,5.75 - - -

Set size 0.02 −0.01,0.05 1.69 0.10 0.02

Distance 0.01 −0.02,0.03 0.27 0.06 0.04

Set size × Distance 0.01 −0.02,0.03 0.19 0.00 0.00

First pass

reading time

Intercept 5.74 5.58,5.89 - - -

Set size 0.02 −0.01,0.05 2.02 0.10 0.02

Distance 0.00 −0.02,0.03 0.27 0.05 0.03

Set size × Distance 0.01 −0.02,0.03 0.32 0.01 0.00

Total fixation
time

Intercept 5.89 5.71,6.06 - - -

Set size 0.00 −0.04,0.04 1.16 0.09 0.02

Distance 0.00 −0.03,0.03 0.28 0.05 0.03

Set size × Distance 0.01 −0.04,0.04 0.59 0.02 0.00

Regression path

duration

Intercept 5.86 5.69,6.03 - - -

Set size 0.01 −0.03,0.05 1.38 0.08 0.02

Distance 0.01 −0.02,0.04 0.41 0.07 0.04

Set size × Distance 0.01 −0.02,0.04 0.80 0.05 0.01

Table 9. Experiment 2: Model estimates for the planned analysis with set size as a categorical

predictor. β̂ represents the model’s estimated effect for each of the predictors on the log scale. The log

transform means that estimates with a positive sign indicate slower reading times and that readers who are

slower on average will be more affected by the manipulation than faster readers. The 95% Bayesian

credible interval (CrI) gives the range in which 95% of the model’s samples fell. Bayes factors are

presented for a range of β priors including, from left to right: more informative than the prior used in the

planned analysis, N(0,0.1); the prior used in the planned analysis, N(0,0.5); and more diffuse than the

prior used in the planned analysis, N(0,1). BF10 indicates the Bayes factor for the full model (1) against a

reduced model (0). Bayes factors of less than 0.3 indicate evidence for the reduced model, while Bayes

factors greater than 3.0 suggest evidence for the full model.

The model estimates can be seen in Table 11 and the model posteriors in Figure 7. The Bayes factor585

analysis found evidence for an effect of entropy on first fixation duration, first pass reading time, and586

total fixation time, in that increasing entropy slowed reading times. With more informative priors, Bayes587

factors suggested evidence for the effect of entropy in each of these three measures was strong. At the588

planned (non-informative, regularising) prior for regression path duration, Bayes factor evidence for an589

effect of entropy was inconclusive. However, when the more informative prior was used, evidence for an590

effect of entropy on regression path duration was strong. The Bayes factors for the remaining predictors591

(distance, entropy × distance) were in favour of the null hypothesis, regardless of which prior was used.592
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Mean reading

Measure Condition time (ms) 95% CI

First fixation
duration

(a) Low entropy, short distance 279 265,295

(b) Low entropy, long distance 264 250,279

(c) High entropy, short distance 293 277,311

(d) High entropy, long distance 317 299,335

First pass

reading time

(a) Low entropy, short distance 317 297,338

(b) Low entropy, long distance 287 270,306

(c) High entropy, short distance 321 300,343

(d) High entropy, long distance 357 334,381

Total fixation
time

(a) Low entropy, short distance 357 332,385

(b) Low entropy, long distance 321 299,346

(c) High entropy, short distance 376 348,407

(d) High entropy, long distance 416 385,449

Regression path

duration

(a) Low entropy, short distance 354 329,382

(b) Low entropy, long distance 325 301,351

(c) High entropy, short distance 358 332,386

(d) High entropy, long distance 402 373,433

Table 10. Experiment 2: Summary eye-tracking reading times by condition using entropy as a

continuous variable. For the purpose of these summary statistics only, entropy was sorted into high and

low categories via median-split. The mean and 95% confidence interval (CI) per condition are presented

Figure 7. Experiment 2: Changes in reading time for each eye-tracking measure using entropy

as a continuous predictor. The posterior represents the estimated change in reading time for the average

reader elicited by a one-unit increase in entropy. The log transformed reading times mean that posteriors

shifted to the right of zero indicate slower reading. Error bars show the 95% Bayesian credible intervals.
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Bayes factors (BF10):

Measure Predictor β̂ (log ms) 95% CrI Informative Planned Diffuse

First fixation
duration

Intercept 5.66 5.55,5.76 - - -

Entropy 0.08 0.03,0.13 23.88 4.65 2.15

Distance 0.01 −0.05,0.07 0.28 0.06 0.03

Entropy × Distance 0.04 −0.04,0.11 0.32 0.01 0.00

First pass

reading time

Intercept 5.76 5.61,5.90 - - -

Entropy 0.08 0.03,0.13 17.71 4.49 1.86

Distance 0.00 −0.06,0.07 0.27 0.06 0.03

Entropy × Distance 0.02 −0.06,0.10 0.19 0.00 0.00

Total fixation
time

Intercept 5.87 5.70,6.04 - - -

Entropy 0.12 0.04,0.21 24.65 4.77 2.78

Distance 0.00 −0.06,0.07 0.32 0.07 0.04

Entropy × Distance 0.01 −0.08,0.09 0.22 0.00 0.00

Regression path

duration

Intercept 5.85 5.67,6.02 - - -

Entropy 0.10 0.03,0.18 12.58 2.91 1.18

Distance 0.01 −0.05,0.08 0.35 0.07 0.03

Entropy × Distance 0.04 −0.06,0.12 0.41 0.01 0.00

Table 11. Experiment 2: Model estimates for the exploratory analysis with entropy as a

continuous predictor. β̂ represents the model’s estimated effect for each of the predictors on the log

scale. The log transform means that estimates with a positive sign indicate slower reading times and that

readers who are slower on average will be more affected by the manipulation than faster readers. The

