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ABSTRACT
Evidence was brought forward in England and the USA that Black, Asian, Latino and
Minority Ethnic people exhibit higher mortality risk from COVID-19 than White
people. While socioeconomic factors were suggested to contribute to this trend, they
arguably do not explain the range of the differences observed, allowing for possible
genetic implications. Almost concurrently, the analysis of a cohort in Chinese
COVID-19 patients proposed an association between the severity of the disease and
the presence of the minor allele of rs12252 of the Interferon-induced transmembrane
protein 3 (IFITM3) gene. This SNP, together with rs34481144, are the two most
studied polymorphisms of IFITM3 and have been associated in the past with
increased severity in Influenza, Dengue, Ebola, and HIV viruses. IFITM3 is an
immune effector protein that is pivotal for the restriction of viral replication, but also
for the regulation of cytokine production. Following up on these two developments
in the ongoing SARS-CoV-2 pandemic, the present study investigates a possible
association between the differences in mortality of ethnic groups in England and the
combined haplotypes of rs12252 and rs34481144. The respective allele frequencies
were collected for 26 populations from the 1000 Genomes Project and subgroups
were pooled wherever possible to create correspondences with ethnic groups in
England. A significant correlation (r = 0.9687, p = 0.0003) and a striking agreement
was observed between the reported Standardized Mortality Ratios and the
frequency of the combined haplotype of both reference alleles, suggesting that the
combination of the reference alleles of the specific SNPs may be implicated in more
severe outcomes of COVID-19. This study calls for further focus on the role of
IFITM3 variants in the mechanism of cellular invasion of SARS-CoV-2, their impact
in COVID-19 severity and their possible implications in vaccination efficacy.
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INTRODUCTION
Emerging scientific evidence from international (Kirby, 2020) and UK (Aldridge et al.,
2020) COVID-19 patient reports and death records, indicate a disproportionate effect of
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the novel coronavirus on ethnic minorities. According to CDC (Centers for Disease Control
and Prevention, 2020), Black, Asian and Minority Ethnic (BAME) people are at higher
risk of death from COVID-19. Importantly, an Indirect Standardization of NHS mortality
data in England (Aldridge et al., 2020), revealed that the adjusted for age and region
Standardized Mortality Ratios (SMRs), were highest in Black African, Black Caribbean,
Pakistani, Bangladeshi, and Indian minority ethnic groups. In contrast, White Irish and
White British ethnic groups exhibited a significantly lower risk of death. Similarly, in
the USA (Garg et al., 2020), preliminary data compiled from hospitals in 14 US states,
confirmed the UK study outcomes, showing that African Americans are also
disproportionately affected by COVID-19. Specifically, African Americans represented
33% of COVID-19 hospitalizations, despite only making up 18% of the total population
studied. In a subsequent analysis, among COVID-19 deaths in New York City, for
which race and ethnicity data were available, death rates from COVID-19 among black or
African Americans and Hispanic or Latinos were substantially higher than that of White or
Asian people (Garg et al., 2020).

Several reasons have been proposed to explain these ethnic discrepancies in COVID-19
mortality risk arising from these preliminary studies. Chronic pre-existing conditions,
such as cardiovascular diseases (CVD), diabetes, hypertension, obesity, etc. are more
common in minorities compared to Caucasian populations and have all been associated
with adverse outcomes in COVID-19 (Centers for Disease Control and Prevention, 2020;
Kirby, 2020). However, race disparities in those diseases are not large enough to fully
explain the COVID-19 death disparity (Aldridge et al., 2020). Factors such as housing
and living conditions, use of public transportation, lack of regular access to primary health,
and occupation-related differences that prohibit the work from home, or require more
frequent and/or close social contact, may have all played an important role in producing
disproportionate death rates among BAME groups (Aldridge et al., 2020; Kirby, 2020;
Niedzwiedz et al., 2020; Khunti et al., 2020). Nevertheless, it is suggested that inequalities
in socioeconomic status parameters do not seem to adequately explain the range of
differences, and in some instances, the extreme variations observed among ethnic
minorities in mortality rates from COVID-19 infection (Kirby, 2020).

