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Appropriate application of nitrogen (N) can alleviate the damage of plants caused by salt
stress. This study tries to explore the change of nitrogen requirement under relatively low
salt concentrations (50 mM, 100 mM) of feeding annual ryegrass and investigate the
underlying mitigation mechanism. Results showed that low levels of salt stress decreased
N requirement because the increment of plant height and biomass reached maximum at a
relative low N level (2.0 mM not 5.0 mM). Under salt treatment, especially at 50 mM NaCl,
the OJIP curve and a series of performance indexes (PIABS, RC/CS0, ET0/CS0, ϕE0, ϕ0) achieved
maximum whereas DI0/RC, Vj and M0 were the lowest under moderately low N level (2.0
mM). In addition, under salt stress, moderately low N application could maintain the
expression of NR (nitrate reductase) and GS (glutamine synthetase) encoding genes at a
relatively stable level but had no effect on the expression of detected NRT (nitrate
transporter) gene. The seedlings cultured at 2.0 mM N also have the highest activity of
CAT and POD antioxidant enzymes and the lowest MDA content and EL under relative low
level of salt treatment. These results indicated that low level of salt treatment might
reduce N requirement of annual ryegrass and moderately low N application could promote
their growth mainly by regulating photosynthesis, alleviating the damage caused by ROS
and maintaining the metabolism of N in annual ryegrass seedlings. These results also can
provide useful reference for nitrogen application in moderation rather than in excess on
annual ryegrass in mild or medium salinity areas through understanding the underlying
response mechanisms.
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17 Abstract

18 Appropriate application of nitrogen (N) can alleviate the damage of plants caused by salt stress. 

19 This study tries to explore the change of nitrogen requirement under relatively low salt 

20 concentrations (50 mM, 100 mM) of feeding annual ryegrass and investigate the underlying 

21 mitigation mechanism. Results showed that low levels of salt stress decreased N requirement 

22 because the increment of plant height and biomass reached maximum at a relative low N level 

23 (2.0 mM not 5.0 mM). Under salt treatment, especially at 50 mM NaCl, the OJIP curve and a 

24 series of performance indexes (PIABS, RC/CS0, ET0/CS0, ϕE0, ϕ0) achieved maximum whereas 

25 DI0/RC, Vj and M0 were the lowest under moderately low N level (2.0 mM). In addition, under 

26 salt stress, moderately low N application could maintain the expression of NR (nitrate reductase) 

27 and GS (glutamine synthetase) encoding genes at a relatively stable level but had no effect on the 

28 expression of detected NRT (nitrate transporter) gene. The seedlings cultured at 2.0 mM N also 

29 have the highest activity of CAT and POD antioxidant enzymes and the lowest MDA content 

30 and EL under relative low level of salt treatment. These results indicated that low level of salt 

31 treatment might reduce N requirement of annual ryegrass and moderately low N application 

32 could promote their growth mainly by regulating photosynthesis, alleviating the damage caused 

33 by ROS and maintaining the metabolism of N in annual ryegrass seedlings. These results also 

34 can provide useful reference for nitrogen application in moderation rather than in excess on 

35 annual ryegrass in mild or medium salinity areas through understanding the underlying response 

36 mechanisms.

37
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38 Introduction

39 Feeding annual ryegrass (Lolium multiflorum Lam.) is considered to be an important forage 

40 grass with high yield, good palatability and high nutritive value (Castanheira et al., 2014). 

41 Salinity stress is one of the major factors limiting annual ryegrass growth and productivity. 

42 Studies have shown that the adverse effects of salinity on plants include ionic toxicity, osmotic 

43 stress and secondary stresses, such as lower photosynthesis, oxidative stress and nutritional 

44 disorders (Allakhverdiev & Murata, 2004; Kalaji et al., 2011; Zhu, 2001). The forage quality 

45 parameters, such as crude protein, organic matter could be seriously affected by elevated salinity 

46 level (Robinson et al., 2004). Plants have established a series of response mechanism to resist the 

47 external salt stress and reduce their damage in the long term of evolvement (Deinlein et al., 2014; 

48 Zhu, 2001). For example, in response to oxidative stress caused by salt, a series of antioxidant 

49 enzymes were induced to scavenge the production of reactive oxygen species (ROS) (Kohler et 

50 al., 2009; Olmos et al., 1994), such as superoxide dismutase (SOD), peroxidase (POD), and 

51 catalase (CAT) (Apel & Hirt, 2004; Dong et al., 2001). 