95% Bayesian credible interval (CrI) gives the range in which 95% of the model’s samples fell. Bayes

factors are presented for a range of β priors including, from left to right: more informative than the prior

used in the planned analysis, N(0,0.1); the prior used in the planned analysis, N(0,0.5); and more diffuse

than the prior used in the planned analysis, N(0,1). BF10 indicates the Bayes factor for the full model (1)

against a reduced model (0). Bayes factors of less than 0.3 indicate evidence for the reduced model, while

Bayes factors greater than 3.0 suggest evidence for the full model.
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The predicted versus observed interactions of distance and entropy are plotted in Figure 8. Numerically,593

the pattern of reading times again appeared to be a mixture of the predictions of surprisal theory and the594

decay simulation based on the LV05 model. However, the results of the statistical analyses did not support595

an interaction of entropy and distance, and so this pattern is not further interpreted.596

Figure 8. Experiment 2: Predicted versus modelled interaction of entropy and distance on

reading times in each eye tracking measure. FFD refers to first fixation duration, FPRT to first pass

reading time, TFT to total fixation time, and RPD to regression path duration A-B. Predicted interaction

patterns in line with surprisal theory and activation decay. C-F. Observed reading time patterns. Shaded

areas represent 95% Bayesian credible intervals.

Interim discussion597

The planned analysis with the categorical predictor set size again did not find any support for our598

hypotheses that temporal activation decay would be more prominent when lexical predictability was low.599

Reconfiguring set size as the continuous predictor entropy, however, found support for the hypothesis600

that increased uncertainty about the lexical identity of the particle would slow reading times. However,601

there was still no evidence that temporal decay influenced reading times, either alone or in interaction602

with entropy.603

GENERAL DISCUSSION604

In two reading time experiments, we investigated whether readers pre-activated the lexical identity of a605

particle in long-distance verb-particle dependencies by varying lexical predictability of the particle. We606

additionally examined whether delaying the appearance of the particle would facilitate processing in line607

with the surprisal account (Levy, 2008), whether processing might be negatively affected by temporal608

activation decay, and whether the particle’s lexical predictability might interact with either of these factors.609

The planned analyses of both a self-paced reading and an eye tracking experiment provided evidence610

against an effect of particle predictability or delay of its appearance. However, in more appropriate611

exploratory analyses using entropy as a continuous predictor at the particle site, we did find evidence of612

particle predictability in eye-tracking but not self-paced reading, and evidence against an effect of decay613

or its interaction with predictability in any modality.614

The findings in the eye tracking data are consistent with evidence suggesting that the effects of615

predictability influence early stages of lexical processing and thus that its effects are more likely to be616

detected in early eye tracking measures (Staub, 2015), as well as gaze duration (Rayner, 1998). At first617

blush, our results appear inconsistent with this proposal in that we observed a predictability effect in618

21/26PeerJ reviewing PDF | (2019:11:43364:3:0:NEW 29 Oct 2020)

Manuscript to be reviewed



both early and late eye tracking measures, including regression path duration. However, this may have619

been due to the fact that first fixation durations were included in the computation of the remaining three620

measures, meaning that the primary source of the effect may actually be first fixation durations (Vasishth621

et al., 2013). On the other hand, it is possible that regression path duration times may reflect the reanalysis622

of a mispredicted particle in the high entropy (low predictability) sentences, rather than faster early lexical623

access in low entropy (high predictability) sentences (Clifton et al., 2007; Frazier and Rayner, 1987).624

Our design does not enable us to distinguish between these two possibilities, but either mechanism is625

consistent with pre-activation of the long-distance particle.626

When was the particle pre-activated?627

Within each experimental item, all words were identical except for the verb, meaning that the only628

information influencing uncertainty at the particle site was the verb. This supports the possibility that the629

difference in reading time observed at the particle could have resulted from differences in particle pre-630

activation at the verb. However, it is also possible that pre-activation was triggered by the combination of631

the verb and its direct objects. For example, the fragment ”Nach dem Gespräch stellte er die Kandidatin...”632

(Following the interview, he put the candidate...) should be sufficient to anticipate the most likely633

verb-particle combinations. The lexical pre-activation of particles is unlikely to have been triggered by634

information between the direct object and the particle site (e.g. ”aus England”, from England), since635

this region did not add any information about the identity of the particle. It is therefore possible to636

conclude that pre-activation occurred at the latest before the pre-critical region, suggesting that lexical637

pre-activation can be sustained over multiple intervening words that do not form part of the particle verb638

constituent (cf. studies where evidence for lexical pre-activation is only observed at the immediately639

preceding word or within the noun phrase: DeLong et al., 2005; Van Berkum et al., 2005; Wicha et al.,640

