Relative size and nose color predict age in Andean bears, but their facial markings do not reflect kinship

Russ Van Horn, Becky Zug, Robyn D Appleton, Ximena Velez-Liendo, Susanna Paisley, Corrin LaCombe

Using photos of captive Andean bears of known age and pedigree, and photos of wild Andean bear cubs < 6 months old, we evaluated the degree to which visual information may be used to estimate bears' ages and assess their kinship. We demonstrate that the ages of Andean bear cubs \leq 6 months old may be estimated from their size relative to their mothers with an average error of < 0.01 \pm 13.2 days (SD; n = 14), and that ages of adults \geq 10 years old may be estimated from the proportion of their nose that is pink with an average error of < 0.01 \pm 3.5 years (n = 41). We also show that similarity among the bears' natural markings, as perceived by humans, is not associated with pedigree kinship among the bears (R² < 0.001, N = 1,043, p = 0.499). Thus, researchers may use photos of wild Andean bears to estimate the ages of young cubs and older adults, but not to infer their kinship. Given that camera trap photos are one of the most readily available sources of information on large cryptic mammals, we suggest that similar methods be tested for use in other poorly understood species.

- 2 Russell C. Van Horn¹, Becky Zug², Robyn D. Appleton^{3, 4}, Ximena Velez-Liendo⁵, Susanna
- 3 Paisley⁶, and Corrin LaCombe¹.
- ⁴ Institute for Conservation Research, San Diego Zoo Global, San Diego, CA USA
- 5 ² Nelson Institute for Environmental Studies, University of Wisconsin Madison, WI USA
- 6 ³ Department of Forest and Conservation Sciences, University of British Columbia, BC Canada
- ⁴ Spectacled Bear Conservation Society, Squamish, BC Canada
- 8 ⁵Centro de Biodiversidad y Genética, Universidad Mayor de San Simon, Cochabamba, Bolivia
- 9 ⁶Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, UK
- 11 Corresponding author:
- 12 Russell C. Van Horn
- 13 San Diego Zoo Institute for Conservation Research
- 14 P.O. Box 120551
- 15 San Diego, CA 92112-0551 USA
- 16 Phone: 001-619-231-1515, ext. 4530
- 17 Email: rvanhorn@sandiegozoo.org

18

INTRODUCTION

19

21	The Andean bear (Tremarctos ornatus, FG Cuvier) is vulnerable to extinction (Goldstein et al. 2008)
22	but we know little of its ecology (Garshelis 2004), demography, and genetic structuring (Viteri &
23	Waits 2009), making it difficult to plan for its conservation. To facilitate research in support of Andean
24	bear conservation we've assessed whether we can estimate the ages and assess the kinship of individual
25	Andean bears. Because conservation success may be improved through engagement of local people
26	(Byers 1999; Danielsen et al. 2007; Peyton 1989), and because local people may have knowledge and
27	skills beneficial to scientific research (Sharma, Jhala & Sawarkar 2005; Stander et al. 1997; Zuercher,
28	Gipson & Stewart 2003), we've focused on methods that rely on a minimum of technology.
29	Individual appearance may provide information not only on identity (e.g., Van Horn et al. 2014) but
30	also on age and even kinship, in species as disparate as giraffe (Giraffa camelopardalis; Berry &
31	Bercovitch 2012; Foster 1966) and lions (Panthera leo; Whitman et al. 2004). Age in other bears has
32	been inferred, with some error, by morphological measurements and dental cementum annuli (Bridges,
33	Olfenbuttel & Vaughan 2002; Christensen-Dalsgaard et al. 2010; Costello et al. 2004; Marks &
34	Erickson 1966; McLaughlin et al. 1990; Medill et al. 2009; Mundy & Fuller 1964; Stoneberg & Jonkel
35	1966; Willey 1974), but noninvasive methods of age estimation have not been developed for bears. It
36	appears that the markings of Andean bears may change subtly over an individual's lifetime, but such
37	changes are not predictable enough to allow age estimation (Van Horn et al. 2014). Because the size of
38	offspring relative to their mothers may predict their age (e.g., Jongejan, Arcese & Sinclair 1991), we
39	evaluated whether such data predicted the ages of young Andean bear cubs. In addition, because nose
40	color is a reliable indicator of age in another carnivore (Whitman et al. 2004), we examined the degree
41	to which the nose color of Andean bears reflected their age. Genetic analysis would provide strong
42	evidence of kinship (e.g., Woods et al. 1999) and genetic tools are being developed for Andean bears