As the importance of genetic polymorphisms (SNPs) in the modulation of
individual susceptibility to, and severity of, infectious diseases has been well established
(Chapman & Hill, 2012; Zhao et al., 2018), we turned our focus to two very highly studied
polymorphisms of the interferon-induced transmembrane protein 3 (IFITM3) gene:
rs12252 and rs34481144. IFITM3 encodes an immune effector protein that is pivotal for
restriction of viral replication (Brass et al., 2009) of many enveloped RNA viruses including
HIV-1, influenza A virus (IAV), Ebola and Dengue virus (Brass et al., 2009; Feeley
et al., 2011; Huang et al., 2011; Everitt et al., 2012; Compton et al., 2014). IFITM3 has also
been demonstrated to affect severity of infection and improve the host cellular defenses
against viruses (Brass et al., 2009; Everitt et al., 2012; Compton et al., 2014). Interestingly,
IFITM3 has also been shown to act as a regulator of antiviral immunity that controls
cytokine production to restrict viral pathogenesis, in CMV (Stacey et al., 2017) and Sendai
virus (Jiang et al., 2017). This finding is particularly important since cytokine storm in
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influenza can lead to a rapid progression of the infection in humans (Wang et al., 2014)
and the same observation is also apparent in COVID-19 severe and deadly cases
(Giamarellos-Bourboulis et al., 2020; Blanco-Melo et al., 2020). Moreover, IFITM3 was
found to be explicitly upregulated in SARS-CoV-2 infected cells (Blanco-Melo et al., 2020;
Hachim et al., 2020; He et al., 2020).

The minor allele of rs12252 (C in minus, or G in plus strand orientation) has been
associated with rapid progression of acute HIV infection (Zhang et al., 2015), with the
severity of influenza (Zhang et al., 2013) and recently with COVID-19 severity (Zhang
et al., 2020). The minor allele of rs34481144 (A in minus, or T in plus strand orientation)
was previously found to be correlated with increased severity of IAV infection (Allen et al.,
2017). Moreover, the minor allele of rs34481144 is also associated with enhanced
methylation on the IFITM3 promoter of CD8+ T cells, and general transcriptional
repression of the broader locus surrounding IFITM3, which includes several genes known
to be involved in host responses to viral infection (Wellington et al., 2019).

SARS-CoV-2 uses primarily the ACE2 receptor as main point of entry and the host cell
serine protease TMPRSS2 for viral spike (S) protein priming (Hoffmann et al., 2020).
Severe acute respiratory syndrome coronavirus (SARS-CoV), which also uses ACE2 as
a receptor, has been shown to be restricted more efficiently by IFITM1 than by IFITM3,
presenting a different restriction pattern than IAV (Huang et al., 2011). Interestingly,
it was recently shown that TMPRSS2 is specifically allowing evasion of IFITM3 restriction
for bat SARS-Like WIV1 coronavirus (Zheng et al., 2020), opening the possibility for a
similar mechanism in the case of SARS-CoV-2. Further potential involvement of IFITM3
in COVID-19 outcome was revealed in the context of syncytial pneumocytes in severe
cases with extensive lung damage, where it was suggested that the cellular location of
IFITMs 1–3 could be playing a role in syncytia formation (Buchrieser et al., 2020). Indeed,
the accumulation of many direct and indirect layers of evidence linking IFITM3 with
COVID-19 severity, has also led to explicit calls for further investigation of the role of this
highly relevant first-line of cellular defense protein (Zhao, 2020). Following up to the
analysis of COVID-19 NHS mortality data in BAME groups (Aldridge et al., 2020), the
purpose of the present study was to investigate a possible association between the
stand-alone and combined frequencies of the alleles of the IFITM3 gene variants rs12252
and rs34481144, with COVID-19 standardized mortality ratio of ethnic groups in England.

The sole incentive of the current research is to help improve the existing and future
treatment protocols for severe COVID-19 patients, and in no case to provide DNA-based
arguments that may be used to mask existing social inequalities or racism.