2004; Nicenboim et al., 2020).641

One feature of interest in the data, and perhaps in further support of particle pre-activation at the verb,642

is the fact that base verbs associated with higher entropy at the particle were higher in frequency, and yet643

were not read faster. High word frequency is strongly correlated with faster reading time (Kliegl et al.,644

2004; Rayner and Duffy, 1986). A potential explanation for the lack of a speed-up is that a larger number645

of pre-activated particles made the meaning of the verb more ambiguous, which in turn led to slower646

reading and cancelling out of the expected speed-up associated with higher frequency. This hypothesis647

requires testing, however.648

Assuming that particle pre-activation underlies the effects observed in eye-tracking, our findings649

present a contradiction to the hypothesis that verbs that take particles are maintained in working memory650

to facilitate retrieval once the particle is finally encountered (Piai et al., 2013). If this were the case, we651

should not have observed an effect of predictability at the particle, since there is no reason to think that652

one verb, already activated and integrated into the sentence parse, should have required more resources to653

retrieve than another. It may indeed be that high entropy verbs are somehow more difficult to integrate than654

low entropy verbs, but it is difficult to conceive of why without invoking activation of associated lexical655

or syntactic information, including particles. Maintenance of the verb in working memory therefore does656

not account for the eye-tracking results observed reported here.657

Temporal activation decay658

The evidence against an effect of temporal decay in both the self-paced reading and eye tracking exper-659

iments is consistent with findings suggesting that decay is not an important factor influencing reading660

and memory recall times (Lewandowsky et al., 2009; Engelmann et al., 2019; Vasishth et al., 2019). In661

comparison to the sentences used in distance manipulations in previous studies, our sentences used simple662

adjectival modifiers that deliberately avoided the introduction of interference or new discourse referents.663

This allowed us to isolate decay as an explanatory factor; however, it is possible that the modifiers were not664

long enough to introduce a detectable effect of decay. That said, it would have been difficult to construct665

longer interveners without reintroducing interference or working memory load, which supports the idea666

that interference and working memory load are indeed the more important source of processing difficulty667

in longer sentences, rather than temporal decay. Alternatively, it could be argued that the difficulty in668

constructing longer sentences without introducing interference or working memory load means it is669

difficult or impossible to test decay in isolation, and thus that we cannot know what the true effect of670

decay is. However, if the effect of decay is so small that it is undetectable in the face of interference and671
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working memory load, and these factors are almost unavoidable in constructing long dependencies, then672

one could argue that decay does not play a major role in processing difficulty.673

Another possible explanation for not having detected a decay effect is that the difficulty in creating674

experimental items meant there were only 24 experimental items in total. In the Latin square design, this675

meant that each participant saw only six target trials per condition. If the effect of decay is indeed very676

small, future experiments should include more trials per participant in order to detect the effect.677

CONCLUSIONS678

We investigated whether readers pre-activate the lexical content of long-distance verb-particle dependen-679

cies such as turn the music down, or whether they wait to interpret the meaning of the verb retrospectively680

once the particle is encountered. In addition, we compared two hypotheses of dependency processing:681

whether delaying the appearance of a verb particle would facilitate its processing (an antilocality effect),682

or whether activation decay over time would negatively impact its processing (a locality effect). We found683

evidence that readers did pre-activate the lexical identity of upcoming particles and that this pre-activation684

facilitated early processing stages, but evidence against any effect of delaying the particle on processing.685

Crucially, the particle in the current study was delayed with information that neither hinted at the upcoming686

particle’s identity, nor increased interference or working memory load. The evidence against an effect of687

delaying the particle therefore suggests that locality and antilocality effects observed in previous research688

may be due to the additional intervening information that adds to working memory load or confirms689

lexical expectations, and that temporal activation decay is not a strong influence on reading times.690

Appendix 1691

Data and code692

All data and code necessary to reproduce our analyses are available here: https://osf.io/yg5wx/693

Appendix 2694

Particle verb frequencies695

Frequencies were computed for both the base verb and the particle verb as a whole using the Tübingen696

aNotated Data Retrieval Application, TüNDRA, (Martens, 2013). The treebank used was the automatic697

dependency parse of the German Wikipedia with over 48.26 million sentences. Frequencies are presented698

as the incidence of the verb or particle verb per 1000 words. As can be seen in Table A1, while the699

frequencies of the verb+particle constructions were comparable, frequency of the base verb was notably700

higher in the high entropy condition.701

Verb only Verb+particle

Condition Mean 95% CI Mean 95% CI

Low entropy 0.17 0.11, 0.28 0.04 0.03, 0.07

High entropy 0.42 0.26, 0.69 0.04 0.03, 0.07

Table A1. Mean verb and particle verb frequency per 1000 words for high and low entropy.

Sentences were divided into high and low entropy categories via a median split.
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