43	(e.g., Viteri & Waits 2009), but collection of genetic samples is not always feasible in the humid
44	tropical forests and grasslands where most Andean bears are thought to live (Goldstein et al. 2008).
45	Aside from genetic data, kinship may be inferred from similarity of appearance among individuals in
46	some species (Alvergne et al. 2009; Bateson, Lotwick & Scott 1980; Caro & Durant 1991; Jarman et al
47	1989; Mills et al. 2000; Parr et al. 2000; Pokorny & de Waal 2009; Vokey et al. 2004), but not in others
48	(Kelly 2001). The inheritance of markings among bears is poorly understood (Higashide, Miura &
49	Miguchi 2012) and there is some evidence that patterns in markings of Andean bears are not obviously
50	heritable (Eck 1969), so the link between kinship and similarity in markings among Andean bears is
51	uncertain, at best. We therefore assessed whether this link is informative.
52	
53	MATERIALS AND METHODS
54	
55	We extracted information from portraits of captive Andean bears of known identity, age, and pedigree
56	that were posted online, and from zoo personnel and field researchers in North America, Europe, and
57	South America (Van Horn et al. 2014). If we did not know the date on which the photograph was taken
58	we assigned it the midpoint of the time period in which the photo was taken (e.g., photos taken in
59	'July' were assigned the date 15 July).
60	
61	Visual estimation of age through relative body size
62	To evaluate whether the relative size of young cubs might predict their age, we extracted
63	information from photographs of known-age cubs born in captivity, and from young cubs found in
64	their natal dens in the tropical dry forest of northwest Peru (6°26'S, 79°33'W), where research on
65	Andean bear ecology and behavior has been underway since 2007. We located active natal dens by

inferring den entry from the sudden cessation of new telemetry positions and by then searching near
the last previous transmitted locations, along with searching similar sites during the same season. We
estimated the ages of cubs found in their natal dens from their development when compared to
published descriptions of captive cub development (Aquilina 1981; Bloxam 1977; Malzacher & Hall
1998; Molloy 1989; Müller 1988; Peel, Price & Karsten 1979; Saporiti 1949; Stancer 1990). We later
opportunistically collected photos of some of these same wild cubs and their mothers with camera traps
set during a long-term study. Within photos we measured the size of cubs, relative to the size of their
mothers, for wild-born and captive-born cubs that were < 180 days old. We chose this age period
because the growth of bear cubs within the first 6 months of life often appears linear (Bartareau et al.
2012; Blanchard 1987; Bridges et al. 2002; Bridges, Vaughan & Fox 2011; Kingsley 1979; McRoberts,
2012; Blanchard 1987; Bridges et al. 2002; Bridges, Vaughan & Fox 2011; Kingsley 1979; McRoberts, Brooks & Rogers 1998) and because growth among older cubs might be influenced by factors other
Brooks & Rogers 1998) and because growth among older cubs might be influenced by factors other
Brooks & Rogers 1998) and because growth among older cubs might be influenced by factors other than age (e.g., variation in food availability). To avoid potentially confounding variation that might be
Brooks & Rogers 1998) and because growth among older cubs might be influenced by factors other than age (e.g., variation in food availability). To avoid potentially confounding variation that might be introduced by variation in litter size we also excluded data from twin litters. We estimated the relative
Brooks & Rogers 1998) and because growth among older cubs might be influenced by factors other than age (e.g., variation in food availability). To avoid potentially confounding variation that might be introduced by variation in litter size we also excluded data from twin litters. We estimated the relative sizes of cubs by taking the mean of three repeated measures of the same fixed post-cranial
Brooks & Rogers 1998) and because growth among older cubs might be influenced by factors other than age (e.g., variation in food availability). To avoid potentially confounding variation that might be introduced by variation in litter size we also excluded data from twin litters. We estimated the relative sizes of cubs by taking the mean of three repeated measures of the same fixed post-cranial measurement (e.g., length of lower hindlimb, shoulder height) of cubs and their mothers when they
Brooks & Rogers 1998) and because growth among older cubs might be influenced by factors other than age (e.g., variation in food availability). To avoid potentially confounding variation that might be introduced by variation in litter size we also excluded data from twin litters. We estimated the relative sizes of cubs by taking the mean of three repeated measures of the same fixed post-cranial measurement (e.g., length of lower hindlimb, shoulder height) of cubs and their mothers when they were the same distance from the camera, as determined by visual landmarks in the photographs (n =
Brooks & Rogers 1998) and because growth among older cubs might be influenced by factors other than age (e.g., variation in food availability). To avoid potentially confounding variation that might be introduced by variation in litter size we also excluded data from twin litters. We estimated the relative sizes of cubs by taking the mean of three repeated measures of the same fixed post-cranial measurement (e.g., length of lower hindlimb, shoulder height) of cubs and their mothers when they were the same distance from the camera, as determined by visual landmarks in the photographs (n = 14). We constructed candidate predictive models of relative cub size from cub age (69 - 180 days), cub
Brooks & Rogers 1998) and because growth among older cubs might be influenced by factors other than age (e.g., variation in food availability). To avoid potentially confounding variation that might be introduced by variation in litter size we also excluded data from twin litters. We estimated the relative sizes of cubs by taking the mean of three repeated measures of the same fixed post-cranial measurement (e.g., length of lower hindlimb, shoulder height) of cubs and their mothers when they were the same distance from the camera, as determined by visual landmarks in the photographs (n = 14). We constructed candidate predictive models of relative cub size from cub age (69 - 180 days), cub provenance (captive-born or wild-born), cub identity (4 captive-born, 3 wild-born), and the interaction