52 N is usually the limiting growth nutrient required in larger amounts which is deficient in 

53 saline environment and N application is the most commonly used effective method to regulate 

54 plant growth under salt stress. The inorganic N plants used is mainly ammonium N (NH4+) and 

55 nitrate N (NO3
-) transported by their transporters AMT (Ammonium transporter) and NRT 

56 (Nitrate transporter) respectively (Giagnoni et al., 2015). The inorganic N was then assimilated 

57 and converted into amino acid via several enzymes such as nitrate reductase (NR), glutamine 
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58 synthetase (GS) and glutamine 2-oxoglutarate aminotransferase (GOGAT) (Xu et al., 2012). The 

59 high salinity has also been shown to inhibit the activity of many enzymes such as NR and 

60 GS/GOGAT, involved in N assimilation in maize, cowpea, mung bean, tomato and rice 

61 (Chakrabarti & Mukherji, 2007; Debouba et al., 2007; Khan & Srivastava, 1998; Parul et al., 

62 2015; Silveira et al., 2001; Wang et al., 2012), and then affect the absorption and utilization of N 

63 in plants (Singh et al., 2016). N use efficiency was also reported to be reduced significantly with 

64 increased salinity conditions (Murtaza et al., 2014; Murtaza et al., 2013). On the contrary, some 

65 studies showed that processes related to N uptake and assimilation were stimulated under certain 

66 levels of salt stress in some species. For example, salt can induce the expression level of nitrate 

67 transporter such as McNRT1 (Popova et al., 2003). The nitrate uptake rate and activity of NR 

68 upon NaCl exposure were promoted in Salicornia europaea (Nie et al., 2015). Therefore, it has 

69 been suggested that alteration of plant N nutrition level may hold great promise for regulating 

70 salinity response in different species under certain salt level (Chen et al., 2014). 

71 On the whole, N application can reduce the negative influence of salinity by compensating 

72 and correcting nutritional imbalances in higher plants (Esmaili et al., 2008; Gómez et al., 1996;  

73 Mansour, 2000; Villa et al., 2003). Several N containing compounds are accumulated in plants 

74 subjected to salinity (Dluzniewska et al., 2007; Ehlting et al., 2007; Sudmalis et al., 2018). 

75 Accumulation of these compounds has been reported to participate in osmotic adjustment, 

76 promoting the photosynthetic capacity and mitigating oxidative stress by scavenging ROS 

77 (Homaee et al., 2002; Kaur-Sawhney & Galston, 1979; Mansour, 2000; Rontein et al., 2002; 

78 Song et al., 2006). Although many studies have shown that N plays an important role in the 
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79 amelioration of salt tolerance, it has been known that the alleviation of salt inhibition from N 

80 application shows a certain range. For example, in tomato, at the higher salinity levels, 

81 increasing N application was found ineffective in resisting negative influences caused by the 

82 enhanced salt concentrations (Papadopoulos & Rendig, 1983). Previous study reported that low 

83 levels of N can mitigate the negative effects whereas high N levels may exacerbate the adverse 

84 effects of salt stress on photosynthetic rate of chickpea leaves (Soussi et al., 1998) . Recent study 

85 also found that, low to moderate N application can mitigate the adverse effects, but excessive N 

86 could elevate the negative effects of salt stress on cotton growth (Chen et al., 2010). Some 

87 studies also pointed out that excessive nitrogen fertilization might lead to more pronounced 

88 osmotic effect and then provoke the negative effect on crop yield at high salinity levels (Beltrão 

89 et al., 2002). In addition, in high-salt soils, excessive application of N fertilizer will cause soil 

90 secondary salinization, which in turn increases the adverse effects of salt on crop growth (Chen 

91 et al., 2010). Moreover, over fertilization with N may contribute to N leaching in the salinity soil, 

92 where plants can not utilize the supplied N fertilizer efficiently and cause the pollution of soil 

93 and groundwater (Pessarakli & Tucker, 1998; Shenker et al., 2003, Ward, 2013).

