New distributional records of the Samana least gecko (Sphaerodactylus samanensis, Cochran, 1932) with comments on its morphological variation and conservation status (#51336)

First submission

Guidance from your Editor

Please submit by 16 Aug 2020 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Author notes

Have you read the author notes on the guidance page?

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 3 Figure file(s)
- 2 Table file(s)
- 1 Raw data file(s)

Vertebrate animal usage checks

- Have you checked the authors ethical approval statement?
- Were the experiments necessary and ethical?
- ! Have you checked our <u>animal research policies</u>?

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

When ready <u>submit online</u>.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

New distributional records of the Samana least gecko (Sphaerodactylus samanensis, Cochran, 1932) with comments on its morphological variation and conservation status

Germán Chávez 1, 2, Miguel A Landestoy 3, Gail S Ross 4, Joaquín A Ugarte-Núñez Corresp. 5

Corresponding Author: Joaquín A Ugarte-Núñez Email address: jugarte@knightpiesold.com

We report here five new localities in the distribution of the lizard *Sphaerodactylus* samanensis and extend its current geographic range. the west, in the Cordillera Central of Hispaniola. We also noticed phenotypic variation in the color pattern and scutellation on throat and pelvic region of males from both eastern and western populations, which is described below. Furthermore, based on these new data, we confirm that the species is not fitting in its current IUCN category, and in consequence propose updating its conservation status.

¹ Instituto Peruano de Herpetología, Lima, Perú

² División de Herpetología, CORBIDI, Lima, Perú

³ Escuela de Biología, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic

⁴ 731 1st Street, NV 89801, Elko, USA

⁵ Knight Piésold Consulting, Lima, Peru

- New distributional records of the Samana Least
- 2 Geckolet (Sphaerodactylus samanensis, Cochran,
- 3 1932) with comments on its morphological variation
- 4 and conservation status

```
5
      Germán Chávez<sup>1,2</sup>, Miguel A. Landestoy T.<sup>3</sup>, Gail Ross<sup>4</sup>, Joaquín A. Ugarte-Núñez<sup>5</sup>
 6
 7
 8
      <sup>1</sup>Instituto Peruano de Herpetología, Lima, Perú.
 9
      <sup>2</sup>División de Herpetología-CORBIDI, Lima, Perú.
10
      <sup>3</sup>Escuela de Biología, Universidad Autónoma de Santo Domingo, República Dominicana.
11
      <sup>4</sup>731 1st Street, Elko, NV 89801, USA.
12
      <sup>5</sup>Knight Piésold Consulting, Lima, Perú
13
14
      Corresponding author:
15
      Joaquín A. Ugarte-Núñez
16
      Urb. Santo Domingo E-8, J. L. Bustamante, Arequipa
17
     jugarte@knightpiesold.com
18
19
20
21
22
23
24
25
26
27
28
```


32	
33	
34	Abstract
35	We report here five new localities in the distribution of the lizard Sphaerodactylus samanensis
36	and extend its current geographic range to the west, in the Cordillera Central of Hispaniola. We
37	also noticed phenotypic variation in the color pattern and scutellation on throat and pelvic region
38	of males from both eastern and western populations, which is described below. Furthermore,
39	based on these new data, we confirm that the species is not fitting in its current IUCN category,
40	and in consequence propose updating its conservation status.
41	
42	Introduction
43	
44	Lizards of the genus Sphaerodactylus (105 recognized species, Uetz et al. 2019), have
45	diversified remarkably on Caribbean islands, and occur in Central and Northern 🛜 th America
46	(Hass 1991; Henderson and Powell 2009; Hedges et al. 2019; Hedges 2020). This is a clade of
47	small geckos (geckolet) containing also one of the smallest amniote vertebrat 🔽 n the world
48	with a maximum snout-vent length of 18 mm (Hedges and Thomas 2001). Likewise, the largest
49	species of this genus reaches up to a maximum of 37 mm (Barbour 1914; Schwartz and Garrido
50	1985; Fong and Diaz 2004).
51	Geckolets are one of the motion of the motio
52	reaching densities greater than 60,000 ind/ha (Rodda <i>et al</i> . 2001). Nonetheless, numerous
53	species are known only for one or a small number of localities (Hedges 1996; Powell and
54	Inchaustegui 2009; Schwartz 1970; Schwartz and Henderson 1991). Among them,
55	Sphaerodactylus samanensis is a species previously reported at a few places near to the type
56	locality, along the southern side of the Samana Bay, Dominican Republic with an elevation
57	range from 0 to 181 m.a.s.l (Schwartz and Henderson 1991; Thomas and Hedges 1993;
58	Landestoy et al. 2016). Because its restricted distribution range and small extent of occurrence
59	(100 km²), S. samanensis is currently classified as a Critically Endangered species by both the
60	IUCN Red List (2020), and the Dominican Republic's Red List of threatened species
61	(MIMARENA, 2019). According to the records, this species inhabits the northeastern edge of
62	the island (Figure 1) alongside Cordillera Oriental, a low mountain chain with Miocene Karst
63	terrain (Bowin 1966, 1975).
64	The recent discovery of an individual of Sphaerodactylus samanensis in the surroundings of
65	Pueblo Viejo Mine (PVM) by one of the authors (JU) encouraged us to perform new field

