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Background: Ovarian cancer constitutes the leading cause of fatalities among gynecological
malignancies, and new effective treatment strategies are required. Recently, immunotherapy has
attracted mounting research attention worldwide; however, its therapeutic effect in ovarian cancer has
not been satisfactory. Thus, it is necessary to conduct profound investigations on the immune landscape
of patients, to improve treatment efficacy.

Methods: The expression profiles, somatic mutation data, as well as clinical information were mined
from The Cancer Genome Atlas. We classified ovarian cancer based on 29 immune-associated gene sets,
which represented different immune cell types, functions, and pathways. Single-sample gene set
enrichment (ssGSEA) was used to quantify the activity or enrichment extents of the gene sets in ovarian
cancer, and the unsupervised machine learning method was used to implement the classification.
Validation of this classification was then engaged using the Gene Expression Omnibus datasets.

Results: According to the ssGSEA score, we divided ovarian cancer into three subtypes, the subtype
1(immunity low), subtype 2(immunity median), and subtype 3(immunity high) . It was revealed that most
tumor-infiltrating immune cells and immune checkpoint molecules were upgraded in the subtype 3
compared with that in the other subtypes. Notably, the tumor mutation burden (TMB) was not
significantly different among the three subtypes; however, all patients with BRCA1 mutations were
detected in the subtype 3. Furthermore, most immune signature pathways, such as T and B cell receptor
signaling, the PD-1 checkpoint pathway in cancer, PD-L1 expression, the NF-κB signaling axis, Th17 cell
differentiation and the interleukin-17 signaling pathway, and the TNF signaling axis were hyperactivated
in the subtype 3.

Conclusion: The findings of the ovarian cancer subtypes based on immune biosignatures could guide
the development of novel therapeutic strategies for ovarian cancer.
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36 Abstract

37 Background: Ovarian cancer constitutes the leading cause of fatalities among gynecological 

38 malignancies, and new effective treatment strategies are required. Recently, immunotherapy has 

39 attracted mounting research attention worldwide; however, its therapeutic effect in ovarian cancer 

40 has not been satisfactory. Thus, it is necessary to conduct profound investigations on the immune 

41 landscape of patients, to improve treatment efficacy. 

42 Methods: The expression profiles, somatic mutation data, as well as clinical information were 

43 mined from The Cancer Genome Atlas. We classified ovarian cancer based on 29 immune-

44 associated gene sets, which represented different immune cell types, functions, and pathways. 

45 Single-sample gene set enrichment (ssGSEA) was used to quantify the activity or enrichment 

46 extents of the gene sets in ovarian cancer, and the unsupervised machine learning method was used 

47 to implement the classification. Validation of this classification was then engaged using the Gene 

48 Expression Omnibus datasets.

49 Results: According to the ssGSEA score, we divided ovarian cancer into three subtypes, the 

50 subtype 1(immunity low), subtype 2(immunity median), and subtype 3(immunity high). It was 

51 revealed that most tumor-infiltrating immune cells and immune checkpoint molecules were 

52 upgraded in the subtype 3 compared with that in the other subtypes. Notably, the tumor mutation 

53 burden (TMB) was not significantly different among the three subtypes; however, all patients with 

54 BRCA1 mutations were detected in the subtype 3. Furthermore, most immune signature pathways, 

55 such as T and B cell receptor signaling, the PD-1 checkpoint pathway in cancer, PD-L1 expression, 

56 the NF-κB signaling axis, Th17 cell differentiation and the interleukin-17 signaling pathway, and 

57 the TNF signaling axis were hyperactivated in the subtype 3. 

58 Conclusion: The findings of the ovarian cancer subtypes based on immune biosignatures could 

59 guide the development of novel therapeutic strategies for ovarian cancer.

60

61 Introduction

62 Ovarian cancer constitutes the leading cause of fatalities among gynecological malignancies. It is 

63 estimated that approximately 21,750 new cases of ovarian cancer will be diagnosed and 13,940 

64 ovarian cancer fatalities will occur in 2020 in the U.S. (Siegel, Miller & Jemal, 2020). Due to a 
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65 lack of symptoms, most ovarian cancer cases are diagnosed at an advanced stage and with a 5-year 

66 relative survival of only around 40% (Bray et al., 2018; Lheureux et al., 2019; Torre et al., 2018). 