94 Therefore, the requirements of N for plants in salinity environment might be different than 

95 those in normal environment probably due to the different physical and chemical properties of 

96 soils or substrate and the alteration of plants nitrogen use efficiency and other physiological 

97 response. Proper N fertilizer management in plants is necessary for different salt conditions to 

98 reach the aim of reducing the negative influence of salinity and minimize the degradation of soil 

99 and groundwater. Previous study on the annual ryegrass reported that increasing N concentration 
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100 in the nutrient solution enhanced shoot biomass production under relatively high salinity levels 

101 (Sagi et al., 1997). However, at relatively low salt concentrations, how the optimize nitrogen 

102 demand of annual seedlings could change and the possible mechanisms underlying this 

103 alleviation are still not fully explored. Base on the above studies, the objectives of this work were 

104 to assess the optimal N level under relatively low salt level and investigate the possible 

105 mechanism of the N level-mediated alleviation of salt stress by analyzing physiological indexes 

106 and metabolism of N in annual ryegrass seedlings. 

107 Materials and Methods

108 Plant materials and growth conditions

109 Annual ryegrass seeds were firstly thowed in plastic containers filled with plant growth medium 

110 and then cultured in greenhouse with natural sunlight. After one month, the seedlings were then 

111 transferred into Erlenmeyer flasks containing 585mL nutrient solution. The seedlings were then 

112 mowed to a height of 12.5 cm before the treatments were initiated. The experiment included 

113 control (0 mM NaCl) and NaCl treatment (50 mM or 100 mM). Both control and NaCl treatment 

114 included different nitrogen application level respectively (using NH4NO3 as nitrogen source). 

115 The hydroponic culture was processed in a growth chamber under the following conditions: 

116 22/18◦C (day/night), 65% relative humidity, 300 µmol m-2s-1 photons and a 16-h day/8-h night 

117 cycle. The culture solution was refreshed every two days.
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118 Chlorophyll a fluorescence transient and the JIP-Test

119 A pulse amplitude modulation fluorometer (PAM2500, Heinz Walz GmbH) was used to detect 

120 the Chlorophyll a fluorescence transient. The leaves of plants were put in dark place for 30 min, 

121 the leaves were then exposed to 3,000 µmol photons m-2 s-1 red light condition. Each treatment 

122 was replicated at least three times. Based on the theory of energy fluxes in biofilm, the JIP test 

123 can further translate the primary data into other biophysical parameters (Force et al., 2003). The 

124 basic parameters were then used to calculate a series of parameters (Yusuf et al., 2010).

125 Chlorophyll content and electrolyte leakage

126 SPAD 502 Plus Chlorophyll Meter (SPAD-502Plus, Spectrum Technologies, Inc., USA) was 

127 used to quantify the leaf chlorophyll content. The electrolyte leakage (EL) were determined 

128 according to the previous method (Blum & Ebercon, 1981). 

129 Enzymes activity and lipid peroxidation

130 0.3 g of fully expanded leaves were immediately grounded into powder with liquid N. 4 mL ice-

131 cold phosphate buffer (50 mM, pH 7.8) was then added into the powder and the samples were 

132 centrifuge at 12,000 rpm for 20 min at 4◦C. The supernatant was collected to detect the activity 

133 of POD and CAT and the content of MDA. The detection was based on the method as described 

134 by previous study (Fu & Huang, 2001). 

135 Quantitative RT-PCR Analysis

136 Total RNA was isolated and reverse transcribed using the RNeasy kit (Qiagen) and TaqMan 
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137 reverse transcription kit (Applied Biosystems). Quantitative real-time RT-PCR analysis was 

138 conducted using SYBR Green real-time PCR master mix (Toyobo, Japan) and ABI real-time 

139 PCR system (Applied Biosystems, FosterCity, CA). The primers used are listed in Supplemental 

140 Table S1. The ryegrass Actin gene was used as an inner control, and comparative Ct method was 

141 applied for analysis.

142 Statistical Analysis

143 One-way ANOVA was performed using SPSS17.0 for Windows (SPSS). All of above tests had 

144 at least three independent replicates. Results were expressed as mean ± SD, and letters show 

145 significant differences (P < 0.05) by Student’s t–test..

146 Results

147 Effect of different N level treatment on the growth of annual ryegrass seedlings under NaCl 

148 stress 

149 Under control condition, the plant height and the relative increase of biomass of annual ryegrass 

150 seedlings achieved maximum under 5.0 mM N, and then decreased a little under 10 mM N. As 

151 compared to 5.0 mM N, the height of seedlings grown under 2.0 mM N and 10 mM N decreased 

152 by about 10% and 15% respectively (Fig. 1A, B). However, under 50 mM or 100 mM NaCl 

153 treatment, the plant height achieved maximum under 2.0 mM N and then decreased a little under 

154 5.0 mM N. In addition, salt treatment dramatically reduced the height of plants grown under 5.0 

155 mM or 10 mM N compared with their respective control plants. However, under 2.0 mM N 
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156 condition, the plant height showed no significant difference with or without salt treatment (Fig. 