Visual estimation of age through nose color

87

To investigate the relationship between the color of a bear's nose and its age (years) we first
screened photos of captive Andean bears to exclude photos that did not show the entire nose, photos
that did not appear in focus when magnified to $2-4X$, and photos from which there were < 1000
pixels in the image of the nose. To avoid non-independence between photos we excluded multiple
photos of the same bear that were taken within 365 days, and we renamed the 76 remaining photos
from 58 bears (32M, 26F), aged 0.3 – 31.4 years, with random numbers. We then expressed the color
of a bear's nose as the proportion of the area of the nose that was pink ('proportion pink') by taking the
mean of three independent estimates of the proportional area of pink in each photo, excluding the
nostrils (which were often shaded), and being alert for the presence of pink scar tissue. We had
longitudinal series of photos from 10 bears (7M, 3F) that provided 12 pairwise within-individual
comparisons of the change in nose color over time; the average annual change in the proportion pink
was 0.02 ± 0.02 , which lent credence to the use of proportion pink as an indicator of age. Because there
were multiple photographs for some but not all bears $(1.31 \pm 0.6 \text{ photos/bear})$, to avoid non-
independence of data and to allow for model testing we randomly selected 1 photograph per bear from
photographs of bears \geq 9.9 years old (the minimum age at which we observed pink on the nose) for use
in model building and retained the other data in this age range for use in model testing. We then used
the proportion pink as the response variable in linear regression analyses with candidate models
including age, sex, and the interaction of age and sex. We used AIC_c as the key criterion for model
selection, with R ² and p to assess the effectiveness of the 'best' model for describing a cub's relative
size. When multiple candidate models were competitive (i.e., $\Delta AICc \leq 2$), we used full model
averaging (e.g., Lukacs, Burnham & Anderson 2009) to derive the predictive equation including age,
sex, and the interaction of age and sex. To assess the fit and putative power of relationships predicting
age we then examined the reverse relationships, with age as the response variable, and examined the

distribution of the relevant residuals. When possible we tested the ability of equations to pre-	dict the
ages of bears in images that had not been used to describe the relationship between age and	nose color

Similarity of markings and kinship

To assess humans' ability to visually evaluate kinship among Andean bears, as part of a larger study we created an online survey and sought volunteer participation by colleagues, peers, personal contacts, and a solicitation in the International Bear News (Paisley et al. 2010; Van Horn et al. 2014). We asked participants to rate the similarity of 11 pairs of images of bears whose kinship was unknown to them; the average pedigree r-values across these pairs of images was 0.32 ± 0.23 . Participants were asked to rate the similarity of the markings of bears in these images as 1 of 5 categories: exactly the same, similar, slightly different, extremely different, and unable to determine. Participants (n = 109) in the online survey rated the similarity of, on average, 9.6 ± 1.7 of 11 pairs of images. We used logistic regression to examine the strength of the relationship between the perceived visual similarity of markings and the pedigree r-values of the bears in the images.