METHODS
The Standardized Mortality Ratios (SMR) of ethnic groups in England, adjusted for age
and region, were adopted from the study by Aldridge et al. (2020) in the exact form in
which they were presented. Specific dataset details, including age, region and ethnicity
information, are available at the repository address of the respective publication
(https://discovery.ucl.ac.uk/id/eprint/10096589). The rs12252 (A>G) and rs34481144
(C>T) allele and haplotype frequencies were collected for all available 1000 Genomes
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Project ancestral populations, from LDlink (LDhap tool: https://ldlink.nci.nih.gov/?
tab=ldhap), specifically five major groups, that is, African (AFR), Ad Mixed American
(AMR), European (EUR), East Asian (EAS) and South Asian (SAS), comprising 26
subgroups in total (Machiela & Chanock, 2015) (Table 1). The plus orientation for the
reference and minor alleles was retained throughout this analysis, for better data handling
and in compliance with dbSNP. Combined rs12252_rs34481144 haplotypes were defined
as A_C (H1), G_C (H2), A_T (H3), while G_T haplotype was not represented at all
in the data Rankings were examined by sorting all populations by individual reference
allele (rs12252:A, rs34481144:C) and by combined haplotype frequency ratios
(rs12252_rs34481144: h1_ratio=A_C/(A_T+G_C), h2_ratio=G_C/(A_C+A_T),
h3_ratio=A_T/(G_C+A_C)) (Fig. 1A), and subsequently compared visually to the
reported Standardized Mortality Ratios (SMR) of ethnic groups in England (Figs. 1B
and 2). Additionally, an attempt was made to correlate directly the two rankings, that is,
SMR and IFITM3 haplotype frequencies by specific reported ethnic subgroup. UK
demographics sources were therefore consulted (Office for National Statistics, UK, 2011;
Chanda & Ghosh, 2012) in order to pool, wherever possible, the ancestral subgroups to
the reported ethnic groups in England. With all reservations tied to the inevitable
discrepancies of this type of simplified socio-genetic correspondences, the following pools
were formed: [AFR-YRI, AFR-LWK, AFR-GWD, AFR-MSL, AFR-ESN]>“African”,
[SAS-STU, SAS-GIH, SAS-PJL]>“Indian”, [EAS-CDX, EAS-CHS, EAS-CHB]>“Chinese”,
[EUR-CEU, EUR-IBS, EUR-TSI, EUR-FIN]>“White Other” (see Table 1 for full subgroup

Figure 1 Panels showing rs12252 and rs34481144 allelic frequencies vs Standardized Mortality Ratios in England. (A) Comparison of h1 [A_C/
(A_C+G_C): blue line], h2 [G_C/(A_T+A_C): green line] and h3 [A_T/(A_C+G_C): orange line] haplotype ratios, for all available ethnic subgroups
in the 1000 Genomes Project. The fluctuation of frequencies of the major alleles rs12252:A (yellow dotted line) and rs34481144:C (green dotted line)
follows a trend similar to h3 and h2 ratios, respectively. On the contrary, h1 ratio shows a unique trend. (B) Standardized Mortality Ratio (SMR) of
ethnic groups in England, adjusted for Age and NHS Region. Full-size DOI: 10.7717/peerj.10402/fig-1
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descriptions and Table 2 for pooled subgroups and correspondences to ethnic minorities).
A pool for the reported Pakistani group failed to form from ancestral populations, as the
Punjabi (SAS-PJL), being the only related subgroup, account roughly for just 45% of
Pakistan’s demographics, while in London the community includes comparable numbers
of Punjabis, Pathans and Kashmiris, with small communities of Sindhis and Balochis
(Department for Communities & Local Government, UK, 2009). Moreover, the Punjabi
form also a considerable part of Indians’ pool (at least 40% of Delhi’s total population),
therefore a single-ended direct correspondence between Punjabi and British Pakistani was
not warranted in this case. Indian Telugu (SAS-ITU) were not included in Indians’ pool, as
no demographic report was suggestive of comparable numbers to the other 3 included
subgroups, for people of Indian origin in England. The same rationale applied for the
non-inclusion of AFR-ASW (Americans of African Ancestry in SW USA) in the African
pool. The haplotype frequencies were simply averaged within pooled groups, and both the
ratios and SMR were normalized to the White British result (represented uniquely by
EUR-GBR subgroup) (Table 2).

