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ABSTRACT
Background. Ovarian cancer is a highly fatal gynecological malignancy and new, more
effective treatments are needed. Immunotherapy is gaining attention from researchers
worldwide, although it has not proven to be consistently effective in the treatment of
ovarian cancer.We studied the immune landscape of ovarian cancer patients to improve
the efficacy of immunotherapy as a treatment option.
Methods. We obtained expression profiles, somatic mutation data, and clinical
information from The Cancer Genome Atlas. Ovarian cancer was classified based on 29
immune-associated gene sets, which represented different immune cell types, functions,
and pathways. Single-sample gene set enrichment (ssGSEA) was used to quantify the
activity or enrichment levels of the gene sets in ovarian cancer, and the unsupervised
machine learning method was used sort the classifications. Our classifications were
validated using Gene Expression Omnibus datasets.
Results. We divided ovarian cancer into three subtypes according to the ssGSEA
score: subtype 1 (low immunity), subtype 2 (median immunity), and subtype 3 (high
immunity). Most tumor-infiltrating immune cells and immune checkpoint molecules
were upgraded in subtype 3 compared with those in the other subtypes. The tumor
mutation burden (TMB) was not significantly different among the three subtypes.
However, patients with BRCA1 mutations were consistently detected in subtype
3. Furthermore, most immune signature pathways were hyperactivated in subtype
3, including T and B cell receptor signaling pathways, PD-L1 expression and PD-
1 checkpoint pathway the NF-κB signaling pathway, Th17 cell differentiation and
interleukin-17 signaling pathways, and the TNF signaling pathway.
Conclusion. Ovarian cancer subtypes that are based on immune biosignatures may
contribute to the development of novel therapeutic treatment strategies for ovarian
cancer.

Subjects Bioinformatics, Gynecology and Obstetrics, Oncology, Medical Genetics
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INTRODUCTION
Ovarian cancer has the highest fatality rate among gynecological malignancies. It is
estimated that 21,750 new cases of ovarian cancer will be diagnosed in 2020, resulting in
13,940 ovarian cancer fatalities (Siegel, Miller & Jemal, 2020). Most ovarian cancer cases
are diagnosed at an advanced stage due to a lack of overt symptoms, and the 5-year relative
survival rate is only about 40% (Bray et al., 2018; Lheureux et al., 2019; Torre et al., 2018).
This rate has only improved slightly over the past few decades thanks to advancements in
research (Ghisoni et al., 2019; Holmes, 2015). The standard treatments for ovarian cancer
include surgery and platinum-based chemotherapy. Complete remission can occur for
most patients following their initial treatment but there is still a high rate of reoccurrence
(Odunsi, 2017). Therefore, novel therapeutic approaches are needed to improve the quality
of life and survival of these patients.

Cancer immunotherapy is a promising treatment for many types of solid tumors
(Bellmunt et al., 2017; Reck et al., 2016). It eliminates cancer primarily by acting on the
immune system or the tumor microenvironment but not on tumor cells directly. Cancer
cells affect antigen presentation, disrupt the regulatory cascades of T cells, mobilize
immune-suppressing cells, and produce active cytokines with immune repressive effects,
thereby weakening the immune system, modifying immune regulation, and benefiting
tumor cells (Antonia, Larkin & Ascierto, 2014; Odunsi, 2017). The immune checkpoint
inhibitor (ICI)-based antibody has improved survival for patients with different types of
cancer, including malignant melanoma, lung cancer, and bladder cancer. This antibody is
directed at cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), programmed cell death
1 (PD-1), and programmed cell death 1 ligand 1 (PD-L1) receptors; it initiates immune
cell function, and normalizes the tumor microenvironment (Bellmunt et al., 2017; Borghaei
et al., 2015; Robert et al., 2015). The response rate of ovarian cancer to ICIs is discouraging,
with an objective response rate (ORR) of <15% (Hamanishi et al., 2015; Matulonis et al.,
2019). In the phase II KEYNOTE-100 study of 376 patients with advanced recurring ovarian
cancer, it was found that pembrolizumabmonotherapy was linked to anORR of 8.0% (95%
CI [5.4–11.2]), and a higher PD-L1 expression level was also linked to a better response
(Matulonis et al., 2019). Single agent ICIs have exhibited only modest improvements in this
type of malignancy. In fact, genomic features, such as PD-L1 expression, tumor mutation
burden (TMB), neoantigen load, and defects in DNA damage repair, have been associated
with tumor immunotherapeutic responsiveness in ovarian cancer (Ghisoni et al., 2019;
Odunsi, 2017; Tian et al., 2020).