66 surveys which resulted in the collection of this species at five new localities in central and 67 eastern Dominican Republic. Our findings indicate that this species has a wider distribution than 68 previously known, a finding relevant to its conservation status. 69 70 Methods 71 Study Area. We conducted fieldwork at six sites (Figure 1): 1) Caño Hondo (Los Haitises 72 National Park), at the surroundings of the type locality and inside of its distribution range 73 (Landestoy et al. 2016), 2) Cueva Casa Grande (western edge of the aforementioned park), and 74 3) Batey Piedra, all of them on the eastern edge of the Dominican Republic; and 4) Chacuey 75 Abajo, 5) Cueva de Sanabe (inside Aniana Vargas National Park), and 6) Pueblo Viejo Mine 76 (PVM), these last three on the Cordillera Central to the west. Eastern sites are placed on the 77 northern slopes of the Cordillera Oriental, in the Ombrophile Rainforest (Hager and Zanoni 78 1993), which is adjacent to the Samana Bay and goes along Yuna River basin. Trees at these 79 sites reach up to 30 m in height, bushes, some ferns and epiphytes are present, the ground is 80 covered in leaf litter and organic material, as well as scattered karst-rock clusters. Sites on the 81 Cordillera Central were located on the easternmost border of the mountain ridge where streams 82 flow down to the Yuna River and eventually reach the Atlantic Ocean. The landscape mainly 83 features farms and small patches of tropical rainforest. The ground is covered partially in leaf 84 litter and organic material, as well as karst-rock clustered areas. The highest altitude reached in 85 our study is 257 m.a.s.l. in the Central Cordillera, with the lowest spot at sea level along the 86 Samana Bay. 87 Fieldwork. We carried out three field trips under permission number 004080 issued by the 88 Dominican Republic's Ministry of Environment and Natural Resources (Ministerio de Medio 89 Ambiente y Recursos Naturales - MIMARENA). Specimens were collected between August 90 2018 and May 2019 during diurnal surveys. We took coordinates with a personal navigator 91 (Garmin Map 64s) and described habitat characteristics at each collection site. Every collected 92 specimen was photographed, measured, fixed with 95% ethanol and then stored in 70% 93 ethanol. All the specimens were deposited in the Herpetology Collection of the Museo Nacional 94 de Historia Natural Profesor Eugenio de Jesús Marcano (MNHNSD) in Santo Domingo, 95 Dominican Republic. 96 Morphological revision. We used a digital calliper to measure snout-vent length (SVL) of 97 individuals to the nearest tenth of a millimeter. Our scale counts follow Thomas and Schwartz