157 1B). When exposed to 50 mM NaCl, the relative increase of biomass showed no significant 

158 difference among different N levels. After the plants were exposed to 100 mM NaCl for 10 days, 

159 the biomass only increased when 2.0mM N was applied whereas the biomass decreased when 

160 extra nitrogen (5.0 or 10 mM N) was applied (Fig. 1C). These similar alteration trends in 

161 biomass and plant height suggested that salt stress might change the N requirement of annual 

162 ryegrass and moderately reducing N application might alleviate the inhibition effect of salt stress 

163 on annual ryegrass seedlings growth. We then added a lower concentration (0.5 mM) of N 

164 treatment to investigate whether ultra-low N treatment had a moderating function on the growth 

165 of annual ryegrass seedlings under salt stress. The results showed that the plant height of annual 

166 ryegrass seedlings achieved maximum under 5.0 mM N without salt treatment. However, when 

167 expose to 50 mM or 100 mM NaCl, the plant height reached maximum under 2.0 mM N (Fig. 

168 2A, B), showing the similar tendency with the above experiment (Fig. 1A, B). In addition, 

169 without NaCl treatment, there was no significant difference of plant height when seedlings were 

170 supplemented with lower N concentration (0.5 mM or 2.0 mM). However, under NaCl treatment, 

171 the plant height was significantly increased under 2.0 mM N compared with 0.5 mM N (Fig. S1). 

172 These results indicated that the alleviating effect of N application on the growth inhibition of 

173 annual ryegrass under salt stress might have a certain range. Moderately low N could alleviate 

174 the inhibition of annual ryegrass growth by salt stress through a series of response mechanism, 

175 whereas ultra-low N could not promote, but seriously inhibit the growth of annual ryegrass. 
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176 Impact of N on the OJIP transient curve in the leaves of annual ryegrass under NaCl stress 

177 In order to understand moderate N-mediated alleviation of salt stress on annual ryegrass, the 

178 impact of N levels on photochemistry of photosystem II (PS II) of NaCl treated annual ryegrass 

179 seedlings were firstly assessed through chlorophyll a fluorescence transient-JIP test. The step O 

180 to J represents the reduction process of QA by PSII. The curve then rise to I phase because of the 

181 brimming plastoquinone pool. The step I to P was account for the block of electron transfer to 

182 the acceptor side of PSI. According to the results, under control condition, the fluorescence of I 

183 and P phase of seedlings leaves grown with 2.0 mM N or 5.0 mM N was stronger than that 

184 grown with 0.5 mM N (Fig. 2A). However, when exposed to NaCl, the chlorophyll fluorescence 

185 curve of annual ryegrass leaves grown with 2.0 mM N from I to P step was higher than that 

186 under 0.5 mM or 5.0 mM N (Fig. 2B, C). Especially, the OJIP curve were much more higher 

187 when plants exposed to relatively low NaCl treatment (50 mM) under 2.0mM N level compared 

188 to other two N levels (Fig. 2C). The results suggested that nitrogen deficiency or excess under 

189 salt stress might lead to the photosynthetic electron transport traffic jam, especially beyond QA
−. 

190 In addition, under NaCl treatment, the leave chlorophyll content of the plants grown with 2.0 

191 mM and 5.0 mM N was significantly higher compared to that grown with 0.5 mM N. However, 

192 there was no significant difference in chlorophyll content between 2.0 mM and 5.0 mM N-

193 supplied plants (Fig. 2D).
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194 Impact of N on Chlorophyll fluorescence parameters in the leaves of ryegrass under NaCl 

195 stress 

196 Fluorescence parameters were then used to quantify the photosynthetic behaviour of the samples. 

197 Under the control condition, the PIABS value, which represents the overall activity of PSII, 

198 increased with the N level, and achieved a maximum under 5.0 mM N (Fig. 3A). However, 

199 under 50 mM or 100 mM NaCl treatment, the PIABS value under 2.0 mM N were higher than that 

200 under other N levels (Fig. 3B, C). The variable fluorescence at J phase (Vj) and the relative speed 

201 of QA deoxidation (M0) of NaCl-treated leaves grown with 2.0 mM N were smaller than those 

202 grown with 0.5 mM or 5.0 mM N, and the difference was most significant under 50 mM NaCl 

203 treatment (Fig. 3B). Under normal condition, Ψ0 and ΦE0 displayed no significant difference 