We classified ovarian cancer based on 29 immune signatures, representing different
immune cell kinds, functions, and pathways. Single-sample gene set enrichment (ssGSEA)
was used to quantify the activity or enrichment levels of the gene sets in cancer, and ovarian
cancer was classified into three subtypes: subtype 1 (low immunity), subtype 2 (median
immunity), and subtype 3 (high immunity). We compared the tumor microenvironment,
immune cells, immune checkpoint molecules, TMB, BRCA1/2 mutation, prognosis, gene
ontology, and pathways. Our findings may assist in the selection of ovarian cancer patients
who would benefit from immunotherapy.
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MATERIALS AND METHODS
Data
Gene expression profiles were mined from The Cancer Genome Atlas (TCGA) dataset
(https://tcga-data.nci.nih.gov/tcga/) and consisted of normalized gene expression patterns
for 379 ovarian cancer samples that were mapped using fragments per kilobase of transcript
per million fragments. Clinical data for age, survival, stage, and tumor grade were also
mined from TCGA. The somatic mutation data were obtained from single nucleotide
polymorphism (SNP) data in the TCGA repository using Mutect. The expression data of
the validation dataset was obtained from the Gene Expression Omnibus (GEO) repository
(GSE51088), and contained 172 ovarian cancer samples. All computational and statistical
analyses were performed using R software (version 3.6.1, http://www.R-project.org).

ssGSEA and clustering
We obtained 29 immune-associated gene sets, totaling 707 genes, representing different
immune cell types, functions, and pathways (File S1) (He et al., 2018; Yue, Ma & Zhou,
2019). We used single sample gene set enrichment analysis (ssGSEA), using the R package
GSVA (version 1.34.0), to calculate the enrichment scores of the 29 immune biosignatures
for each sample in the tumor microenvironment (Barbie et al., 2009; Hänzelmann,
Castelo & Guinney, 2013). ssGSEA calculated the gene signature overexpression scores
by comparing the gene levels in the signature with those in all the other genes in the
transcriptome. An unsupervisedmachine learningmethodwas used to performhierarchical
clustering of ovarian cancer into three clusters. The clusters were further divided into three
subtypes according to the immune scores: subtype 1, subtype 2, and subtype 3.

ESTIMATE and CIBERSORT
Estimation of STromal and Immune cells inMAlignant Tumor tissues using Expression data
(ESTIMATE) (Yoshihara et al., 2013) is an approach that uses gene expression biosignatures
to deduce the proportion of stromal and immune cells in tumor samples, which form the
major non-tumor constituents of tumor samples. By performing ssGSEA, stromal and
immune scores are calculated to estimate the levels of invading stromal and immune cells.
This forms the rationale for the ESTIMATE score to deduce tumor purity in the tumor
tissue. Tumor purity was calculated based on the gene expression data from the immune
and stromal scores using ESTIMATE in R package. Cell-type Identification by Estimating
Relative Subsets of RNA Transcripts (CIBERSORT) (Newman et al., 2015) is a biological
tool that uses the deconvolution strategy to compute the fractions of the 22 human immune
cell types. We selected 1000 permutations and data with P < 0.05 as the maxim for the
successful deconvolution of a sample. The Kruskal-Wallis test was used to compare the
proportions of immune cell types among ovarian cancer subtypes.

Calculation of TMB scores
TMB is the overall enumeration ofmutations permillion bases in tumor tissue. It details the
mutation density of tumor genes, i.e., the enumeration of mutations in the tumor genome,
including the total number of genetic coding errors, base substitutions, and gene insertions
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or deletions. We computed the mutation frequency with the number of variants/the length
of exons (38 million) for each sample using Perl (v5.30.1, https://www.perl.org/).