RESULTS
We extracted rs12252 and rs34481144 allele frequencies of various ethnic groups from the
1000 Genomes Project, in order to examine whether the distribution of any one of the

Figure 2 Vertical stacking showing increasing rankings of SMR in England, rs12252_ rs34481144 haplotype ratios and allele frequencies for
the various Major groups and Subgroups (highest on top). East Asian subgroups (in green) present the highest ranking among all 1000 Genomes
Project populations in h2 ratios and rs34481144:C frequencies (5th column from left and second to last column), while European subgroups (in blue)
present the highest ranking in h3 ratios and rs12252:A frequencies (7th & 9th column from left). H1 haplotype ratio ranking (3rd column from left)
presents an almost identical alignment with the reported SMR of major groups in England (1st column from left). Note: ranked items are
color-tagged by their major group, that is, continent of origin: AFR, SAS, EAS, EUR—no subgroup pooling is shown here (see Table 2 for pooling
details). Full-size DOI: 10.7717/peerj.10402/fig-2
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combined haplotypes is directly correlated with the reported SARS-CoV-2 related SMR in
England. At first we compared the trend lines of reference allele frequencies with those of
combined haplotype ratios (Fig. 1A). The fluctuation of frequencies of major alleles
rs12252:A and rs34481144:C follows a trend similar to h3 and h2 ratios, respectively,
while h1 ratio shows a unique trend. The ranking that visually appeared in line with
the reported SMR, adjusted for age and NHS region (Fig. 1B), was produced by the h1
ratio. Two levels of SMR vs haplotype comparisons were applied: first, we compared at the
level of major groups (i.e., un-pooled comparison: EAS vs SAS vs EUR vs AFR, see Fig. 2),
second, at the level of ethnic subgroups, wherever possible (pooled comparison, see
Table 2). For the evaluation of un-pooled rank correlation we considered two scenarios.
First, we considered all 10 ethnic groups with an available SMR (Fig. 2) and we observed an
almost perfect alignment with h1 ratios, which corresponds to a permutation event of
10 items, with 1/3,628,800 chance to occur randomly, corresponding to p = 3 × 10−7 (5σ).
Secondly, we considered only 5 aligned items, specifically the sequence of (a) African

Table 1 Detailed allele and haplotype frequencies per ethnic subgroup derived from the 1000 Genomes Project for rs12252 and rs34481144.

Major group Subgroup rs12252:A rs12252:G rs34481144:C rs34481144:T A_T A_C G_C

EUR CEU (Utah residents from north and west Europe) 0.955 0.045 0.505 0.495 0.49 0.46 0.05

EUR TSI (Toscani in Italia) 0.967 0.033 0.617 0.383 0.38 0.58 0.03

EUR FIN (Finnish in Finland) 0.919 0.081 0.505 0.495 0.49 0.42 0.08

EUR GBR (British in England & Scotland) 0.989 0.011 0.440 0.560 0.56 0.43 0.01

EUR IBS (Iberian Population in Spain) 0.967 0.033 0.603 0.397 0.40 0.57 0.03

EAS CHB (Han Chinese in Beijing) 0.461 0.539 0.990 0.010 0.00 0.45 0.54

EAS JPT (Japanese in Tokyo) 0.361 0.639 1.000 0.000 0.00 0.36 0.64

EAS CHS (Southern Han Chinese) 0.495 0.505 1.000 0.000 0.00 0.50 0.50

EAS CDX (Chinese Dai in Xishuangbanna 0.521 0.478 0.995 0.005 0.00 0.52 0.48

EAS KHV (Kinh in Ho Tsi Minh ciry, Vietnam) 0.530 0.470 0.985 0.015 0.02 0.52 0.47

AMR MXL (Mexican ancestry from Los Angeles) 0.781 0.219 0.820 0.180 0.18 0.60 0.22

AMR PUR (Puerto Ricans from Puerto Rico) 0.889 0.111 0.702 0.298 0.30 0.59 0.11

AMR CLM (Colombians from Medelin, Colombia) 0.925 0.074 0.681 0.319 0.32 0.61 0.07

AMR PEL (Peruvians from Lima Peru) 0.659 0.341 0.900 0.100 0.10 0.56 0.34

SAS GIH (Gujarati Indian from Houston Texas) 0.835 0.165 0.806 0.194 0.19 0.64 0.17

SAS PJL (Punjabi from Lahore, Pakistan) 0.823 0.177 0.812 0.188 0.19 0.64 0.18

SAS BEB (Bengali from Bangladesh) 0.837 0.163 0.831 0.169 0.17 0.67 0.16

SAS STU (Sri Lankan Tamil from the UK) 0.868 0.132 0.735 0.265 0.26 0.60 0.13

SAS ITU (Indian Telugu from the UK) 0.897 0.103 0.789 0.211 0.21 0.69 0.10

AFR ASW (Americans of African Ancestry in SW USA) 0.697 0.303 0.861 0.139 0.14 0.56 0.30