204 among three N levels (Fig. 3A). When exposed to 50 mM NaCl, the proportion of energy used 

205 for photochemical reaction and energy electron transport in leaves (ϕ0, ϕE0 ) grown with 2.0 mM 

206 N were larger than those in the leaves grown with other N levels, together with greater reaction 

207 center density RC/CS0 and electron-transfer energy ET0/CS0 and lower DI0/CS0 (the energy 

208 consumed in unit cross-sectional area) (Fig. 3B). However, ϕP0, which represents the maximum 

209 quantum yield for primary photochemistry, displayed no changes. When exposed to 100 mM 

210 NaCl, the PIABS value under 2.0 mM N were higher than that under other N levels, whereas the 

211 other parameters showed no significant change (Fig. 3C). These results suggested that the 

212 optimum amount of N might promote primary photochemical reactions of PSII, especially under 

213 relatively low NaCl level.
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214 The lipid peroxidation levels and activities of antioxidant enzymes in the leaves of the 

215 annual ryegrass seedlings under NaCl stress

216 Malondialdehyde (MDA) is one of the products of membrane lipid peroxidation which can be 

217 used to represent the degree of damage to plants caused by salt. The results showed that there 

218 was no significant difference of MDA content among three N levels in the absence of salt stress. 

219 When plants grown under 2.0 mM N were exposed to a relative lower NaCl treatment (50 mM), 

220 the MDA content showed significantly decrease compared to control. In addition, the MDA 

221 content of plants grown under higher N concentration were significantly lower compared to that 

222 grown under 0.5 mM N (Fig. 4A). The electrolyte leakage (EL) in the leaves of ryegrass 

223 increased with the increase of NaCl concentration under all three N levels. When exposed to 100 

224 mM NaCl, The EL in the leaves of ryegrass grown under higher N concentration was 

225 significantly lower compared to that grown under 0.5 mM N. Moreover, under 100 mM NaCl 

226 stress, the EL of ryegrass grown under 2.0 mM N was significantly lower than that grown under 

227 5.0 mM N (Fig. 4B). The lipid peroxidation levels and activities of antioxidant enzymes of the 

228 leaves were also determined. With the increase of NaCl concentration, the CAT activity 

229 presented upward trend under all N levels. Under NaCl treatments, the activity of CAT 

230 antioxidant enzyme of ryegrass seedlings cultured at 2.0 mM N was the highest compared with 

231 that of plants cultured at 0.5 mM N or 5.0 mM N (Fig. 4C). The activity of POD antioxidant 

232 enzyme of ryegrass seedlings showed no obvious regularity with the N levels. However, when 

233 exposed to 50 mM NaCl, the POD activity of seedlings grown under 2.0 mM N was higher than 
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234 seedlings grown under 5.0 mM N (Fig. 4D). These results suggested that ryegrass cultured in 2.0 

235 mM N solution might improve the activities of certain antioxidant enzymes and enhance the salt-

236 tolerance ability of ryegrass, especially at relatively low NaCl level.

237 Effect of different N treatment on the N content and N assimilation-related genes under 

238 NaCl stress

239 To investigate the influence of different N treatment on N assimilation under NaCl stress, we 

240 checked the expression of NR gene in the leaves of ryegrass, which is a rate limiting enzyme of 

241 nitrate assimilation. Without NaCl treatment, the level of NR expression in leaves increased with 

242 the increase of N concentration. N reducing (2.0 mM) caused a significant decrease in mRNA 

243 expression of NR (Fig. 5A), as compared with 5.0 mM N-applied plants. When plants were 

244 cultured with 5.0 mM N, the level of NR gene expression showed a significantly decrease with 

245 the increase of salt concentration. However, under 2.0 mM N, the suppression degree of NR 

246 expression by salt stress was relatively lower. Compared with 0 mM NaCl, the gene expression 

247 of NR of 2.0 mM N-supplied plants showed no significantly decrease when exposed to 100 mM 

248 NaCl (Fig. 5A). Under the treatment combined nitrogen and salt, the homolog gene of GS 

249 showed a similar expression response pattern with NR (Fig. S2A). The expression of the NRT 

250 gene was induced when plants were exposed to a relatively low NaCl level (50 mM). However, 

251 there was no significant difference in the homolog of one NRT gene expression between plants 

252 grown with 5.0 mM N and 2.0 mM N under NaCl treatment (Fig. S2B). When exposed to NaCl, 

253 the nitrogen content of leaves grown under 2.0 mM N or 5.0 mM N showed significantly 
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254 decrease compared to that grown under control condition, respectively. Without NaCl treatment, 

255 the N content of ryegrass leaves grown under 5.0 mM N was higher. However, under salt 

256 treatment, the N content of leaves showed no significant difference between 5.0 mM N and 2.0 

257 mM N application (Fig. 5B). 