Unless otherwise noted all quantities are expressed as $\frac{x}{x} \pm \text{SD}$, and statistical significance refers to two-tailed p = 0.05. Statistical analyses were conducted in JMP 10.0.2 (SAS Institute Inc., Cary, NC.). Human subjects research was ruled exempt from IRB Review by the Research Compliance Office of Miami University (project 01632e) and animal research was approved by the IACUC committee of San Diego Zoo Global (#10-023).

RESULTS

Visual estimation of age through relative body size

The model which described cub relative size from only an intercept and cub age in days ($R^2 = 0.835$. 135 136 DF = 13, p < 0.001) fit the data better than all other models (i.e., $\triangle AICc > 4$): relative size = 0.123 + 137 0.003*(age in days). This model would not perform well for much younger and older cubs, as it 138 predicts that newborn cubs are 12.3% of their mother's size and that cubs would be the same size as 139 their mothers when only 313 days old, but from 2 - 6 months in age there appears to be a linear 140 relationship between cub age and relative size (Fig. 1). The reverse relationship is (age in days) = -15.263 + 293.26* (relative size), from which the average residual was $1.32 \times 10^{-14} \pm 13.2$ days. 141 142 143 Visual estimation of age through nose color 144 No pink was seen on the nose in 26 photos of 20 bears (10M, 10F), of which all but one (96.1%) were < 10 years old; the youngest age at which we saw pink on the nose was 9.9 years (n = 50 photos; Fig. 145 146 2). Nearly all of the 52 photos of bears > 9.5 years old (96.2%) showed some pink on the nose. The 147 linear model, built upon data from 41 photos of 41 bears (23M, 18F), which best fit the data predicted 148 the proportion pink from only age ($R^2 = 0.554$, DF = 39, p < 0.001) but there were two other 149 competitive models (i.e., $\triangle AICc > 2$): the model that also included sex, and the model that included sex 150 and the interaction of sex and age. We therefore used model averaging to derive the equation 151 (proportion pink) = -0.257 + 0.022*(age in years) + 0.0006*(age in years)*(z) where z = 0 if male or z = 1 if female. However, in practice it will not always be possible to determine the sex of a bear from 152 153 camera trap photos. The best predictive model for bears of unknown sex predicted the (proportion 154 pink) = -0.254 + 0.022* (age in years). In reverse, this relationship predicted (age in years) = 15.055 +25.129*(proportion pink) with an average residual of $2.99 \times 10^{-15} \pm 3.46$ years. Testing this model with 155 156 the 7 independent data points (6M, 1F) yielded an average error of -1.62 ± 2.3 years. Using the 23 157 points from males in the model-building data set, we found that for males (proportion pink) = -0.156 +

158	$0.018*$ (age in years) ($R^2 = 0.335$, $DF = 22$, $p = 0.004$). The reverse of this relationship predicted age
159	(in years) of males as 15.482 ± 10.698 *(proportion pink) with an average residual of $2.39 \times 10^{-15} \pm 3.2$
160	years. Testing this model with the 6 independent data points from males produced an average error of -
161	2.43 ± 2.7 years. Using the 18 points from females in the model-building data set, we found that among
162	females the (proportion pink) = $-0.33 + 0.0245*$ (age in years) (R ² = 0.703, DF = 17, p < 0.001). The
163	reverse relationship predicted for females that (age in years) = $15.435 + 28.644*$ (proportion pink) with
164	an average residual of $-1.28 \times 10^{-15} \pm 3.7$ years. With only 1 independent data point from a female we
165	cannot further assess the errors in age estimation that result from this model.