98 (1966) and Thomas et al. (1992) and consists in: 1) escutcheon length, we considered the 99 maximum number of scales (anterior to posterior); 2) escutcheon width, we considered the 100 maximum number of scales transversally across the patch (including extensions onto thighs); 101 and 3) escutcheon total scales, we considered all scales on the pelvic scutcheon. In order to 102 support our observations, we added two more scale counts: 1) number of gular scales in contact 103 with the first infralabial, here we considered all adjacent scales (including postmentals) to the 104 first infralabial scale; and 2) number of scales per dorsal band, we considered the maximum 105 number of pigmented scale rows covered by a dorsal band in a longitudinal count. Specimens 106 were sexed by examining the sexually dimorphic color pattern and the gonads to confirm the 107 presence of hemipenes. We used photographs taken in the field by ML to describe the coloration in life of the spimens. Also, we followed Kohler (2012) to name the colors in our 108 109 description. In addition, we follow taxonomy prior to prior Köhler et al. 2019 regarding Anolis as 110 a valid genus for Dactyloid lizards from La Hispaniola. 111 **Data Analysis.** We estimated the occurrence of this species based on our field measurements 112 of the extension of Karst (where we observed Sphaerodactylus samanensis), additionally 113 supported by the estimation of the area of Karst in contact with them, through the data 114 previously reported by Servicio Geologico Nacional (2010). Geographic data and map designing 115 were drawn in ArcGIS version 10.3. Additionally, we follow IUCN (2001) defining: 1) Extent of 116 occurrence (EOO) and 2) Area of occupancy (AOO). 117 Results 118 We observed this species out of the surroundings of the type locality for the first time 119 (specimens collected per locality are detailed in Table S1). Subsequently, we are confirming its 120 occurrence in the Cordillera Central and adding five localities to its currently known occurrence 121 (Figure 1). This extends its geographic range by 82.2 km to the northwest. All individuals were 122 observed by day, under rocks in habitat mixed between karst-rock clusters and tropical forest, 123 with bushes and trees approaching 30 m tall, ground covered in leaf-litter and rocks covered 124 with moss, lichens, ferns and other epiphytes. Additionally, we recorded two other geckolets: 125 Sphaerodactylus darlingtoni and S. difficilis in sympatry with S. samanensis. Other sympatric 126 lizards recorded during surveys were Celestus sepsoides, C. stenurus, Anolis cybotes, and A. 127 distichus All individuals of S. samanensis agree with the original description (Cochran 1932) in bearing a 128 129 moderately short snout, a large rostral scale with a median groove, a medium-sized superciliar

130 spine, a large third supralabial exceeding the center of the eye, imbricate-keeled dorsal scales 131 and an orange head in males. Nevertheless, we noted some phenotypic variation between S. 132 samanensis individuals from the urroundings of the type locality (Caño Hondo) and nearby 133 eastern places (Cueva Casa Grande and Batey Piedra), and the western populations (Chacuey 134 Abajo, Cueva de Sanabe, and PVM) (See Figure 2). The eastern individuals have 2.5-5.5 135 (average=4.1, SD=0.8) gular scales in contact with first infralabial instead of 4.5–7 (average=5.1, SD=0.6) in western individuals (p < 0.001) (See Figure 3), and a lower total 136 137 number of pelvic scutcheon scales ranging from 25–32 scales (average=28.4, SD=2.5) instead 138 of 30–39 scales (average=35.7, SD=2.9) in western specimens (p < 0.001). Eastern populations 139 also differ in coloration by bearing dorsal bands and scapular ocelli in femal 140 which are absent in males of western samples (Figure 2). Eastern females have 3-4 dorsal 141 bands vs 4–5 in western females (p < 0.001), and wider dorsal bands covering 3–7 dorsal 142 scales (average=5, SD=1.2) instead of the thin dorsal bands of western females covering only 3 143 dorsal scales (average=3, SD=0; p < 0.001). Further details on measurements, coloration and 144 scutellation are provided in Table S2.

Discussion

- 146 Our results update the distribution of Sphaerodactylus samanensis which now range from the 147 region of the type locality (Boca del Infierno) in the Samana Bay (Cochran 1932) and 148 surrounding areas (Thomas and Hedges 1993, Landestoy et al. 2016) to the Central Cordillera 149 (Figure 1), an east-west airline distance of 82.2 km. Therefore, the distribution of this gecko is 150 now only exceeded by those of S. copei, S. darlingtoni, S. difficilis, and S. elegans (Schwartz 151 and Henderson 1991; Hedges 2020), species previously recognized as widely spread on 152 Hispaniola (Hass 1991; Schwartz and Henderson 1991). We also report the maximum altitude 153 so far recorded for this species: 257 m. a. s. l. exceeding by 200 meters former records reported 154 by Cochran (1932) and Landestoy et al. (2016). These novel geographic data exceed those 155 formerly known for this species confirming that it is not a short-ranged species but rather a 156 widely distributed lineage that could be distributed even further. Since large geographic ranges are scarcely recorded in *Sphaerodactylus* lizards, phenotypic
- Since large geographic ranges are scarcely recorded in *Sphaerodactylus* lizards, phenotypic variation has been barely noted and subsequently poorly studied (Schwartz 1966; Dood Jr and Ortiz 1984). Here we provide for the first time evidence of differences between eastern (including type locality) populations (n=24) and western populations (n=28), mainly in color pattern and scutellation (Table S2). Measurements did not differ. In spite of scutellation mostly overlapping between eastern and western populations, gular scales are longer in eastern