258 Discussion

259 Plant salt tolerance is a complex phenomenon involving morphological, physiological, and 

260 biochemical processes. Studies have reported that the application of N may alleviate the 

261 toxicities of abiotic stresses in plants (Correia et al., 2005; Siddiqui et al., 2012; Singh et al., 

262 2016). As for salt stress, the mainly harmful on plants are the toxic effects of salt ions, the 

263 osmotic effect and nutrient imbalance caused by salt ions (Kohler et al., 2009; Shannon, 1997). 

264 The application of N fertilization has a decisive role on the growth and development of the many 

265 plants, and the correct level of N could help to mitigate the damage caused by nutritional 

266 imbalances due to saline irrigation (Al-Rawahy et al., 1992). However, related research showed 

267 that plant growth was significantly affected by interaction between soil salinity and N, but not by 

268 N alone (Papadopoulos & Rendig, 1983; Chen et al., 2010). In this experiment, the exogenous N 

269 application significantly increased the plant height and the biomass of the annual ryegrass 

270 seedlings and then the nitrogen content, but there was a concentration effect. In the absence of 

271 salt, the increment of plant height and biomass increased with the increase of N level, and 

272 reached maximum at 5.0 mM N. However, when exposed to NaCl, the plant height and the 

273 relative increase of biomass reached maximum at the N level of 2.0 mM (Fig.1). Moreover, 
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274 ultra-low N could not promote, but seriously inhibit the growth of ryegrass under both control 

275 and salt conditions (Fig. S1). These results were similar with results detected in cotton (Chen et 

276 al., 2010). Previous study on the annual ryegrass reported that increasing N application could 

277 promote shoot growth under salinity of 2.0 and 11.2 dS/m (Sagi et al., 1997). However, we 

278 noticed that moderate reduction of nitrogen application had the maximum promotion effect on 

279 plant growth. This difference may be due to the levels of salt used for treatments. In this study, 

280 we are mainly concerned about the optimize nitrogen application at lower salt concentration. 

281 Moreover, N content was also positively correlated with the amount of N applied and reached the 

282 highest at the N level of 5.0 mM without salt treatment. However, under salt treatments, there 

283 was no significant difference in N content of ryegrass leaves between 5.0 mM and 2.0 mM N 

284 application (Fig. 5B). External conditions such as salt can stimulate the production of ROS and 

285 ROS can further cause damage to lipids in plant cells (Kohler et al., 2009). Accumulation of N 

286 containing compounds has been reported to participate in salt response such as osmotic 

287 adjustment and ROS scavenging (Dluzniewska et al., 2007; Ehlting et al., 2007; Homaee et al., 

288 2002; Mansour, 2000; Song et al., 2006; Sudmalis et al., 2018). In this study, moderately low N 

289 application also could reduce the damage to the membrane of ryegrass seedlings caused by salt 

290 stress by reducing MDA content or elevating certain antioxidant enzymes activities, especially at 

291 relative low NaCl treatment. Together, these results indicated that the saline habitat might 

292 change the N requirement of ryegrass seedlings. Excessive or ultra-low N applications both have 

293 the opposite effects on the growth or salt resistant of annual ryegrass under low level of salt 

294 stress. 

PeerJ reviewing PDF | (2020:07:51253:0:1:NEW 29 Jul 2020)

Manuscript to be reviewed



295 Chlorophyll a fluorescence transient is a useful tool to reflect the primary reaction 

296 alternations of PSII, which is more sensitive than photosystem I (PS I) in response to salt stress. 