Similarity of markings and kinship

Markings of Andean bears vary greatly even among full siblings (e.g., Fig. 3). The average pedigree r-values across pairs of test images was between the kinship levels of half-siblings and full-siblings, yet the average similarity rating given to these paired images by participants was 3.38 ± 0.85 , between 'slightly different' (i.e., '3') and 'extremely different' (i.e., '4'). There was not a meaningful relationship between the pedigree r-values of bears and similarity rankings of their photos ($R^2 < 0.001$, N = 1,043, p = 0.499), demonstrating that perceived similarity among paired images did not reflect pedigree kinship among the bears.

DISCUSSION

For the first several months after young Andean bears are independent of their natal dens, the relative size of cubs can be used to predict their age and then estimate their birthdates. At present the only data on birthdates of Andean bears come from captivity (e.g., Spady, Lindberg & Durrant 2007) and from 1

181 den in Ecuador (Castellanos 2010), so the estimation of any additional birthdates of wild cubs should 182 offer important insights into Andean bear reproductive ecology. Interestingly, because the provenance 183 of young cubs had no impact on their relative growth, relative growth of young cubs should be stable 184 across habitats, allowing the use of this relationship to predict ages and estimate birthdates across the 185 species' range. Given that a similar method of age estimation is effective in a phylogenetically distant 186 species (Jongejan et al. 1991), we think the relative size of dependent offspring may be a useful way 187 for investigators to visually estimate the ages and birthdates of progeny in many other species. 188 Nose color provides a clear noninvasive indicator of whether an Andean bear is older or younger 189 than 10 years: if any of the nose is pink the bear is almost certainly > 10 years old, and vice versa. 190 Older Andean bears also show grizzling on their faces (Van Horn et al. 2014). Using the proportion 191 pink of the bear's nose, and whatever information is available about a bear's sex, we can estimate the 192 age of a wild Andean bear to ± 3 - 4 years. These estimates are less precise than age estimates for some 193 other bear species (e.g., Christensen-Dalsgaard et al. 2010; Costello et al. 2004) but those estimates 194 require capture and handling of the bear, while measuring nose color does not. It may not be easy to 195 obtain many suitable photos of the noses of free-ranging bears without the use of lures and relatively 196 complex configurations of cameras traps, but two of us (RVH, RDA) have done so. We do not know if 197 nose color changes in a predictable manner in other bears and in other carnivores, although we have 198 seen photos of some cats (e.g., Leopardus pardalis, Puma concolor) showing variation in their nose 199 color. We therefore suggest that nose color may provide valuable information on age structure in other 200 carnivores. 201 Our data indicate that it is not possible to infer kinship among Andean bears based on the 202 perceived similarity of their markings. This is consistent with Eck's (1969) hypothesis that patterns in 203 markings are not heritable and this affirms that genetic tools (e.g., Viteri & Waits 2009) are needed to 204 infer kinship among wild Andean bears.

Although the methods we describe cannot replace long-term research on known individuals, we believe that they will facilitate the collection of data and enhance the value of camera trapping efforts for the conservation of Andean bears. In addition, we believe the examination of the relationships among relative size, nose color, sex, and age among known-age individuals of other species may produce similarly useful methods across more taxa.

ACKNOWLEDGEMENTS

We thank the Smithsonian's National Zoo and the following for the use of their photographs in Figure 3: Daniel Reidel ('Billie Jean', 'Chaska', and 'Nicole'), Tracey Barnes ('Bernardo' and 'Curt'), and Valerie Abbott ('Nikki'). We thank Drs. Peter Arcese and Ron Swaisgood for their intellectual contributions. We thank the volunteer participants in the online survey, which was made possible by Yuri Nataniel Daza (Universidad de San Simon). The following zoological gardens and individuals shared photographs of captive Andean bears for use in the online survey: Antwerp Zoo (Sander Hofman), Basel Zoo (Dr. Friederike von Houwald), Brookfield Zoo, Cheyenne Mountain Zoo, Cincinnati Zoo, Cleveland Metroparks Zoo, Connecticut's Beardsley Zoo, Dortmund Zoo (Dr. Florian Sicks), Durrell Wildlife Conservation Trust (Mark Brayshaw), Gladys Porter Zoo, Houston Zoo, Köln Zoo (Dr. Lydia Kolter), Minnesota Zoo, Oglebay's Good Zoo, Racine Zoo, Reid Park Zoo, Rolling Hills Wildlife Adventure, Salisbury Zoo, San Antonio Zoo, San Diego Global, Smithsonian National Zoo, and Smoky Mountain Zoo. We were able to collect data on wild Andean bears only through the efforts of Javier Vallejos, José Vallejos, and Isai Sanchez. We thank the citizens of the Rio La Leche watershed for permission and support to work on communal land. Governmental permission to conduct

- 227 field research was granted by the Dirección General Forestal y de Fauna Silvestre as Resolución
- 228 Directoral No. 0245-2012-AG-DGFFS-DGEFFS.