AFR ACB (African Carribeans in Barbados) 0.776 0.224 0.906 0.094 0.09 0.68 0.22

AFR ESN (Esan in Nigera) 0.788 0.212 0.990 0.010 0.01 0.78 0.21

AFR MSL (Mende in Sierra Leone) 0.753 0.247 0.982 0.018 0.02 0.74 0.25

AFR GWD (Gambian in Western Gambia) 0.783 0.217 0.969 0.031 0.03 0.75 0.22

AFR LWK (Luhya in Webuye Kenya) 0.702 0.298 0.985 0.015 0.02 0.69 0.30

AFR YRI (Yoruba in Ibadan, Nigera) 0.667 0.333 0.968 0.032 0.03 0.63 0.33
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groups, followed by (b) South Asian, followed by (c) White Non-British, (d) Chinese, and
finally (e) White British, a permutation event with 1/120 chance to occur randomly, or
p = 0.008. In both cases the correlations proved highly significant. It is noteworthy, that
subgroups EUR-IBS (Iberian Population in Spain) and EUR-TSI (Toscani in Italia),
representative of two countries that suffered higher death rates than other European
countries, share the highest h1 ratio between all European subgroups. Subsequently, in
order to assess the potential strength of the theorized association, the rankings of pooled h1
ratios and SMR, per group, were linearly and significantly correlated, with Pearson
r = 0.9687, p = 3 × 10−4 (>3.5σ) (Fig. 3).

DISCUSSION
The calculated level of correlation appears to be remarkable, considering the possible
discrepancies in the pooling of the available ancestral groups, but also the expected
multi-parametric causes of the observed COVID-19 SMR in England’s ethnic groups
(as previously described, potentially involving prior health status, income level, household
density, behavioral biases, questionable attribution of death to COVID-19, etc.). On one
hand, the alignment of ethnic group rankings between SMR and un-pooled h1 ratio, is
less than 1/120 probable to occur randomly at the worst case, and less than 1 in 3.6 million
probable to occur randomly at the best case. In other words, if one hypothesizes that
the reported SMR rankings are solely due to socioeconomic factors, then one would
conclude that socioeconomic factors would be in perfect alignment with h1 ratios.
The possibility of the above to occur seems highly unlikely, thus pointing to the fact
that differential allele frequencies play a potentially important role in the reported SMR.

Table 2 Pools of ethnic subgroups from the 1000 Genomes Project were formed to emulate the ethnic populations that are reported
in England.

Ethnic
group

SMR-White
British
Normalized

h1 ratio A_C/
(A_T+G_C)—
White British
Normalized

1000 Genomes
Populations

rs12252:A rs12252:G rs34481144:C rs34481144:T A_T A_C G_C rs12252_
rs34481144 : h1
ratio A_C/
(A_T+G_C)