67 Research has deepened our understanding of ovarian cancer; nonetheless, the 5-year survival rate 

68 has only improved modestly over the past few decades (Ghisoni et al., 2019; Holmes, 2015). The 

69 standard treatment strategy for ovarian cancer includes surgery and platinum-based chemotherapy. 

70 Most patients can achieve complete remission from initial treatment; however, the majority 

71 ultimately recur (Odunsi, 2017). Therefore, novel therapeutic approaches are urgently needed to 

72 improve the quality of life, as well as the survival of these patients. 

73 Cancer immunotherapy has been recently considered as a promising treatment across multiple 

74 solid tumors (Bellmunt et al., 2017; Reck et al., 2016). Compared with traditional therapies, cancer 

75 immunotherapy eliminates cancer by primarily targeting the immune system or the tumor 

76 microenvironment, but not on tumor cells. Cancer cells affect the process of antigen presentation, 

77 disrupt the regulatory cascades of T cells, mobilize immune-suppressing cells, and produce active 

78 cytokines with immune repressive effects, thereby weakening the immune system, modifying 

79 immune regulation, and benefiting tumor cells (Antonia, Larkin & Ascierto, 2014; Odunsi, 2017). 

80 The immune checkpoint inhibitor (ICI)-based antibodies, directed at cytotoxic T lymphocyte-

81 associated antigen-4 (CTLA-4), programmed cell death 1 ligand 1 (PD-L1) receptors, as well as 

82 programmed cell death 1 (PD-1), have enhanced the survival for patients with different forms of 

83 cancer, such as malignant melanoma, bladder cancer, and lung cancer, by initiating the immune 

84 cell function and normalizing the tumor microenvironment (Bellmunt et al., 2017; Borghaei et al., 

85 2015; Robert et al., 2015). However, the response rate to ICIs for ovarian cancer patients remains 

86 unsatisfying, in which the objective response rate (ORR) was <15% (Hamanishi et al., 2015; 

87 Matulonis et al., 2019). In the phase II KEYNOTE-100 study of 376 patients with advanced 

88 recurrent ovarian cancer it was found that pembrolizumab monotherapy was linked to an ORR of 

89 8.0% (95% CI, 5.4-11.2), and higher PD-L1 expression level was linked to higher response 

90 (Matulonis et al., 2019). It seems that single agent ICIs have exhibited only modest findings in this 

91 type of malignancy. In fact, genomic features, such as PD-L1 expression, tumor mutation burden 
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92 (TMB), neoantigen load, as well as the defects in DNA damage repair, have so far proven to be 

93 associated with tumor immunotherapeutic responsiveness in ovarian cancer (Ghisoni et al., 2019; 

94 Odunsi, 2017; Tian et al., 2020).

95 Here, we classified ovarian cancer based on 29 immune signatures, which represented different 

96 immune cell kinds, functions, as well as pathways. Single-sample gene set enrichment (ssGSEA) 

97 was used to quantify the activity or enrichment degrees of the gene sets in cancer, then ovarian 

98 cancer was classified into three subtypes: subtype 1(immunity low), subtype 2(immunity median), 

99 and subtype 3(immunity high). After that we compared the tumor microenvironment, immune 

100 cells, immune checkpoint molecules, TMB, BRCA1/2 mutation, prognosis, gene ontology and 

101 pathways. Our findings may assist with selecting patients with ovarian cancer who would benefit 

102 from immunotherapy.

103

104 MATERIALS AND METHODS

105 Data

106 Gene expression profiles were mined from The Cancer Genome Atlas (TCGA) repository 

107 (https://tcga-data.nci.nih.gov/tcga/) consisting of normalized gene expression patterns for 379 

108 ovarian cancer samples mapped using fragments per kilobase of transcript per million fragments. 