231	
232	Alvergne A, Huchard E, Charpentier MJE, Setchell JM, Ruppli C, Féjan D, Martinez L, Cowlishaw G,
233	Raymond M. 2009. Human ability to recognize kin visually within primates. <i>International</i>
234	Journal of Primatology 30:199-210.
235	Aquilina GD. 1981. Stimulation of maternal behaviour in the Spectacled bear <i>Tremarctos ornatus</i>
236	at Buffalo Zoo. International Zoo Yearbook 21:143-145.
237	Bartareau TM, Larter NC, Cluff HD, Leone EH. 2012. Body condition and growth dynamics of
238	American black bears in northern Canada. Ursus 23:12-20.
239	Bateson P, Lotwick W, Scott DK. 1980. Similarities between the faces of parents and offspring in
240	Bewick's swan and the differences between mates. Journal of Zoology 191:61-74.
241	Berry PSM, Bercovitch FB. 2012. Darkening coat colour reveals life history and life expectancy of
242	male Thornicroft's giraffes. Journal of Zoology 287:157-160.
243	Blanchard BM. 1987. Size and growth patters of the Yellowstone grizzly bear. <i>International</i>
244	Conference on Bear Research and Management 7:99-107.
245	Bloxam Q. 1977. Breeding the spectacled bear <i>Tremarctos ornatus</i> at Jersey Zoo. <i>International</i>
246	Zoo Yearbook 17:158-161.
247	Bridges AS, Olfenbuttel C, Vaughan MR. 2002. A mixed regression model to estimate neonatal
248	black bear cub age. Wildlife Society Bulletin 30:1253-1258.
249	Bridges AS, Vaughan MR, Fox JA. 2011. American black bear estrus and parturition in the
250	Alleghany Mountains of Virginia. <i>Ursus</i> 22:1-8.

REFERENCES

251	Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical
252	information-theoretic approach. 2nd edition. New York, NY: Springer Science + Business
253	Media.
254	Byers T. 1999. Perspectives of aboriginal people on wildlife research. Wildlife Society Bulletin
255	27:671-675.
256	Caro TM, Durant SM. 1991. Use of quantitatve analyses of pelage characteristics to reveal family
257	resemblances in genetically monomorphic cheetahs. Journal of Heredity 82:8-14.
258	Castellanos A. 2010. Andean bear den found in Ecuador cloud forest. <i>International Bear News</i>
259	19:6-8.
260	Christensen-Dalsgaard SN, Aars J, Andersen M, Lockyer C, Yoccoz NG. 2010. Accuracy and
261	precision in estimation of age of Norwegian Arctic polar bears (Ursus maritimus) using
262	dental cementum layers from known-age individuals. Polar Biology 33:589-597.
263	Costello CM, Inman KH, Jones DE, Inman RM, Thompson BC, Quigley HB. 2004. Reliability of the
264	cementum annuli technique for estimating age of black bears in New Mexico. Wildlife
265	Society Bulletin 32:169-176.
266	Danielsen F, Mendoza MM, Tagtag A, Alviola PA, Balete DS, Jensen AE, Enghoff M, Poulsen MK.
267	2007. Increasing conservation management action by involving local people in natural
268	resource monitoring. <i>Ambio</i> 36:566-570.
269	Eck S. 1969. Über das Verhalten eines im Dresdener Zoologischen Garten aufgezogenen
270	Brillenbären (Tremarctos ornatus [Cuv.]). Der Zoologische Garten 37:81-92.
271	Foster JB. 1966. The giraffe of Nairobi National Park: home range, sex ratios, the herd, and food.
272	East African Wildlife Journal 4:139-148.