Survival analyses
We obtained the follow-up information of patients from their clinical data and calculated
the significance of survival time using the log-rank test and their differences using a
threshold of P < 0.05. The median was used as the cut-off value to divide the samples
into high- or low scores to obtain the relationship between the related immune gene sets
score and prognosis. We plotted the Kaplan–Meier curves to indicate the differences in the
survival periods.

Gene-set enrichment analysis
Gene-set enrichment analysis of TCGA datasets was conducted in the GSEA (R package)
(Subramanian et al., 2005). The Kyoto Encyclopedia of Genes and Genomes (KEGG) and
Gene Ontology (GO) analyses were used to assess the functional role of the differentially
expressed genes between subtype 1 and subtype 3. Differential gene set enrichment was
inspected by the limma R package. P < 0.05 was used as the cut-off value.

RESULTS
Immunogenomic profiling identifies three ovarian cancer subtypes
We obtained enrichment scores for each sample of the 29 immune-associated gene sets in
the tumor microenvironment using ssGSEA. Ovarian cancer cases were then hierarchically
clustered into three classes according to their immune scores. These classes were clearly
defined and classified as subtype 1, subtype 2, and subtype 3, which represented low
immunity, median immunity, and high immunity, respectively (Fig. 1A). We determined
the immune, stromal, ESTIMATE scores, and tumor purity using the ESTIMATE algorithm.
Our results showed that the immune and stromal scores were significantly different
(P < 0.001) and were highest in subtype 3 and lowest in subtype 1; tumor purity was the
highest in subtype 1 and lowest in subtype 3 (Figs. 1B–1D). These results indicated that
immune and stromal cells are most prevalent in subtype 3, while tumor cells are most
prevalent in subtype 1.

We found that most of the human leukocyte antigen (HLA) gene expression levels were
lowest in subtype 1 and highest in subtype 3 (P < 0.001) (Fig. S1A). The expression levels of
many immune cell subgroup biomarker genes, such as FOXP3 [regulatory T cell (Treg)],
CD45RO (memory T cell), CD8A (cytotoxic T cell), CD20 (B cell), CD1A [immature
dendritic cell (iDC)], CXCR5 (Tfh cell), and IL3RA [plasmacytoid dendritic cell (pDC)]
were remarkably higher in subtype 3 and markedly lower in subtype 1 (Fig. S1B).

Three subtypes show differential expression of immune checkpoint
genes
We analyzed the expression levels of the checkpoint receptors in the three ovarian cancer
subtypes responsible for decreasing T cell bioactivity, including PDCD1 (PD1), CTLA4,
LAG-3, and TIM-3. We then analyzed the PDCD1 ligand CD274 (PD-L1), PDCD1LG2
(PD-L2), CTLA4 ligand CD86, and CD80. We found that the expression levels of these 8
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Figure 1 Immunogenomic profiling identifies three ovarian cancer subtypes. (A) Ovarian cancer was
hierarchically clustered into three clusters in The Cancer Genome Atlas dataset. In the heat map of gene
expression, red represents high expression and blue represents low expression. Tumor purity, ESTIMATE
score, stromal score, and immune score were calculated using ESTIMATE. (B–D) The distribution of tu-
mor purity (B), stromal score (C), and immune score (D) in the three immune subtypes were compared,
respectively. *** P < 0.001. ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data.

Full-size DOI: 10.7717/peerj.10414/fig-1

immune checkpoint genes were all remarkably lower in subtype 1 and remarkably higher
in subtype 3 (P < 0.001) (Figs. 2A–2H). This indicated that the immunophenotype of
our hierarchical clusters was clearly distinguished, and that ovarian cancer subtype 3 may
respond more effectively to checkpoint inhibitor therapy.