109 Clinical data constituting age, survival, stage, and tumor grade were also mined from TCGA. The 

110 somatic mutation data were also obtained from single nucleotide polymorphism (SNP) data in 

111 TCGA repository using MuTect. The expression data of the validation dataset was retrieved from 

112 the Gene Expression Omnibus (GEO) repository (GSE51088), which contains 172 ovarian cancer 

113 samples. All computational and statistical analyses were accomplished in the R software (version 

114 3.6.1, http://www.R-project.org).

115

116 ssGSEA and Clustering

117 We obtained 29 immune-correlated gene sets, which typified different immune cell types, 

118 functions, as well as pathways, comprising of 707 genes in total (Additional file 1) (He et al., 
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119 2018; Yue, Ma & Zhou, 2019). Single-sample gene set enrichment analysis (ssGSEA), as 

120 accomplished using the GSVA R package (version 1.34.0), was employed in calculating the 

121 enrichment scores of the 29 immune biosignatures for each sample in the tumor microenvironment 

122 (Barbie et al., 2009; Hänzelmann, Castelo & Guinney, 2013). ssGSEA calculates gene signature 

123 overexpression scores by contrasting the level of genes in the signature compared with that in all 

124 the other genes in the transcriptome. An unsupervised machine learning method was used to 

125 performed hierarchical clustering of ovarian cancer into three clusters. Then, according to the 

126 immune scores, the clusters were distributed into three distinct subtypes: subtype 1, subtype 2, and 

127 subtype 3.

128

129 ESTIMATE and CIBERSORT

130 Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data 

131 (ESTIMATE) (Yoshihara et al., 2013) is an approach that employs gene expression biosignatures 

132 to deduce the proportion of stromal, as well as immune cells in tumor samples, which form the 

133 major non-tumor constituents of tumor samples. By performing ssGSEA, it calculates stromal, as 

134 well as immune scores to estimate the level of invading stromal, as well as immune cells, which 

135 forms the rationale for the ESTIMATE score to deduce tumor purity in the tumor tissue. By using 

136 “ESTIMATE” in R package, each ovarian cancer sample from the immune and stromal scores, 

137 and tumor purity was calculated based on the gene expression data. Cell-type Identification by 

138 Estimating Relative Subsets of RNA Transcripts (CIBERSORT) (Newman et al., 2015) is a 

139 biological tool, that uses the deconvolution strategy to compute the fractions of the 22 human 

140 immune cell types. Here, we set 1000 permutations and data with P<0.05, as the maxim for the 

141 successful deconvolution of a sample. The Kruskal-Wallis test was employed in comparing the 

142 proportions of immune cell types among ovarian cancer subtypes.

143

144 Calculation of TMB scores

145 TMB is the overall enumeration of mutations per million bases in tumor tissue. Typically, it is the 
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146 mutation density of tumor genes, i.e., the enumeration of mutations in the tumor genome, entailing 

147 the total enumeration of genetic coding errors, base substitutions, and gene insertions or deletions. 

148 Herein, we computed the mutation frequency with the enumeration of variants/the length of exons 

149 (38 million) for every sample with Perl (v5.30.1, https://www.perl.org/).

150

151 Survival analyses

152 We retrieved the follow-up information of patients from the clinical data and calculated the 

153 significance of survival time via the log-rank test, and differences using a threshold of P<0.05. For 

154 the relationship between related immune gene sets score and prognosis, we used the median, as 

155 the cut-off value to cluster the samples into high score or low score levels. We plotted the Kaplan-

156 Meier curves to indicate the survival period differences.

157

158 Gene-set enrichment evaluations

159 Gene-set enrichment analysis of TCGA datasets was conducted in the GSEA (R implementation). 

160 (Subramanian et al., 2005). Kyoto Encyclopedia of Genes and Genomes (KEGG), as well as Gene 

161 Ontology (GO) analyses were employed in assessing the functional role of the differentially 

162 expressed genes between subtype 1 and subtype 3. Differential gene set enrichment was inspected 

163 in the limma R package. P<0.05 was used as the cut-off value.