273	Garshelis DL. 2004. Variation in ursid life histories: is there an outlier? In: Lindburg D, and
274	Baragona K, eds. Giant pandas: biology and conservation. Berkeley and Los Angeles:
275	University of California Press, 53-73.
276	Goldstein I, Velez-Liendo X, Paisley S, Garshelis DL. (IUCN SSC Bear Specialist Group). 2008.
277	Tremarctos ornatus. The IUCN Red List of Threatened Species. Available at
278	www.iucnredlist.org (accessed 3 January 2014.)
279	Higashide D, Miura S, Miguchi H. 2012. Are chest marks unique to Asiatic black bear individuals?
280	Journal of Zoology 288:199-206.
281	Jarman PJ, Jones ME, Southwell CJ, Stuartdick RI, Higginbottom KB, Clark JL. 1989. Macropod
282	studies at Wallaby Creek VIII. Individual recognition of kangaroos and wallabies.
283	Australian Wildlife Research 16:179-185.
284	Jongejan G, Arcese P, Sinclair ARE. 1991. Growth, size and the timing of births in an individually
285	identified population of oribi. African Journal of Ecology 29:340-352.
286	Kelly MJ. 2001. Computer-aided photograph matching in studies using individual identification:
287	an example from Serengeti cheetahs. Journal of Mammalogy 82:440-449.
288	Kingsley MCS. 1979. Fitting the von Bertalanffy growth equation to polar bear age-weight data.
289	Canadian Journal of Zoology 57:1020-1025.
290	Lukacs PM, Burnham KP, Anderson DR. 2009. Model selection bias and Freedman's paradox.
291	Annals of the Institute of Statistical Mathematics 62:117-125.
292	Malzacher H, Hall D. 1998. Hand-raising spectacled bear cubs at Henry Vilas Zoo, Madison,
293	Wisconsin. In: Rosenthal MA, ed. International Studbook for the Spectacled Bear. Chicago,
294	IL: Lincoln Park Zoological Gardens, 169-178.

295	Marks SA, Erickson AW. 1966. Age determination in the black bear. Journal of Wildlife
296	Management 30:389-410.
297	McLaughlin CR, Matula GJ, Cross RA, Haltman WH, Caron MA, Morris KI. 1990. Precision and
298	accuracy of estimating age of Maine black bears by cementum annuli. International
299	Conference on Bear Research and Management 8:415-419.
300	McRoberts RE, Brooks RT, Rogers LL. 1998. Using nonlinear mixed effects models to estimate
301	size-age relationships for black bears. Canadian Journal of Zoology 76:1098-1106.
302	Medill S, Derocher AE, Stirling I, Lunn N, Moses RA. 2009. Estimating cementum annuli width in
303	polar bears: identifying sources of variation and error. Journal of Mammalogy 90:1256-
304	1264.
305	Mills LS, Citta JJ, Lair KP, Schwartz MK, Tallmon DA. 2000. Estimating animal abundance using
306	noninvasive DNA sampling: promise and pitfalls. <i>Ecological Applications</i> 10:283-294.
307	Molloy LM. 1989. Mother-rearing in captive spectacled bear (Tremarctos ornatus) through the
308	use of video tape. Proceedings of the First International Symposium on the Spectacled
309	Bear. Lincoln Park Zoological Gardens, Chicago, IL.: Lincoln Park Zoological Gardens,
310	Chicago, IL. p 189-208.
311	Müller P. 1988. Beobachtungen zur Fortpflanzungsbiologie von Brillenbären, Tremarctos ornatus
312	(F. Cuvier, 1825), im Zoologischen Garten Leipzig. Der Zoologische Garten 58:9-21.
313	Mundy KRD, Fuller WA. 1964. Age determination in the grizzly bear. Journal of Wildlife
314	Management 28:863-866.
315	Paisley S, Van Horn R, Velez-Liendo X, Zug B. 2010. Facial markings of Andean bears - can you tell
316	one from another? International Bear News 19:26.