Analysis of the TMB and BRCA mutations among the three subtypes
of ovarian cancer
TMB is a predictor of tumor behavior and immunological response in a diverse range of
cancers (Goodman et al., 2017). In general, tumors with a high TMB have elevated levels
of neoantigens, which play an important role in immunotherapy activities (Goodman et
al., 2017; Schumacher & Schreiber, 2015). We mined the somatic mutation profiles of 436
ovarian cancer patients from the SNP data in TCGA using Mutect, and calculated the TMB
using the enumeration of mutation events per million bases. We then analyzed the TMB
between the three subtypes of ovarian cancer and found that the three subtypes were not
significantly correlated with TMB (p= 0.726) (Fig. 3A).

An increasing number of studies have documented that targeted therapies can stimulate
the immune response of the host. The relationship between BRCAmutations and immunity
is of great interest at present. We analyzed the connection linking BRCA1 and BRCA2
mutations in the three subtypes. The data from BRCA1 and BRCA2 mutations were mined
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Figure 2 Expression distribution of the eight immune checkpoint genes were all significantly lower
and significantly higher in the subtype 1 and subtype 3, respectively. (A–H) PDCD1 (A), PDCD1LG2
(B), CD274 (C), CTLA4 (D), CD80 (E), CD86 (F), TIM-3 (G), LAG3 (H). *** P < 0.001.

Full-size DOI: 10.7717/peerj.10414/fig-2

Figure 3 TMB and BRCAmutation among the three subtypes of ovarian cancer. (A) Three subtypes
were not significantly correlated with TMB. (B) All patients with BRCA1 mutations were concentrated in
the subtype 3 and the difference was significant (χ 2 test, P = 0.0016). (C) The patients with BRCA2 mu-
tations were mainly found in the subtype 2 and subtype 3, but the difference was not significant (χ 2 test,
P = 0.577). TMB, tumor mutation burden.

Full-size DOI: 10.7717/peerj.10414/fig-3

from the SNP data in TCGA via Mutect. There were 23 patients with the BRCA1 mutation
and 20 patients with the BRCA2mutation out the 436 ovarian cancer patients sampled. We
found 13 patients with the BRCA1 mutation and 13 patients with the BRCA2 mutation out
of 274 ovarian cancer patients using the intersection between the mutation data and the
immunity cluster data samples. Surprisingly, all BRCA1 mutation patients were in subtype
3, and the difference was significant (χ2 test, P = 0.0016) (Fig. 3B). The BRCA2 mutation
ratio was greater in subtype 2 and subtype 3 compared with subtype 1, but this difference
was not statistically significant (χ2 test, P = 0.577) (Fig. 3C).

Different immune cells among the 3 subtypes of ovarian cancer
CIBERSORT can deduce 22 types of human immune cells, such as B cells, myeloid subset
cells, T cells, NK cells, macrophages, and DCs, according to the gene expression data,
using the gene-based deconvolution algorithmmethod (Newman et al., 2015). We set 1000
permutations and P < 0.05 as the maxim for the successful deconvolution of a sample and
found that CD8 T cells, CD4memory activated T cells, Tregs, macrophagesM1, and resting
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Figure 4 Differential proportions of the immune cells in the three ovarian cancer subtypes. Resting
dendritic cells, macrophages M1, CD4 memory activated T cells, CD8 T cells, regulatory T cells were high-
est in the subtype 3 and lowest level in the subtype 2, but activated dendritic cells had an opposite trend. **
P < 0.01, *** P < 0.001.

Full-size DOI: 10.7717/peerj.10414/fig-4

dendritic cells were all at the highest levels in subtype 3 and the lowest levels in subtype 1
(P < 0.01). However, activated dendritic cells showed an opposite trend (Fig. 4).

Prognostic analysis of the ovarian cancer subtypes and
immune-associated gene sets
Survival analyses indicated significantly different prognoses among the three ovarian cancer
subtypes. Subtype 2 had the worst survival prognosis among the three subtypes and there
was no significant difference in survival between subtypes 1 and 3 (Fig. 5A). We analyzed
the prognostic value of the different immune gene set expression scores for predicting
patient survival. We found that the high expression level of the check-point, major
histocompatibility complex (MHC) class I, APC co-inhibition, T cell co-inhibition, Th1
cells, Th2 cells, Tfh, inflammation-promoting, and Tregs was associated with a significantly
better prognosis (P < 0.05) compared with low expression levels (Figs. 5B–5J).