163 individuals, better noted in the proximal rows of the throat (including postmentals) which have 164 contact with the first infralabial and are clearly smaller in western individuals (Table 2, Figure 3). 165 Likewise, the escutcheon plate in western males tends to contain more scales than those from 166 eastern individuals. Surprisingly, differences between scutcheon width and scutcheon length are 167 not significant (p = 0.7 and p = 0.1 respectively). This is because the difference does not depend on the width or length of the rows, but rather the imber of additional (intruders) escutcheon 168 169 scales surrounding the proximal edge of the escutcheon (Table S2). Concerning coloration, 170 eastern individuals have 3-4 wide dorsal bands (each covering 3-7 dorsal scales) which are 171 present in all females and some males (especially in males from the type locality); contrasting 172 with western individuals which have 4–5 thin dorsal bands (each covering three dorsal scales) 173 only present in females. 174 The geological history of the island of Hispaniola is influenced mainly by water incursions and 175 plate movements occurring since the late Mesozoic and into the Cenozoic (Mann et al. 1991; 176 MacPhee and Iturralde-Vinent 1994; Hedges 1996; Iturralde-Vinent and McPhee 1999; Ricklefs 177 and Bermingham 2008; Daza et al. 2019). This likely originated the vicariance phenomenon in 178 the Proto Antilles as well as the overwater dispersion and later (approximately during Mid-179 Tertiary sensu Hedges 1996) divergence of lineages in vertebrate fauna on this island (Mann et 180 al. 1991, Hedges 1992, Hedges 1996, Daza et al. 2019). These events could cause isolation 181 (Hedges 1996, Daza et al. 1994) and the subsequent geographic restriction of emergent taxa to 182 small areas, explaining why very few Sphaerodactylus species had been able to spread widely 183 on Hispaniola. Those geologic events could have influenced dispersion and also the evolution of 184 phenotypic features of Sphaerodactylus samanensis. Certainly, the distribution of this species 185 seems to follow a geologic pattern overlapping two ancient karst formations (Figure 1): Los 186 Haitises karst to the east and El Hatillo karst to the west, both structures raised in the Late Tertiary (Servicio Geológico Nacional 2010). This would agree with the phenotypic variation 187 188 reported here, which follows an east-west geographic pattern. Future research should target 189 molecular analysis and the revision of new specimens to determine patterns in the phenotypic 190 variation in S. samanensis. 191 Because of its restricted range of distribution and threats to its habitat, both the Dominican 192 Republic and IUCN Red-Lists currently list Sphaerodactylus samanensis as a Critically 193 Endangered species (IUCN 2020). Nevertheless, our findings demonstrate that the occurrence 194 of Sphaerodactylus samanensis is wider than previously reported, with an estimated EOO of 195 500 km². We observed that *S. samanensis* inhabits karst rocks, in contrast to sympatric

- 196 congeners such as S. darlingtoni and S. difficilis which are more often recorded in leaf litter
- usually on soil, reducing therefore its AOO within this range. We also suggest that loss of karst
- 198 formations, in particular loss of tree cover within karst areas, could threat some populations.
- 199 Nonetheless, given its widened extent of occurrence, including its presence in protected areas
- 200 (Los Haitises National Park to the east and Aniana Vargas National Park to the west), as well as
- the number of locations and mature individuals observed during fieldwork, we propose that the
- species be reclassified by the IUCN. Certainly, based on new information it would appear
- 203 unlikely that the species would become extinct barring catastrophic climate events, however,
- 204 continued destruction of karst habitat could become a future problem for the species, therefore
- we propose the category Near Threatened for *S. samanensis*.

Acknowledgements

- 207 This work was supported by Barrick Pueblo Viejo, and we are grateful to all whom provided field
- work advice, as well as reviewers for their helpful comments. This work was possible to the
- value fieldwork of our teammates Robert Ortíz, Cristian Marte, Francis Ortíz, Yimmel Corona,
- 210 Francis Rodríguez, Reveca Ramírez, and Pedro J. Araujo. JU thanks to Sinthya Mejia by her
- 211 value feedback and Dila Valiente for designing the map.