297 To investigate PSII behaviors in O-J-I-P transient, JIP test is always used to quantify the derived 

298 photochemical parameters (Apostolova et al., 2006; Sayed, 2003; Stirbet et al., 2014). In this 

299 study, when the annual ryegrass plants were exposed to NaCl, the nitrogen application level had 

300 a significant effect on fluorescent transients, especially the J and P steps (Fig. 1). N deficiency 

301 and N over application under salt stress might lead to the photosynthetic electron transport traffic 

302 jam, especially beyond QA
− (Fig. 2B, C). With the increase of N level, the parameter of PIABS, 

303 which could accurately reflect the state of plant photosynthetic apparatus, showed an upward 

304 trend without NaCl treatment (Fig. 2A), indicating that N could promote the primary 

305 photochemical reactions of PSII in the waterside. However, in the saline habitat, if the N is 

306 excessive or deficiency, the promotion of the primary photochemical reaction of the PSII will be 

307 slow or even reduced (Fig. 2B, C). In addition, the accumulated amount of QA
− (Vj) and the 

308 relative speed of QA deoxidation (M0) (Strasser, 1997; Strasserf & Srivastava, 1995; Force et al., 

309 2003) of plants grown under moderately low N were smaller than those grown under other N 

310 conditions, indicating that leaves grown under moderate N level have a higher electron transport 

311 rate between QA and QB, thus reducing the accumulation amount of QA
− and increasing the 

312 photochemical reaction efficiency (Allakhverdiev & Murata, 2004). The increase of Ψ0 and ΦE0 

313 of plants grown under 2.0 mM N indicated that leaves use more energy for photochemical 

314 reaction and electron-transfer process, thus producing more NADPH for carbon assimilation and 

315 proving that leaves have the optimal energy distribution under certain salt level (Strasser et al., 
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316 2004). The leaves of annual ryegrass grown under 2.0 mM N also have a greater reaction center 

317 density RC/CS0 and higher ET0/CS0 but lower DI0/CS0 than those grown under other N 

318 conditions. This pattern indicated that the specific activity of a unit cross-sectional area of leaves 

319 grown under moderately low N was stronger than that grown under other N conditions, reducing 

320 the energy burden of a unit reaction center. We also noticed that, under the lowest NaCl 

321 treatment (50 mM), the application of 2.0 mM N had the best effect on alleviating salt stress. 

322 Under 50 mM NaCl treatment, the physiological indexes of annual ryegrass seedlings seemed 

323 less affected, and therefore it might be more sensitive to the promotion of nitrogen application. 

324 Thus, we proposed that the optimum amount of N might promote primary photochemical 

325 reactions of PSII under certain level of NaCl treatment.

326 After absorption with ammonia N, it can be directly assimilated by plants. After absorption 

327 of nitrate N, it must first be reduced by nitrate reductase and sub-acid reductase. NR can reduce 

328 nitrate N to ammonium, and it also has important effects on photosynthesis and other processes 

329 of N metabolism (Xu et al., 2012). Reports have shown that NO3
- has a significant effect on the 

330 induction of NR expression. From the results of this experiment, the level of NR gene expression 

331 in leaves increased with the increase of N concentration under control condition (Fig. 5A, B), 

332 which is consistence with the previous reports (Oaks, 1993). However, if the seedlings were 

333 treated with NaCl, the NR expression level was significantly decreased at higher N level (5.0 

334 mM). On the contrary, at a moderately low N level (2.0 mM), the NR expression level is 

335 relatively low without NaCl treatment, but the degree of reduction is moderate when exposed to 

336 NaCl. The GS gene expression showed a similar trend with the NR gene under the interaction 
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337 between salt and nitrogen conditions, indicating a cooperative response mechanism between N 

338 assimilation-related genes (Fig. S2A). Therefore, it can be seen that moderate N application 

339 might help annual ryegrass maintain the expression level of N assimilation-related gene (Fig. 5A) 

340 and further maintain the nitrogen content under salt stress (Fig. 5B). However, when excessive N 

341 was applied under salt stress, the NR expression was significantly increased, indicating that N 

342 assimilation was strengthened; it might then compete with photosynthetic carbon to compete for 

343 the assimilation forces produced by photosynthesis photoreaction, namely ATP and NADPH and 

344 increase the burden of photosynthetic electron transfer. The competition result might lead to a 

345 decrease of the overall activity of PSII of annual ryegrass (PIABS) (Fig. 2). Under nitrogen 

346 deficiency, the reduced absorption of nitrogen might reduce the consumption of nitrogen 

347 assimilation reducing power, most of which are derived from photosynthesis, thus resulting in 

348 the accumulation of chloroplast NADPH. The over-accumulation of NADPH could inhibit the 

349 photosynthetic efficiency and cause excessive production of ROS (Fig. 3A), leading to increased 

350 cell membrane damage, which may in turn lead to reduced photosynthetic efficiency (Fig. 2B, C, 

351 D). Nitrogen is also one component of chlorophyll which is not only the most important pigment 

352 molecules of photosynthesis involved in energy absorption and transmission but also the 

353 essential electron mediator during electron transport. Studies showed that the nitrogen content of 

354 leaf is constant with the photosynthetic capacity (Grassi et al., 2005; Kattge et al., 2009). 