317	Parr LA, Winslow JT, Hopkins WD, de Waal FBM. 2000. Recognizing facial cues: individual
318	discrimination by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta).
319	Journal of Comparative Psychology 114:47-60.
320	Peel RR, Price J, Karsten P. 1979. Mother-rearing of a spectacled bear cub <i>Tremarctos ornatus</i> at
321	Calgary Zoo. International Zoo Yearbook 19:177-182.
322	Peyton B. 1989. The ecology of conservation: a case for an ecosystem approach. In: Rosenthal MA,
323	ed. Proceedings of the First International Symposium on the Spectacled Bear. Chicago, IL:
324	Lincoln Park Zoological Society, 74-91.
325	Pokorny JJ, de Waal FBM. 2009. Monkeys recognize the faces of group mates in photographs.
326	Proceedings of the National Academy of Science 106:21539-21543.
327	Saporiti EJ. 1949. Contribución al conocimiento de la biología del oso de lentes. <i>Anales de la</i>
328	Sociedad Científica Argentina 147:3-12.
329	Sharma S, Jhala Y, Sawarkar VB. 2005. Identification of individual tigers (Panthera tigris) from
330	their pugmarks. Journal of Zoology 267:9-18.
331	Spady TJ, Lindberg DG, Durrant BS. 2007. Evolution of reproductive seasonality in bears.
332	Mammal Review 37:21-53.
333	Stancer M. 1990. Pepino: San Diego Zoo's first hand-reared spectacled bear. In: Rosenthal MA, ed.
334	International register and studbook for the spectacled bear (Tremarctos ornatus). Chicago,
335	IL: Lincoln Park Zoological Gardens, 75-82.
336	Stander PE, Ghau <i>I</i> , Tsisaba D, ‡oma <i>l</i> , Ui ll. 1997. Tracking and the interpretation of spoor: a
337	scientifically sound method in ecology. Journal of Zoology, London 242:329-341.
338	Stoneberg RP, Jonkel CJ. 1966. Age determination of black bears by cementum layers. Journal of
339	Wildlife Management 30:411-414.

340	Van Horn RC, Zug B, LaCombe C, Velez-Llendo X, Paisley S. 2014. Human visual identification of
341	individual Andean bears Tremarctos ornatus. Wildlife Biology 20:291-299.
342	Viteri MP, Waits LP. 2009. Identifying polymorphic microsatellite loci for Andean bear research.
343	Ursus 20:102-108.
344	Vokey JR, Rendall D, Tangen JM, Parr LA, de Waal FBM. 2004. Visual kin recognition and family
345	resemblence in chimpanzees (Pan troglodytes). Journal of Comparative Psychology
346	118:194-199.
347	Whitman K, Starfield AM, Quadling HS, Packer C. 2004. Sustainable trophy hunting in African
348	lions. <i>Nature</i> 428:175-178.
349	Willey CH. 1974. Aging black bears from first premolar tooth sections. Journal of Wildlife
350	Management 38:91-100.
351	Woods JG, Paetkau D, Lewis D, McLellan BN, Proctor M, Strobeck C. 1999. Genetic tagging of free-
352	ranging black and brown bears. Wildlife Society Bulletin 27:616-627.
353	Zuercher GL, Gipson PS, Stewart GC. 2003. Identification of carnivore feces by local peoples and
354	molecular analyses. Wildlife Society Bulletin 31:961-970.

1

The size of Andean bear cubs in proportion to the size of their mothers, while the cubs were 2-6 months old.

The dashed line illustrates the linear regression of average relative size in response to age in days among 4 captive-born (open circles) and 3 wild-born (filled circles) cubs.

2

The proportion pink of an Andean bear's nose across age in (A) a male Andean bear ('Tommy', studbook #264), aged 2, 17, and 23 years, and (B) in 76 photos of 58 captive-born Andean bears (32M, 26F).

The trendlines show the relationships between the proportion pink and age in males (open square, dashed line) and females (filled circle, solid line).

3

A photographic pedigree of captive-born Andean bears.

Squares represent males and circles represent females in this pedigree of male 'Nikki' (studbook #415, 19.3 years old), his mate 'Billie Jean' (studbook #748, 7.4 years old), and their four offspring: the littermates 'Bernardo' (studbook #837, 1.2 years old) and 'Chaska' (studbook #838, 3.3 years old), and the littermates 'Curt' (studbook #860, 2.0 years old) and 'Nicole' (studbook #861, 1.3 years old).