African 3.68 3.38 AFR-YRI, AFR-LWK,
AFR-GWD, AFR-MSL,
AFR-ESN

0.74 0.26 0.98 0.02 0.02 0.72 0.26 2.54

Bangladeshi 2.74 2.69 SAS-BEB 0.84 0.16 0.83 0.17 0.17 0.67 0.16 2.02

Caribbean 2.51 2.86 AFR-ACB 0.78 0.22 0.91 0.09 0.09 0.68 0.22 2.15

Indian 1.93 2.23 SAS-STU, SAS-GIH,
SAS-PJL

0.84 0.16 0.78 0.22 0.22 0.63 0.16 1.68

White other 1.53 1.38 EUR-CEU, EUR-IBS,
EUR-TSI, EUR-FIN

0.95 0.05 0.56 0.44 0.44 0.51 0.05 1.04

Chinese 1.30 1.28 EAS-CDX, EAS-CHS,
EAS-CHB

0.49 0.51 1.00 0.01 0.00 0.49 0.51 0.96

White
British

1.00 1.00 EUR-GBR 0.99 0.01 0.44 0.56 0.56 0.43 0.01 0.75

Average 2.10 2.12 0.80 0.20 0.78 0.22 0.21 0.59 0.20 1.59

Note:
Column 1 shows Ethnic groups in England, while column 4 shows the selected pooling for each Ethnic group. Allele (columns 5–8 from left) and haplotype (columns 9–11
from left) frequencies, as well as h1 ratio (last column) were re-calculated for each pool. Both the h1 ratio [A_C/(A_T+G_C)] and the Standardized Mortality Ratios
(SMR) were normalized by the corresponding numbers of White British (columns 2 and 3 from left), to allow for a direct comparison.
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On the other hand, the level of correlation (>3.5σ) between SMR and pooled h1 ratio,
confirms the previous alignment and appears strong enough to suggest a possible causal
link, albeit in this case, the pooling process may have introduced some discrepancies.
The potential introduction of pooling discrepancies is expected and is impossible to
quantify given the available data. However, the purpose of the pooled analysis was mainly
to reinforce the primary association between IFITM3 and COVID-19 severity rather than
to (indirectly) infer causality. Considering the parametric uncertainty of the pooled
analysis it is probably inadequate to suggest a causal link, based on the strength of the
observed correlation alone. However, taken together, this set of results constitutes a
clear and valid starting point for designing further investigations regarding the role of
IFITM3 in COVID-19 severity and appears as one more piece of evidence towards this
direction. Therefore, the main point of this analysis is that the two examined SNPs should
preferably henceforth be studied under a combined haplotype and not separately, as was
performed so far for SARS-CoV-2, and a great variety of other viruses.

Before proceeding to the discussion of the implications of the above conclusion, it is
interesting to also view the present observations in the context of data from the USA.
A preliminary analysis of death rates from COVID-19 in New York City shows 92.3 deaths
per 100,000 population among black or African American people, followed by Hispanic
or Latino people (74.3), then by white (45.2) or Asian (34.5) people (Kirby, 2020).
The same trend was clearly displayed in the initial ranking by h1 ratio (Fig. 1A), with

Figure 3 Correlation between pooled h1 haplotype ratios and Standardized Mortality Ratios (SMR),
with Pearson r = 0.9687, p = 3 × 10−4. Full-size DOI: 10.7717/peerj.10402/fig-3
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American populations (AMR) occupying the middle of the chart, between African and
European/Asian populations. Interestingly, the reported lower death rate of Asian people
compared to white people in the New York data, which represents an inversion of the
respective numbers in England (Fig. 1B), could be justified by the fact that White
British likely constitute a smaller proportion of the reported “white phenotype” in the USA
(1.5 M in USA & Canada) and likewise, Japanese people possibly constitute a bigger
proportion of of the reported “Asian phenotype” in the USA (>1.5 M). Both White British
(EUR-GBR) and Japanese (EAS-JPT) ethnic subgroups have among the lowest h1 ratio
between all subgroups.

The fact that the proposed risk haplotype (A_C) involves the reference alleles of both
studied SNPs, appears as counterintuitive. Especially so, since it has been suggested after
analysis of a Chinese cohort, that it is the minor allele rs12252:G that is linked to increased
COVID-19 severity (Zhang et al., 2020). In fact the minor allele rs12252:G was linked to
worse outcome in almost every related study, such as increased influenza severity (Zhang
et al., 2013), or more rapid HIV progression (Zhang et al., 2015), although always observed
in Chinese patients and not in European or American cohorts. This is noteworthy, as
minor allele rs12252:G is found frequently in Chinese populations (roughly 50%), but is on
the contrary rare in European populations (1–8%), or infrequent in South Asian (10–18%),
or African groups (21–33%). Interestingly, an inverted trend is observed in the other half
of the discussed A_C haplotype, with namely rs34481144:T being rare in Chinese
populations (1–2%), rare or infrequent in African groups (2–14%), but fairly frequent in
European groups (38–56%). Rs34481144:T was found to correlate strongly with increased
influenza severity in three independent cohorts (Allen et al., 2017). These three
independent cohorts, however, did not confirm the link between rs12252:G and increased
influenza severity, as was suggested in Chinese cohorts. To add to the controversy of the
possible antiviral effects linked to rs12252, a detailed study on 293T cells of the putative
truncated variant Δ1–21 that is theorized to result from the rs12252:G mutant, showed
increased potential to restrict HIV replication and therefore an advantage compared to the
complete IFITM3 protein carrying the reference allele (Compton et al., 2016). However,
this truncated version was not observed later in the blood of IAV or HIV patients
(Randolph et al., 2017;Makvandi-Nejad et al., 2018), while rs12252:G was, on the contrary,
found to enhance HIV-1 infection in Chinese patients (Zhang et al., 2015). The reports for
the functional role and consequences of minor rs12252:G allele are therefore conflicting
and thus inconclusive. Although it is shown that Δ1–21 variant redistributes the protein to
the plasma membrane, by prohibiting the phosphorylation of residue Y20 that produces a
signal for endocytosis (Jia et al., 2012), a functional link between Δ1–21 and rs12252:G has
yet to be established. In the other examined SNP, the minor rs34481144:T allele is
currently believed to favor the binding of transcriptional repressor CTCF, also known as
CCCTC-binding factor, at IFITM3 promoter, seemingly leading to an inactive IFITM3
profile (Allen et al., 2017). However, the exact functional effect of rs34481144:T is still not
well understood.