212 **Bibliography**

- 213 Barbour T. 1914. A contribution to the Zoogeography of the West Indies, with special reference
- 214 to Amphibians and Reptiles. Memoirs of the Missum of Comparative Zoology. 44(2): 205–359.
- 215 Bowin C. 1966. Geology of the Central Dominican Republic. A case history of part of an island
- 216 arc. In H. Hess (ed.). Caribbean Geological Investigations, Geological Society of America. 98:
- 217 11–84.
- 218 Bowin C. 1975. The geology of Española. In: A. Naim, F. Stehli (eds.). The ocean basins and
- 219 margins: The Gulf of Mexico and the Caribbean, Vol. 3. New York, Plenum Press, 501–552.
- 220 Cochran DM. 1932. Two new lizards from Hispaniola. Proceedings of the Biological Society of
- 221 Washington, 45: 183–188.
- Daza JD, Pinto BJ, Thomas R, Herrera-Martinez A, Scantlebury DP, Padilla-García LF, Balaraman RP,
- Perry G, Gamble T. 79. The sprightly little Sphaerodactyl: Systematic and Biogeography of the Puerto
- Rican dwarf geckos (Gekkota, Sphaerodactylidae). taxa, 4712 (2): 151–201.

- 225 Dood Jr K, Ortiz PR. 1984. Variation of Dorsal Pattern and Scale Counts in the Monito Gecko,
- 226 Sphaerodactylus micropithecus. Copeia, 3: 768.

- F
- 227 Fong A, Diaz LM. 2004. Two new species of SPhaerodactylus (Sauria: Gekkonidae) from the
- 228 southeastern coast of Cuba. Solenodon 4: 73–8
- 229 Hager J. & T.A. Zanoni. 1993. La vegetación natural de la República Dominicana: una nueva
- 230 clasificación. Moscosoa. 7: 39-81
- 231 Hass CA. 1991. Evolution and biogeography of West Indian Sphaerodactylus (Sauria:
- 232 Gekkonidae): a molecular approach. Journal of Zoology of the Zoological Society of London,
- 233 225: 525-561
- Hedges SB. 1996. The origin of West Indian amphibians and reptiles. In: Powell R, Henderson
- 235 R.W, editors. Contributions to West Indian herpetology: a tribute to Albert Schwartz. Society for
- the Study of Reptiles and Amphibians; Ithaca, NY, USA. Contribution to Herpetology, volume 2.
- 237 pp 95–128.
- 238 Hedges SB. 2020. Caribherp: amphibians and reptiles of Caribbean Islands. Available online at
- 239 http://www.caribherp.org/ (accessed 24 June 2020). Philadelphia, Pennsylvania.
- 240 Hedges SB, Hass CA, Maxson LR. 1992. Caribbean biogeography: Molecular evidence for dispersal in
- West Indian terrestrial vertebrates. Proceedings of the Natural Academy of Sciences, 89: 1909–1913.
- 242 Hedges SB, Powell R, Henderson RW, Hanson S, and Murphy JC. 2019. Definition of the
- 243 Caribbean Islands biogeographic region, with checklist and recommendations for standardized
- common names of amphibians and reptiles. Caribbean Herpetology. 67:1-53.
- 245 Hedges SB, Thomas R. 2001. At the lower size limit in amniote vertebrates: A new diminutive
- 246 lizard from the West Indies. Caribbean Journal of Science, 37, 168–173.
- 247 Henderson RW, Powell R. 2009. Natural History of West Indian Reptiles and Amphibians.
- 248 University Press of Florida, Gainesville, Florida, USA.
- 249 Iturralde-Vinent MA, MacPhee RDE. 1999. Paleogeography of the Caribbean region:
- 250 Implications for Cenozoic biogeography. Bulletin of the American Museum of Natural History,
- 251 238: 1-95.