355 Through this experiment, we can see that under different salt stress condition, the appropriate 

356 addition of N can indeed increase the relative content of chlorophyll in plants. However, the 

357 relative content of chlorophyll is only positively correlated with N levels within a certain range 
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358 (0.5-2.0 mM) and should be reduced beyond a certain range (Fig. 2D). The moderately supply of 

359 N under salt stress increased the content of chlorophyll and might increase the light-harvesting 

360 ability, partly contributing to the up-regulated photosynthetic performance index. Based on the 

361 above studies, it can be seen that moderately low N application under low level of salt stress 

362 might help annual ryegrass maintain the expression level of N assimilation-related gene and then 

363 maintain the leaf N content of the plant, which might in turn changes the chlorophyll, further 

364 avoiding the negative effect on photosynthetic capacity. 

365 Conclusion

366 To investigate the possible mechanism of moderately low nitrogen-mediated alleviation of 

367 NaCl stress, the degree of lipid peroxidation, antioxidant enzyme activity alternation, changes of 

368 photosynthesis performance and nitrogen assimilation were analyzed in this study. In summary, 

369 under low level of salt stress, the demand for N may have decreased and moderately reducing N 

370 application could help to alleviate the damage caused by salt stress in annual ryegrass mainly by 

371 alleviating the damage caused by ROS and promoting the performance of photosynthesis and 

372 nitrogen metabolism. Further, in order to enhance plant growth and increase nitrogen use 

373 efficiency, the optimum application of nitrogen fertilizer needs to be controlled to match the 

374 plant needs at each growth stage and to adapt to different salt environment. 
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Figure 1
Morphological parameters of annual ryegrass seedlings grown under different nitrogen
and salt conditions.

Fig. 1. Morphological parameters of annual ryegrass seedlings grown under different
nitrogen and salt conditions. The seeds of annual ryegrass were cultured in soil for one
month, and the seedlings cut to the same height were then transferred into different nitrogen
level (2.0, 5.0, 10 mM) under NaCl (0, 50, 100 mM) stress in a hydroponic culture. After being
grown for 10 days, the plant height and biomass were measured. (A) Images of seedlings at
10 days after transferred. (B) Plant height at 10 days after transferred. (C) The relative
change of biomass (% of biomass which was measured before treatment). Different letters
above the columns indicate significant differences at P < 0.05 by Student’s t–test.
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Figure 2
Alterations of chlorophyll fluorescence transients in leaves of annual ryegrass.

The annual ryegrass were grown with different nitrogen concentrations (0.5, 2.0, 5.0 mM)
under 0 mM, 50 mM (B), 100 mM NaCl (C) stress respectively. (D) Influence of nitrogen
concentration on chlorophyll content under different levels of NaCl stress respectively.
Different letters above the columns indicate statistically significant differences at P < 0.05 by
Student’s t–test.
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Figure 3
“Radar plots” of picked parameters characterizing influence of nitrogen concentration
(0.5, 2.0, 5.0 mM N) on PS II of annual ryegrass.

The annual ryegrass leaves exposed to 0 mM (A), 50 mM (B), 100 mM (C) NaCl stress
respectively. All values are shown as percent of control. The parameters of plants grown
under 0.5 mM nitrogen concentration were set as control. Control=1. *indicate parameters
statistically significant between different N levels under the same NaCl level.
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Figure 4
The membrane damage degree and antioxidant enzymes activities of the annual
ryegrass leaves.

MDA content (A), EL (B), catalase (CAT) (C) or peroxidase (POD) (D) activity in the leaves of
annual ryegrass grown with different nitrogen concentrations (0.5, 2.0, 5.0 mM N) exposed to
different NaCl level (0, 50, 100 mM NaCl) respectively. Different letters above the columns
indicate statistically significant differences at P < 0.05 by Student’s t–test.
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Figure 5
Relative expression of N metabolism-related genes and nitrogen content of leaves
grown under different conditions.

(A) NR expression in the leaves of annual ryegrass grown under different nitrogen
concentration (2.0, 5.0 mM) exposed to different salt stress for 12 hours (0, 50, 100 mM
NaCl) respectively; (B) Nitrogen content of leaves grown with different nitrogen
concentrations exposed to different salt stress for 10 days respectively. Different letters
above the columns indicate statistically significant differences at P < 0.05 by Student’s
t–test.
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