164

165 Results

166 Immunogenomic profiling identifies three ovarian cancer subtypes

167 Using ssGSEA, we obtained enrichment scores for the 29 immune-associated gene sets, for each 

168 sample in the tumor microenvironment. Then, according to the immune scores, we hierarchically 

169 clustered ovarian cancer into three classes. Interestingly, three classes were separated clearly then, 

170 we confirmed the three classes as subtype 1, subtype 2, and subtype 3 which represented immunity 

171 low, immunity median, and immunity high, respectively (Fig.1A). Applying the ESTIMATE 

172 algorithm, we determined the immune, stromal, and ESTIMATE scores, and tumor purity. We 
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173 established that the immune and stromal scores were the highest in the subtype 3 and the lowest in 

174 subtype 1, while tumor purity was the highest in the subtype 1 and the lowest in subtype 3, and the 

175 difference was significant (P<0.001) (Fig.1B). These findings indicated that immune and stromal 

176 cells have the highest content in the subtype 3, while tumor cells have the highest content in the 

177 subtype 1.

178 Furthermore, we found that most of the human leukocyte antigen (HLA) gene expression levels 

179 were the lowest in the subtype 1 and the highest in subtype 3(P<0.001) (Fig.S1A). In addition, the 

180 expression levels of many immune cell subgroup biomarker genes, such as FOXP3 [regulatory T 

181 cell (Treg)], CD45RO (memory T cell), CD8A (cytotoxic T cell), CD20 (B cell), CD1A [immature 

182 dendritic cell (iDC)], CXCR5 (Tfh cell), IL3RA [plasmacytoid dendritic cell (pDC)] were 

183 remarkably higher in the subtype 3 and markedly lower in the subtype 1(Fig.S1B).

184

185 Three subtypes show differential expression of immune checkpoint genes

186 We analyzed the expression levels of the checkpoint receptors, which decreased T cell bioactivity, 

187 including PDCD1 (PD1), CTLA4, LAG-3, and TIM-3 in the three ovarian cancer subtypes. Then, 

188 the PDCD1 ligand CD274 (PD-L1), PDCD1LG2 (PD-L2), the CTLA4 ligand CD86, and CD80 

189 were also analyzed. We found that the expression levels of these 8 immune checkpoint genes were 

190 all remarkably lower in the subtype 1 and markedly elevated in the subtype 3(P<0.001) (Fig.2). 

191 This result indicated that the immunophenotype of our hierarchical cluster could be clearly 

192 distinguished, and the ovarian cancer subtype 3 might respond more effectively to checkpoint 

193 inhibitor therapy.

194

195 Analysis of the TMB and BRCA mutations among the 3 subtypes of ovarian cancer

196 TMB has been considered as a predictor of tumor behavior and immunological response in a 

197 diverse range of cancers (Goodman et al., 2017). In general, tumors with a high TMB have elevated 

198 levels of neoantigens, which play an important role in immunotherapy activities (Goodman et al., 

199 2017; Schumacher & Schreiber, 2015). We mined the somatic mutation profiles of 436 ovarian 
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200 cancer patients from the SNP data in TCGA using MuTect, and then the TMB was calculated using 

201 the enumeration of the mutation incidences per million bases. Then, the TMB between the 3 

202 subtypes of ovarian cancer were analyzed, and we found that the three subtypes were not 

203 remarkably related to TMB (P=0.732) (Fig.3A). 

204 An escalating number of reports have documented that targeted therapies can stimulate the 

205 immune response of the host. The discussion of the relationship between BRCA mutations and 

206 immunity is being investigated at present. Here, we analyzed the connection linking BRCA1 and 

207 BRCA2 mutations in the 3 subtypes. The BRCA1 and BRCA2 mutation data were mined from the 

208 SNP data in TCGA via MuTect, and there were 23 patients with the BRCA1 mutation and 20 

209 patients with the BRCA2 mutation, out of 436 ovarian cancer patients. Using the intersection 

210 between the mutation data and the immunity clusters data samples, we found 13 patients with the 

211 BRCA1 mutation and 13 patients with the BRCA2 mutation, out of 274 ovarian cancer patients. 

212 Surprisingly, we found that all the BRCA1 mutation patients were in the subtype 3, and the 

213 difference was remarkable (χ2 test, P=0.0016) (Fig.3B). The BRCA2 mutation ratio was greater in 

214 the subtype 2 and subtype 3 compared with that in the subtype 1, but the difference was not 

215 statistically remarkable (χ2 test, P=0.577) (Fig.3C). 