Identification of the ovarian cancer subtype-specific pathways and GO
GSEA identified 628 GO terms and 56 KEGG terms in subtypes 1 and 3. GO analysis
indicated that the immunoglobulin complex, circulating immunoglobulin complex, MHC
class II protein complex, immunoglobulin receptor binding, and theMHCprotein complex
were the top five significantly enriched biological processes in subtype 3. In addition,
glucuronidation, metabolic processes, and methyl-CpG binding were the most enriched
terms in subtype 1 (Figs. 6A and 6B). GSEA showed that the immune-associated pathways
were most active in subtype 3, and consisted of Th17 cell differentiation, NF-κB signaling
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Figure 5 Kaplan-Meier curves showing survival prognosis of the ovarian cancer subtypes and
immune-associated gene sets. (A) The subtype 2 showed the worst survival prognosis among the three
subtypes. (B–J) High level gene expression score of check-point (B), major histocompatibility complex
class I (C), APC co-inhibition (D), T cell co-inhibition (E), Th1 cells (F), Th2_cells (G), Tfh (H),
inflammation-promoting (I), Treg (J) were associated with a better prognosis. Treg, regulatory T cells.

Full-size DOI: 10.7717/peerj.10414/fig-5

axis, the B cell receptor signaling cascade, the T cell receptor signaling cascade, PD-L1
expression and the PD-1 checkpoint axis in cancer, the IL-17 signaling cascade, and the
tumor necrosis factor (TNF) signaling axis. Our results verified that immune activity was
elevated in subtype 3. However, subtype 1 was enriched in pathways, including maturity
onset diabetes of the young, ascorbate and aldarate metabolism, pentose and glucuronate
interconversions, fat digestion and absorption, and porphyrin and chlorophyll metabolism
(Figs. 6C and 6D). These cascades may be inversely linked to ovarian cancer immunity.

Validation of external datasets
We used the same method to hierarchically cluster ovarian cancer in the GSE51088
dataset, which included 172 ovarian cancer samples. Interestingly, there was a similar
clustering result, with three distinct clusters (Fig. 7A). The immune and stromal scores
were remarkably higher in subtype 3 and were markedly lower in subtype 1, while tumor
purity showed an opposite result (Figs. 7B–7D). Most HLA genes and CD8A, CD1A,
CD45R, and IL3RA expression levels were significantly lower in subtype 1 and significantly
higher in subtype 3, which was consistent with the TCGA datasets (Figs. S2A and S2B). The
expressions of the immune checkpoint genes, including PDCD1, CD274, CTLA4, CD80,
CD86, TIM-3, and LAG-3 were all remarkably lower in subtype 1 and were significantly
higher in subtype 3 (Figs. 7E–7L). These results were similar to results from previous
research. Our results suggest that there are varied immune status subtypes in ovarian
cancer that may affect the treatment of immune checkpoints differently.

DISCUSSION
An increasing number of studies have identified ovarian cancer subtypes based on genomic
profiling to provide individualized treatments and improve patient survival (Schwede et
al., 2020; Yang et al., 2018; Zheng et al., 2020). However, few studies have classified ovarian
cancer based on immune signatures. We sought to identify immune-correlated ovarian
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Figure 6 GSEA identified GO and KEGG pathways enriched in the subtype 1 and subtype 3. (A) GO
analysis of the top five significantly enriched biological processes in the subtype 3. (B) GO analysis of the
top 10 biological processes significantly enriched in the subtype 1 and the subtype 3, respectively. (C)
KEGG analysis of the subtype-specific pathways enriched in the subtype 3. (D) KEGG analysis of the top
10 pathways significantly enriched in the subtype 1 and the subtype 3, respectively. GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes.

Full-size DOI: 10.7717/peerj.10414/fig-6

cancer subtypes in a TCGA-ovarian cancer cohort based on 29 immune-associated gene
sets, which typified different immune cell types, functions, and pathways. We classified
ovarian cancer into three subtypes using ssGSEA, with an immune score ranging from low
to high. Our results were reproduced in the external dataset GSE51088.