- 252 IUCN. 2001. IUCN Red List categories and criteria: Version 3.1. Prepared by IUCN Species
- 253 Survival Commission. World Conservation Union, Gland, Switzerland and Cambridge, United
- 254 Kingdom. li + 30 pp.
- 255 Köhler G. 2012. Color Catalogue for Field Biologists. Herpeton, Offenbach, Germany.
- 256 Köhler G, Zimmer C, McGrath K, Hedges SB. 2019. Una revisión del género Audantia de la
- 257 Hispaniola con descripción de cuatro especies nuevas (Reptilia: Squamata: Dactyloidae).
- 258 Novitates Caribaea, 0(14), 1-104.
- 259 Landestoy M, Incháustegui S, Hedges SB. 2016. Sphaerodactylus samanensis. The IUCN Red
- 260 List of threatened species: eT75605882A115490491. http://dx.doi.org/10.2305/IUCN.UK.2016-
- 261 3.RLTS.T75605882A75607914.en
- 262 MacPhee RDE, Iturralde-Vinent MA. 1994. First Tertiary land mammal from Greater Antilles: an
- 263 early Miocene sloth (Xenarthra: Megalonchidae) from Cuba. American Museum Novitates,
- 264 3094: 1-13.
- 265 Mann P, Draper G, Lewis JF. 1991. An overview of the geologic and tectonic development of
- 266 Hispaniola. In: Mann P, Draper G, Lewis JF. (Eds.), Geological and Tectonic Development of
- the North America-Caribbean Plate Boundary in Hispaniola. Geological Society of America
- 268 Special Papers, 262 pp. 1–28. https://doi.org/10.1130/SPE262-p1
- 269 Ministerio del Medio Ambiente y Recursos Naturales de la República Dominicana. 2011. Lista
- 270 de especies en peligro de extinción, amenazadas o protegidas de la República Dominicana. 44
- 271 pp.
- 272 Powell R, Inchaustegui SJ. 2009. Conservation of the Herpetofauna of the Dominican Republic. Applied
- **273** Herpetology. 6: 103–122.
- 274 Ricklefs R, Bermingham E. 2008. The West Indies as a laboratory of biogeography and evolution.
- 275 Philosophical transactions of the Royal Society, 363: 2393–2413.
- 276 Rodda GH, Perry G, Rondeau RJ, Lazell J. 2001. The densest terrestrial vertebrate. Journal of Tropical
- 277 Ecology. 17: 331–338.

278 279 280	Scantlebury DP, Ng J, Landestoy M, Geneva A, Glor RE. 2011. Notes on activity patterns of five species of Sphaerodactylus (Squamata: Sphaerodactylidae) from the Dominican Republic. IRCF Reptiles and Amphibians 18: 51–55.
281 282	Schwartz A. 1966. Geographic variation in Sphaerodactylus notatus. Revista de Biología Tropical, 13(2): 161–185.
283 284	Schwartz A. 1970. A new species of Gecko (Gekkonidae, Sphaerodactylus) from Hispaniola. Journal of Herpetology. 4: 63-67.
285 286	Schwartz A, Garrido OH. 1985. The Cuban lizards of the genus Sphaerodactylus (Sauria, Gekkonidae). Contributions in Biology and Geology of the Milwaukee Public Museum. 62:1–67.
287 288	Schwartz A, Henderson Rw. 1991. Amphibians and Reptiles of the West Indies. University of Florida Press, Gainesville, USA. 720 pp.
289 290 291	Servicio Geológico Nacional. 2010. Mapa Geológico de la República Dominicana. Servicio Geológico Nacional de la República Dominicana, Santo Domingo, Dominican Republic. pp 40–59.
292 293	Thomas R, Schwartz A. 1966. Sphaerodactylus (Gekkonidae) in the greater Puerto Rico region. Bulletin of the Florida State Museum, Biological Sciences, 10, 193–260.
294 295	Thomas R, Hedges SB, Garrido OH. 1992. Two new species of Sphaerodactylus from eastern Cuba (Squamata: Gekkonidae). Herpetologica, 48: 358-367.
296 297	Thomas R, Hedges SB. 1993. A new banded Sphaerodactylus from eastern Hispaniola (Scuamata: Gekkonidae). Herpetologica 49(3): 350-354.
298 299	Uetz P, Freed P, Hosek J. 2020. The Reptile Database, http://reptile-database.org . Accessed on 30 th May, 2020.
300	
301	
302	
303	

PeerJ

304	
305	
306	
307	
308	
309	
310	
311	
312	FIGURES
313 314 315 316 317 318	Figure 1. Map showing the distribution of <i>Sphaerodactylus samanensis</i> . Type locality is indicated by a red star. Localities with previous records are in yellow circles (taken from Thomas and Hedges 1991; and Landestoy <i>et al.</i> 2016) and new collecting sites are in white circles. All of them are named with numbers as follow: 1) 9 km west from Sabana del Mar, 2) Caño Hondo, 3) Cueva Casa Grande, 4) Batey Piedra, 5) Chacuey Abajo, 6) Pueblo Viejo Mine, 7) Cueva de Sanabe.
319 320 321 322 323 324	Figure 2. Color pattern variation in <i>Sphaerodactylus samanensis</i> between Eastern males A) MNHNSD 23.3718 (SVL = 26.3 mm), B) MNHNSD 23.3723 (SVL = 28.6 mm), and females C) MNHNSD 23.3717 (SVL = 27.8 mm); D) MNHNSD 23.3719 (SVL = 27.9 mm); and Western males E) MNHNSD 23.3733 (SVL = 27.5 mm), D) MNHNSD 23.3713 (SVL = 24.8 mm), and females E) MNHNSD 23.3736 (SVL = 27 mm), F) MNHNSD 23.3712 (SVL = 26.9 mm). Photographs by Miguel A. Landestoy.
325 326 327	Figure 3. Variation in the size of gular scales (pointed with black lines) of <i>Sphaerodactylus samanensis</i> . A) Eastern male (MNHNSD 23.3716) from Caño Hondo, B) western male (MNHNSD 23.3734) from Chacuey Abajo. Photographs by Miguel A. Landestoy.
328	
329	