As part of the IFITM family of proteins, one of the evolutionary ancient first lines of
antiviral cellular defenses, the localization in endosomal or lysosomal membrane, or at the
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surface, for example, of CD4+ T cells, and the exact antiviral mechanism of IFITM3, is
regulated by many different post translational modifications, mainly palmitoylation,
ubiquitination and phosphorylation. It is shown that genotypic variants of IFITM3 play
a role in diversifying a host’s potential antiviral repertoire, in conjunction with selective
post translational modifications, and therefore should not be considered de facto as
risk factors but rather as trade-offs in antiviral specificity (Compton et al., 2016).
This is further supported by the pronounced variability of rs12252:A and rs34481144:C
frequencies, which is seen between the major groups in 1000 Genome Project populations,
but not as much between subgroups of the same major group. Indeed, the observed
spectrum of h1 haplotype prevalence across ancestral populations seems consistent with
an evolutionary adaptation to specific immunological challenges and local factors of
environmental pressure. In the case of SARS-CoV-2, the observed strong correlation of
reference haplotype H1 (A_C) with increased morbidity in ethnic groups in England,
could be pointing at a specific antiviral advantage conferred by the presence of each
minor allele. However, since both minor alleles are not observed simultaneously
(haplotype G_T is not represented), it is harder to conceive an independently
equivalent beneficial effect by each distinct minor allele in the mixed reference/minor
haplotypes H2 (G_C, here minor allele > rs12252:G) and H3 (A_T, here minor allele >
rs34481144:T). Instead, it is more plausible to consider an effective hijacking of IFITM3
by SARS-CoV-2 in order to infect the cell, or to replicate, or to spread, or involving more
than one of these phases. Indeed, there are known examples of similar hijacking, for
example by the coronavirus that causes the common cold, HCoV-OC43 (Zhao et al., 2014),
or by human cytomegalovirus (HCMV) (Xie et al., 2015). More specifically for HCoV-
OC43, it was shown that all three types of interferons, IFN-a, IFN-γ, and IFN-λ, actually
enhance HCoV-OC43 infection, while IFITM3 possibly promotes the low-pH–activated
membrane fusion between the viral envelope and endosomal membranes. In contrast,
human cytomegalovirus hijacks BST-2/tetherin to promote its entry into host cells and
co-opts viperin to facilitate its replication, with IFITM3 facilitating the formation of
the virion assembly compartment, but the virus is otherwise less sensitive to IFNs.
In the case of SARS-CoV-2, it is therefore not inconceivable that if there is in fact a
pro-infection role of IFITM3, that the virus could have evolved to exploit the most
abundant haplotype A_C (59% abundance across all populations). The different effect
between the H1 haplotype and H2/H3 haplotypes most probably involves the cellular
distribution of IFITM3, which is mainly controlled by post-translational modifications,
which in turn may be influenced by key polymorphisms such as the two examined here.
Of great relevance, in this context, is the finding that plasma membrane localization of
IFITM3 enhances SARS-CoV-2 infection, while endocytosis of IFITM3 effectively restricts
the virus (Shi et al., 2020). The same study confirms an even greater enhancement of
SARS-CoV-2 in bypassing IFITM3 defense via TMPRSS2 activation of plasma membrane
fusion, and reports compatibility with HCoV-OC43 mode of enhanced infection.
Moreover, in another study by Bozzo et al. (2020), IFITM3, together with IFITM2, were
shown to boost SARS-CoV-2 infection, rather than restrict it, both in the absence and
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presence of interferon, which is consistent with our current suggestion of viral hijacking of
IFITM3.