The immune microenvironment of subtype 3 was strengthened, with greater levels
of immune cell invasion and stronger anti-tumor immune activities, such as high levels
of cytotoxic T cells and B cell invasion. The expression levels of most of the HLA genes
were highest in subtype 3. The recognition and expression of tumor antigens on effector
cells, such as CD8 + T cells, was the threshold of the immune response. HLA played
a central role in providing effector CD8 + T cells with natural intracellular proteins
or neoantigens produced by the cancer cells (Koşaloğlu-Yalçın et al., 2018). The down
regulation of HLA class I expression participated in the departure from the host immune
system and immunotherapy resistance (Chowell et al., 2018; Lhotakova et al., 2019). Many
immune cell subgroup maker genes, including FOXP3 (Treg), CD45RO (memory T cell),
CD8A (cytotoxic T cell), CD20 (B cell), CD1A (iDC), CXCR5 (Tfh cell), IL3RA (pDC) were
stronger in subtype 3. We found that CD8 T cells, CD4 memory activated T cells, Tregs,
macrophages M1, and resting dendritic cells were higher in subtype 3 and lower in subtype
1. Our results further confirmed that there were different immune subtypes in ovarian
cancer and that the immune activity of subtype 3 was stronger. Survival analyses showed
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Figure 7 Validation of the external datasets. (A) Hierarchical clustering of ovarian cancer yields three
subtypes in the GEO dataset. Red represents high expression and blue represents low expression. (B–D)
The distribution of tumor purity (B), stromal score (C), and immune score (D) were compared in the
three immune subtypes in the GEO dataset, respectively. (E–L) Expression distribution of the eight im-
mune checkpoint genes in the three ovarian cancer subtypes in the GEO dataset. PDCD1 (E), PDCD1LG2
(F), CD274 (G), CTLA4 (H), CD80 (I), CD86 (J), TIM-3 (K), LAG3 (L) * P < 0.05, ** P < 0.01, *** P <
0.001. GEO, Gene Expression Omnibus.

Full-size DOI: 10.7717/peerj.10414/fig-7

that the worst prognoses were found in subtype 2 and there was no significant survival
difference between subtypes 1 and 3. This suggested that immune-enhanced subtypes may
not have the best outcome in ovarian cancer, and was consistent with the findings from
Zheng et al. (2020).

A number of recent studies have demonstrated that the immune checkpoint has a
pivotal role in the immunosuppression of cancer. It is well-known that PD-1, CTLA4,
LAG-3, TIM-3, BTLA, and VISTA are the most common immune checkpoint receptors.

Wei et al. (2020), PeerJ, DOI 10.7717/peerj.10414 10/18

https://peerj.com
https://doi.org/10.7717/peerj.10414/fig-7
http://dx.doi.org/10.7717/peerj.10414


It was previously reported that blocking PD1/PD-L1 in combination with other agents,
particularly other checkpoint suppressors was more effective for immunosuppression
(Boutros et al., 2016; Doo, Norian & Arend, 2019; Huang et al., 2017). Clinical studies have
shown that the effect of treatment in patients with advanced melanoma could be improved
when combined with the anti-PD-1/PD-L1 antibody and the CTLA-4 inhibitor (Boutros et
al., 2016). Blocking PD-1 alone was shown to be insufficient in controlling murine ovarian
tumor growth but dual blocking of the PD-1-LAG-3 or PD-1-CTLA-4 cascades could
delay murine ovarian tumor growth, and blocking 3 PD-1-CTLA-4-LAG-3 cascades was
superior if the PD-1 pathway was entirely blocked (Huang et al., 2017). We identified that
the expression levels of the checkpoint genes, including PDCD1, CD274, PDCD1LG2,
CTLA4, CD86, CD80, LAG-3 and TIM-3 were remarkably higher in subtype 3, indicating
that subtype 3 may be linked to the intrinsic immune response of ovarian cancer. This
may provide new insights for the treatment of ovarian cancer with immune checkpoint
blockers.