Table 1(on next page)

Voucher codes of *Sphaerodactylus samanensis*'s specimens collected at 6 localities at the Dominican Republic in this study.

Table 1. Voucher codes of *Sphaerodactylus samanensis*'s specimens collected at 6 localities at the Dominican Republic in this study.

Locality	Province Coo	Coordinates (lat, lon)	Alt. (m)	Specimens voucher		
Locality	Flovince	Coordinates (lat, lon)		Males	Females	
Caño Hondo (Los Haitises					MHNHSD 23.3717, 23.3719–20,	
National Park)	Hato Mayor	19.05894, -69.4633	44	MNHNSD 23.3715-16, 23.3718	23.3722, 23.3893	
Cueva Casa Grande	Monte Plata	19.04214, -69.72787	225	MNHNSD 23.3723	MNHNSD 23.3724-26, 23.3894	
	Sanchez				MNHNSD 23.3729-31,	
Batey Piedra	Ramirez	19.06997, -69.90815	35	MNHNSD 23.3895-96, 23.3899	23.3897-98, 23.3900-02	
	Sanchez				MNHNSD 23.3736, 23.3903-04,	
Chacuey Bajo	Ramirez	19.10689, -70.04149	115	MNHNSD 23.3733-35, 23.3905	23.3906-08	
	Sanchez			MNHNSD 23.3699, 23.3706-07,	MNHNSD 23.3697-98,	
Pueblo Viejo Mine	Ramirez	18.92348, -70.15423	195	23.3909	23.3701-05, 23.3910-14	
Cueva de Sanabe (Aniana	Sanchez					
Vargas National Park)	Ramirez	19.00004, -70.23809	257	MNHNSD 23.3713	MNHNSD 23.3712	

Table 2(on next page)

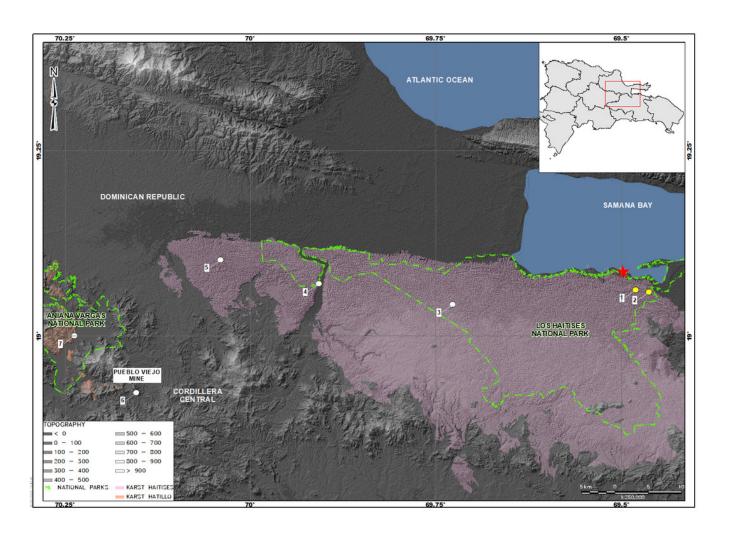
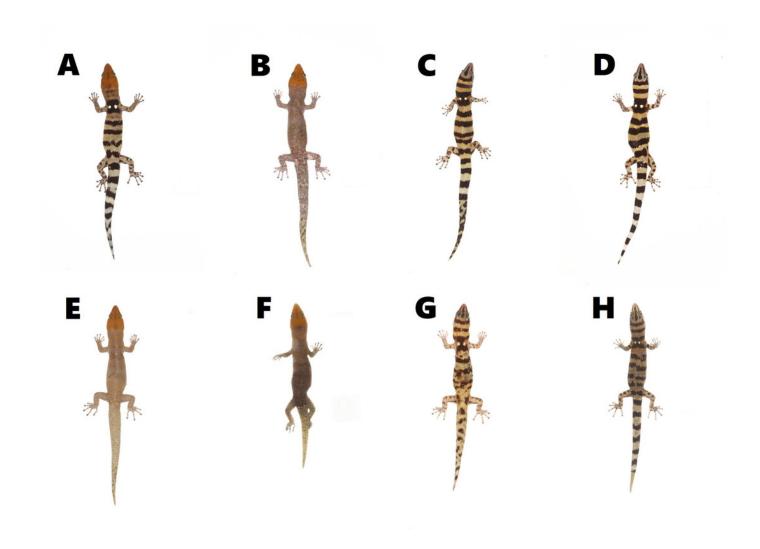

Color pattern, measurements (in mm) and scutellation of both eastern and western populations of *Sphaerodactylus samanensis*.