216

217 Different immune cells among the 3 subtypes of ovarian cancer

218 CIBERSORT can deduce 22 types of human immune cells, such as B cells, myeloid subset cells, 

219 T cells, macrophages, NK cells, as well as, DCs, according to the gene expression data using the 

220 gene-based deconvolution algorithm method (Newman et al., 2015). Here, we set 1000 

221 permutations and data with P < 0.05, as the maxim for the successful deconvolution of a sample. 

222 Consequently, CD8 T cells, CD4 memory activated T cells, Tregs, macrophages M1, resting 

223 dendritic cells were all at the highest level in the subtype 3 and at the lowest levels in the subtype 

224 1(P< 0.01). However, activated dendritic cells had an opposite trend (Fig. 4). 

225

226 Prognostic analysis of the ovarian cancer subtypes and immune-associated gene sets
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227 Survival analyses indicated that the three ovarian cancer subtypes had a considerable difference in 

228 prognosis. The subtype 2 had the worst survival prognosis among the three subtypes; however, 

229 there was no remarkable difference in survival between the subtype 1 and the subtype 3. 

230 Furthermore, we analyzed the prognostic value of the different immune gene sets expression score 

231 in predicting patient survival. We found that high expression level of check-point, major 

232 histocompatibility complex (MHC) class I, APC co-inhibition, T cell co-inhibition, Th1 and Th2 

233 cells, Tfh, inflammation-promoting, and Tregs was associated with a better prognosis compared 

234 with that with the low expression levels, and the difference was remarkable (P<0.05) (Fig.5). 

235

236 Identification of the ovarian cancer subtype-specific pathways and GO

237 GSEA identified 628 GO and 56 KEGG terms in the subtype 1 and subtype 3. The GO analysis 

238 indicated that the immunoglobulin complex, circulating immunoglobulin complex, the MHC class 

239 II protein complex, immunoglobulin receptor binding and the MHC protein complex were the top 

240 5 significantly enriched biological processes in the subtype 3. In addition, glucuronidation, 

241 metabolic process and methyl-CpG binding were the most enriched terms in the subtype 1. 

242 (Fig.6A, B). The GSEA result showed that the immune-correlated cascades were most active in 

243 the subtype 3, consisting of Th17 cell differentiation, the NF-κ B signaling axis, the B cell receptor 

244 signaling cascade, the T cell receptor signaling cascade, PD-L1 expression and the PD-1 

245 checkpoint axis in cancer, the IL-17 signaling cascade and the tumor necrosis factor (TNF) 

246 signaling axis. This result verified that immune activity was increased in the subtype 3. However, 

247 the subtype 1 was enriched in pathways, such as maturity onset diabetes of the young, ascorbate 

248 and aldarate metabolism, pentose and glucuronate interconversions, fat digestion and absorption, 

249 porphyrin and chlorophyll metabolism (Fig.6C, D). This suggests that these cascades could be 

250 inversely linked to ovarian cancer immunity.

251

252 Validation of external datasets

253 The same method was used to hierarchically cluster ovarian cancer in the GSE51088 dataset, 
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254 which includes 172 ovarian cancer samples. Interestingly, it showed a similar clustering result, 

255 with three clusters separated (Fig.7A). We established that the immune and stromal scores were 

256 remarkably higher in the subtype 3 and markedly lower in the subtype 1, while tumor purity had 

257 an opposite result (Fig.7B). Consistent with TCGA datasets, most HLA genes and CD8A, CD1A, 

258 CD45R, IL3RA expression levels were significantly lower in the subtype 1 and significantly 

259 higher in the subtype 3(Fig.S2A, Fig.S2B). Furthermore, the expression of the immune checkpoint 

260 genes, entailing PDCD1, CD274, TIM-3, CTLA4, CD80, CD86, LAG-3 were all remarkably 

261 lower in the subtype 1 and significantly higher in the subtype 3(Fig.7C), these were also similar to 

262 previous research. These results suggested that there were different subtypes of immune status in 

263 ovarian cancer, and they might have different effects on the treatment of immune checkpoints.