Many studies have found that a higher level of TMB was associated with higher
neoantigen loads, which are the target of ICIs (Brown et al., 2014; Gubin et al., 2014;
Samstein et al., 2019). TMB generates new antigens resulting in the enrichment of the
immune cells in tumors and could predict survival across diverse kinds of human cancer,
(e.g., non-small-cell lung cancer, melanoma, and bladder cancer). These results are
applicable in patients being treated by anti-CTLA-4 or anti-PD-1 therapies (Samstein et
al., 2019). We failed to detect an association between TMB and tumor-infiltrating immune
cells and found no significant difference in TMB among the three immune ovarian
cancer subtypes. Similarly, Dai et al. (2018) found no association between TMB and the
tumor immune response, represented by cytolytic activity or immune cell infiltration.
Therefore, TMBmay not be an appropriate biomarker for ovarian cancer immunotherapy.
We found that all patients with BRCA1 mutations were in subtype 3 and patients with
BRCA2 mutations were primarily in subtypes 2 and 3. Ovarian cancer with BRCA1 or
BRCA2 mutations had increased immune infiltrates compared to those without mutations
(McAlpine et al., 2012). Strickland et al. (2016) demonstrated that BRCA 1/2-mutated high
grade serous ovarian cancer had remarkably elevated CD3+ and CD8+tumor-infiltrating
lymphocytes and elevated expression levels of PD-1. PD-L1 in the tumor-linked immune
cells contrasted with that in homologous recombination proficient tumors. Another study
also showed that the presence of intraepithelial CD8+T-cells was linked to amutation or loss
of expression of BRCA1 (Clarke et al., 2009). These findings suggest that BRCA-mutated
ovarian cancer may be more sensitive to immune checkpoint blockade therapy.

We identified 628 GO and 56 KEGG terms in subtypes 1 and 3 using enrichment
analysis. GO analysis indicated that the immunoglobulin complex, the MHC class II
protein complex, immunoglobulin receptor binding, and the MHC protein complex were
primarily enriched in subtype 3. T cell immunity requires the recognition of antigens in
the context of MHC class I and class II proteins by CD8+ and CD4+ T cells, respectively
(Koşaloğlu-Yalçın et al., 2018). A previous study found that the MHC proteins confer
differential sensitivity to CTLA-4 and PD-1 blocking in melanoma (Rodig et al., 2018).
The immune-linked cascades were most active in subtype 3, and included Th17 cell
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differentiation, the NF-κB signaling cascade, the B cell receptor signaling axis, the T cell
receptor signaling axis, PD-L1 expression, the PD-1 checkpoint cascade, the IL-17 signaling
axis, and the TNF signaling pathway. The NF-κB signaling axis has been proven to be the
major cascade involved in ovarian cancer, enhancing chemoresistance, cancer stem cell
maintenance, metastasis, and immune evasion (Harrington & Annunziata, 2019). Bilska et
al. (2020) determined the proinflammatory nature of the ovarian cancermicroenvironment
with high levels of IL-17A in the peritoneal fluid and a high percentage of Th17 infiltration
and suggested that Th17 cells/IL-17A may serve an advantageous role in ovarian cancer
immunity. A number of studies have proved that the PD-1/PD-L1 cascade, B cell and T cell
receptor signaling axes, and TNF signaling cascades were associated with ovarian cancer
immunity (Ghisoni et al., 2019; Gupta et al., 2019; Josephs et al., 2017).

There were some limitations to our study. Firstly, our data was from public repositories
and was not self-generated. Secondly, the BRCA1 and BRCA2 mutation ratios in ovarian
cancer were relatively low in the SNP data from TCGA. Thus, further research using a larger
sample size should be conducted to validate the relevance of BRCAmutations with ovarian
cancer immunity. Finally, immunogenomic analysis requires more experimental evidence
to verify the role of BRCA1/BRCA2mutations, checkpoint genes, and the enriched cascades
involved in the immune microenvironment.

We identified ovarian cancer subtypes based on immune signatures which were distinct
in the tumor microenvironment, immune cells, immune checkpoint molecules, BRCA
mutations, and clinical prognoses. These findings may help develop novel immunotherapy
strategies in ovarian cancer.
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