Table 2. Color pattern, measurements (in mm) and scutellation of both eastern and western populations of *Sphaerodactylus samanensis*.

	Eastern Popul	ation	Western Population		
	Males (n=7)	Females (n=17)	Males (n=9)	Females (n=19)	
Coloration of the Ocular Halo	Pearl/ Bluish pearl	Copper yellow	Pearl blue/Pearl	Pearl yellow/copper yellow	
Scapular ocelli	Present/Absent	Present	Absent	Present	
Coloration of dorsal bands	Dark Brown/ Yellowish brown	Dark brown	_	Dark brown	
SVL (mm)	25.1-28.6 (26.8±1.18)	14.6-28.1 (22.3±5.0)	24.8-28.1 (26.7±0.9)	21.0-29.7 (26.1±2.1)	
Number of head stripes	0-0 (0±0.0)	2-4 (3.8±0.4)	0-0 (0±0)	2-4 (3.8±0.4)	
Number of neck bands	0-1 (0.5±0.5)	1-1 (1.0±0)	0-0 (0±0)	1-2 (1.2±0.4)	
Escutcheon scales (length)	3-4 (3.2±0.4)	0-0 (0±0)	3-5 (3.7±0.6)	0-0 (0±0)	
Escutcheon scales (wide)	10-13 (11.5±0.9)	0-0 (0±0)	10-17 (12.2±2.0)	0-0 (0±0)	
Escutcheon scales (total)	25-32 (28.4±2.5)	0-0 (0±0)	30-39 (35.7±2.9)	0-0 (0±0)	
Number of dorsal bands	0-4 (2.8±1.9)	3-4 (3.1±0.3)	0-0 (0±0)	3-6 (4.3±0.6)	
Number of scales per dorsal band	0-6 (3.8±1.8)	3-7 (5.0±1.2)	0-0 (0±0)	3-3 (3.0±0)	
Number of scales in contact with 2nd infralabial	2.5-5.5 (4.1±	(0.8)	4.5-7	(5.1±0.6)	


Figure 1

Map showing the distribution of *Sphaerodactylus samanensis*. Type locality is indicated by a red star. Localities with previous records are in yellow circles (taken from Thomas and Hedges 1991; and Landestoy *et al.* 2016) and new collecting site

Figure 2

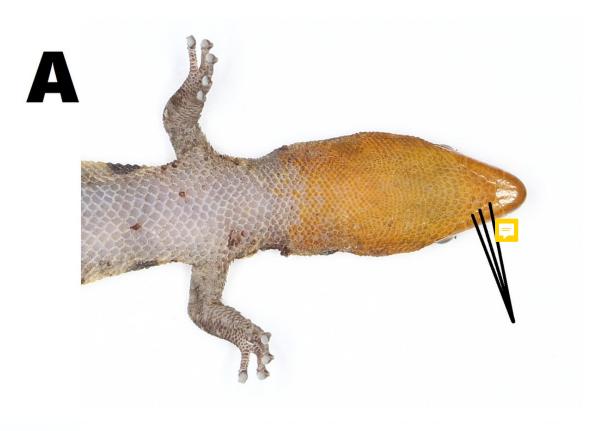

Color pattern variation in *Sphaerodactylus samanensis* between Eastern males A) MNHNSD 23.3718 (SVL = 26.3 mm), B) MNHNSD 23.3723 (SVL = 28.6 mm), and females C) MNHNSD 23.3717 (SVL = 27.8 mm); D) MNHNSD 23.3719 (SVL = 27.9 mm); and Western males E)

Figure 3

Variation in the size of gular scales (pointed with black lines) of *Sphaerodactylus* samanensis. A) Eastern male (MNHNSD 23.3716) from Caño Hondo, B) western male (MNHNSD 23.3734) from Chacuey Abajo. Photographs by Miguel A. Landestoy.