264

265 Discussion

266 Recently, an escalating number of reports have identified ovarian cancer subtypes based on 

267 genomic profiling to achieve individualized treatment and improve patient survival (Schwede et 

268 al., 2020; Yang et al., 2018; Zheng et al., 2020). However, few studies have classified ovarian 

269 cancer based on immune signatures. In this study, we sought to identify immune-correlated ovarian 

270 cancer subtypes in TCGA-ovarian cancer cohort based on 29 immune-linked gene sets, which 

271 typified different immune cell types, functions, as well as pathways. Using ssGSEA, we could 

272 classify ovarian cancer into three subtypes, with an immune score range from low to high. 

273 Furthermore, it was reproducible and predictable in the external dataset, GSE51088.

274 We found that the immune microenvironment of the subtype 3 was strengthened, and the 

275 immune cell invasion, as well as anti-tumor immune activities was stronger, such as high levels of 

276 cytotoxic T cells and B cell invasion. Furthermore, the levels of expression of most of the HLA 

277 genes were highest in the subtype 3. A core step in the threshold of the immune response is the 

278 recognition and expression of tumor antigens on effector cells, such as CD8+ T cells. HLA serves 

279 a central role in providing effector CD8+ T cells with natural intracellular proteins or neoantigens 

280 produced by the cancer cells (Koşaloğlu-Yalçın et al., 2018). In most human tumors, down 
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281 modulation of the expression of HLA class I participate in the escape from the host immune 

282 system, as well as immunotherapy resistance (Chowell et al., 2018; Lhotakova et al., 2019). In 

283 addition, many immune cell subgroup marker genes, such as FOXP3 (Treg), CD45RO (memory 

284 T cell), CD8A (cytotoxic T cell), CD20 (B cell), CD1A (iDC), CXCR5 (Tfh cell), IL3RA (pDC) 

285 were strengthened in the subtype 3. Furthermore, we found that CD8 T cells, macrophages M1, 

286 CD4 memory activated T cells, Tregs, resting dendritic cells were markedly higher in the subtype 

287 3 and remarkably lower in the subtype 1. These results further confirmed that there were different 

288 subtypes of immune status in ovarian cancer, and the immune activity of the subtype 3 was 

289 strengthened. The survival analyses showed that the most dismal prognosis was found in the 

290 subtype 2; however, there was no significant survival difference between the subtype 1 and the 

291 subtype 3. This suggested that the immune-enhanced subtypes may not have the best outcome in 

292 ovarian carcinoma, which was consistent with the findings from Zheng et al (Zheng et al., 2020).

293 To date, numerous studies have demonstrated that immune checkpoint serves a pivotal role in 

294 the immune escape of cancer. It is well-known that, PD-1, CTLA4, LAG-3, VISTA, TIM-3, and 

295 BTLA are the most common immune checkpoint receptors. It was previously reported that 

296 blocking PD1/PD-L1 was more effective when it was utilized in combination with other agents, 

297 particularly other checkpoint suppressors (Boutros et al., 2016; Doo, Norian & Arend, 2019; 

298 Huang et al., 2017). Clinical studies have shown that the effect of treatment in patients with 

299 advanced melanoma could be improved when combined with the anti-PD-1/PD-L1 antibody and 

300 the CTLA-4 inhibitor (Boutros et al., 2016). A previous study showed that PD-1 blocking alone 

301 was insufficient in controlling murine ovarian tumor growth; nevertheless, dual blocking of the 

302 PD-1-LAG-3 or PD-1-CTLA-4 cascades could delay murine ovarian tumor growth and that 

303 blocking of 3 PD-1-CTLA-4-LAG-3 cascades was superior if the PD-1 pathway was entirely 

304 blocked (Huang et al., 2017). Here, we identified that the expression level of the checkpoint genes, 

305 entailing PDCD1, CD274, TIM-3, CD80, PDCD1LG2, CTLA4, LAG-3, and CD86 was 

306 remarkably higher in the subtype 3. The data revealed that the subtype 3 may be linked to the 
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307 intrinsic immune escape of ovarian cancer, which may unearth novel insights for the treatment of 

308 ovarian cancer with immune checkpoint blockers.