The recent suggestion that rs12252:G is the risk allele in a n = 80 COVID-19 cohort
with Chinese patients (Zhang et al., 2020), appears to challenge our conclusions, claiming
the inverse effect. Considering that the cohort took place at Beijing You’an Hospital,
if it is safe to assume that patients belonged to EAS-CHB group (Han Chinese in Beijing),
the subgroup with the highest frequency in rs12252:G (54%), then an alternative
interpretation of the result may be possible. With 28/80 patients hospitalized with
pneumonia being homozygotes rs12252:GG, 37/80 being heterozygotes rs12252:AG and
15/80 being homozygotes rs12252:AA, this results to 58% (93/160) abundance for the
G allele (minor) and 42% (67/160) abundance for the A allele (reference). As the prior
probability for the G allele was as high as 54%, the above result appears inconclusive
(i.e., 58% observed vs 54% expected for rs12252:G) and therefore the suggestion that
rs12252:G alone is a COVID-19 severity risk allele seems unfounded in this case. The same
conclusion is reached, with whichever possible mix of the 3 available Chinese subgroups
from 1000 Genomes Projects (EAS-CHB, EAS-CHS, EAS-CDX), as they all show high
rs12252:G frequencies (0.47–0.54), surpassed only by the Japanese subgroup (EAS-JPT,
0.64). In the case where heterozygote rs12252:AG (37/80 or 46% abundance) is
expected to behave similarly to homozygote rs12252:AA (19%), so that homozygote
rs12252:GG (35%) appears as the risk genotype, then a chi-square statistic would
report a non-significant p = 0.36, when q (frequency of rs12252:G) = 0.54 and q2 = 0.29
according to Hardy-Weinberg equilibrium, or borderline significant p = 0.04, when
q (frequency of rs12252:G) = 0.47, with q2 = 0.22. Therefore, it is equally unsafe to associate
homozygote rs12252:GG with COVID-19 severity.

It is acknowledged that the conclusions of the present investigation take into
consideration only allele frequencies and not direct genotyped data. Nevertheless, allele
frequencies from large sequencing studies, such as the 1000 Genomes project, are deemed
important to be taken into account when available, in order to provide further insight
and direction to studies based exclusively on genotypic analysis. In further support to
the above, an independent study that compared worldwide COVID-19 mortality statistics
with rs12252 allele frequency information per country (extracted from the PubMed
database), found that rs12252:G was negatively correlated with the SARS-CoV-2 mortality
rate (p = 0.0008), in agreement with our current outcomes (Pati et al., 2020).

CONCLUSION
The role of the examined IFITM3 variants in the severity of COVID-19 should be
elucidated, by in vitro investigation of the effect of H1 (A_C), vs H2 (G_C), vs H3 (A_T)
rs12252_rs34481144 haplotypes in SARS-CoV-2 infectivity and viral spread. Related in
silico investigations should include the examined combined haplotype in their analysis and
consider non-additive interactions. It is notable how various ongoing GWAS studies
(The COVID-19 Host Genetics Initiative, 2020; 23andMe, 2020) did not confirm in their
meta-analysis some other independently established genetic variant effects, which are
otherwise broadly accepted by the scientific community as influencing COVID-19 severity,
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such as the ABO blood group (Li et al., 2020; Wu et al., 2020), or APOE e4 genotype
(Kuo et al., 2020). If functional differences between the examined IFITM3 haplotypes are
shown to produce distinct profiles of COVID-19 progression in severe patients, then an
improved understanding of the underlying mechanisms may allow more adequate or
personalized treatment protocols. Last but not least important, is the need for investigating
the examined variant implications in raising an effective immune response after future
vaccination against SARS-CoV-2, as it was recently demonstrated that homozygote
rs12252:GG, actually reduces the level of antibody response after influenza vaccination
(Lei et al., 2020). It could be important to verify whether this also stands for the upcoming
SARS-CoV-2 vaccines, and whether a reduced antibody response could be instead elicited
in this case by the major allele (rs12252:A), as was suggested throughout our analysis
regarding COVID-19 severity. In conclusion, this study (a) presented one more piece of
evidence associating IFTM3 variants with the severity of COVID-19, (b) suggested that the
two most highly studied IFITM3 polymorphisms should be considered as a combined
haplotype, and (c) is calling for further research focus on this important first line of cellular
antiviral defense.
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