309 Many studies have discovered that a higher level of TMB was associated with higher neoantigen 

310 loads, which have been verified to be the target of ICIs (Brown et al., 2014; Gubin et al., 2014; 

311 Samstein et al., 2019). TMB generates new antigens resulting in the enrichment of the immune 

312 cells in tumors, which could predict survival across diverse kinds of human cancer, e.g., non-small 

313 cell lung cancer, melanoma, and bladder cancer, and is applicable in patients under the treatment 

314 of either anti-CTLA-4 or anti-PD-1 therapies (Samstein et al., 2019). Contrary to conventional 

315 views, we failed to detect an association between TMB and tumor infiltrating immune cells and 

316 no significant difference was found in TMB among the three immune ovarian cancer subtypes. 

317 Similarly, Dai et al (Dai et al., 2018) found there was no association between TMB and the tumor 

318 immune response, represented by cytolytic activity or immune cell infiltration. Therefore, TMB 

319 may not serve well as the biomarker for immunotherapies in ovarian cancer. Interestingly, we 

320 found that all the patients with BRCA1 mutations were in the subtype 3 and the patients with 

321 BRCA2 mutations were primarily in the subtype 2 and subtype 3. It was previously found that 

322 ovarian cancer, with BRCA1 or BRCA2 mutations, had increased immune infiltrates compared 

323 with those without mutations (McAlpine et al., 2012). Strickland et al (Strickland et al., 2016) 

324 demonstrated that BRCA1/2-mutated high grade serous ovarian cancer depicted remarkably 

325 elevated CD3+ and CD8+ tumor-invading lymphocytes, and elevated levels of expression of PD-

326 1, as well as PD-L1 in the tumor-linked immune cells contrasted with that in homologous 

327 recombination proficient tumors. Another study also showed that intraepithelial CD8+ T cells was 

328 linked to the presence of a mutation or loss of expression of BRCA1 (Clarke et al., 2009). These 

329 findings suggest that BRCA-mutated ovarian cancer may be more sensitive to immune checkpoint 

330 blockade therapy.

331 Using enrichment analysis, we identified 628 GO and 56 KEGG terms in the subtype 1 and 

332 subtype 3. The GO analysis indicated that the immunoglobulin complex, the MHC class II protein 

333 complex, immunoglobulin receptor binding and the MHC protein complex were primarily 
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334 enriched in biological processes in the subtype 3. T cell immunity needs recognition of antigens 

335 in the context of MHC class I and class II proteins by CD8+ and CD4+ T cells, respectively 

336 (Koşaloğlu-Yalçın et al., 2018). A previous study chronicled that the MHC proteins offer 

337 differential sensitivity to CTLA-4 and PD-1 blocking in melanoma (Rodig et al., 2018). The 

338 immune-linked cascades were most active in the subtype 3, entailing Th17 cell differentiation, the 

339 NF-κB signaling cascade, the B cell receptor signaling axis, the T cell receptor signaling axis, PD-

340 L1 expression and the PD-1 checkpoint cascade in cancer, the IL-17 signaling axis and the TNF 

341 signaling cascade. It has been proven that the NF-κB signaling axis is the major cascade involved 

342 in ovarian cancer, that enhances chemoresistance, cancer stem cell maintenance, metastasis, as 

343 well as immune evasion (Harrington & Annunziata, 2019). Bilska et al (Bilska et al., 2020) 

344 indicated a proinflammatory nature of the ovarian cancer microenvironment, with high levels of 

345 IL-17A in the peritoneal fluid and a high percentage of Th17-infiltrating ovarian cancer, and 

346 suggested that Th17 cells/IL-17A might serve an advantageous role in ovarian cancer immunity. 

347 There have been a number of studies that have proved that the PD-1/PD-L1 cascade, the B cell 

348 and T cell receptor signaling axis and the TNF signaling cascade were associated with the 

349 immunity of ovarian cancer (Ghisoni et al., 2019; Gupta et al., 2019; Josephs et al., 2017).

350 Nevertheless, there are some limitations in this study. First of all, the data utilized herein was 

351 from public repositories, not generated by ourselves. Secondly, the BRCA1 and BRCA2 mutation 

352 ratios in ovarian cancer were relatively low in the SNP data from TCGA. Hence, further research 

353 recruiting a larger sample size is required to validate the relevance of BRCA mutations with 

354 ovarian cancer immunity. Finally, immunogenomic analysis requires more experimental evidence 

355 to verify the role of BRCA1/BRCA2 mutations, checkpoint genes, and the enriched cascades 

356 involved in the immune microenvironment.

357 In conclusion, we identified ovarian cancer subtypes base on immune signatures which were 

358 distinct in tumor microenvironment, immune cells, immune checkpoint molecules, BRCA 

359 mutation and clinical prognosis. These findings may provide guidance for developing novel 

360 strategies of immunotherapy in ovarian cancer.
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Figure 1
Immunogenomic profiling identifies three ovarian cancer subtypes.

(A) Ovarian cancer was hierarchically clustered into three clusters in The Cancer Genome
Atlas dataset. In the heat map of gene expression, red represents high expression and blue
represents low expression. Tumor purity, ESTIMATE score, stromal score, and immune score
were calculated using ESTIMATE. (B) The distribution of tumor purity, immune score, and
stromal score in the three immune subtypes were compared, respectively. ***P<0.001.
ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumor tissues using
Expression data.

PeerJ reviewing PDF | (2020:05:49341:1:1:NEW 3 Sep 2020)

Manuscript to be reviewed



Figure 2
TMB and BRCA mutation among the three subtypes of ovarian cancer.

(A) Three subtypes were not significantly correlated with TMB. (B) All patients with BRCA1

mutations were concentrated in the subtype 3 and the difference was significant (χ2 test,
P=0.0016). (C) The patients with BRCA2 mutations were mainly found in the subtype 2 and

subtype 3, but the difference was not significant (χ2 test, P=0.577). TMB, tumor mutation
burden.
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Figure 3
Differential proportions of the immune cells in the three ovarian cancer subtypes.

Resting dendritic cells, macrophages M1, CD4 memory activated T cells, CD8 T cells,
regulatory T cells were highest in the subtype 3 and lowest level in the subtype 2, but
activated dendritic cells had an opposite trend. **P<0.01, ***P<0.001.
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Figure 4
Kaplan-Meier curves showing survival prognosis of the ovarian cancer subtypes and
immune-associated gene sets.

The subtype 2 showed the worst survival prognosis among the three subtypes. High level
gene expression score of check-point, major histocompatibility complex class I, APC co-
inhibition, T cell co-inhibition, Th1 cells, Th2_cells, Tfh, inflammation-promoting, Treg were
associated with a better prognosis. Treg, regulatory T cells.
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Figure 5
Expression distribution of the eight immune checkpoint genes in the three ovarian
cancer subtypes.

The expression level of PDCD1 and its ligands (CD274 and PDCD1LG2), CTLA4 and its ligands
(CD86 and CD80), TIM-3, LAG3 were all significantly lower and significantly higher in the
subtype 1 and subtype 3, respectively. ***P<0.001.
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Figure 6
GSEA identified GO and KEGG pathways enriched in the subtype 1 and subtype 3.

(A) GO analysis of the top 5 significantly enriched biological processes in the subtype 3. (B)
GO analysis of the top 10 biological processes significantly enriched in the subtype 1 and the
subtype 3, respectively. (C) KEGG analysis of the subtype-specific pathways enriched in the
subtype 3. (D) KEGG analysis of the top 10 pathways significantly enriched in the subtype 1
and the subtype 3, respectively. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes.
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Figure 7
Validation of the external datasets.

(A) Hierarchical clustering of ovarian cancer yields three subtypes in the GEO dataset. Red
represents high expression and blue represents low expression. (B) The distribution of tumor
purity, immune score, and stromal score were compared in the three immune subtypes in the
GEO dataset, respectively. (C) Expression distribution of the 8 immune checkpoint genes in
the three ovarian cancer subtypes in the GEO dataset. *P<0.05, **P<0.01, ***P<0.001. GEO,
Gene Expression Omnibus.
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