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ABSTRACT
Motile cryptofauna inhabiting coral reefs are complex assemblages that utilize the
space available among dead coral stands and the surrounding coral rubble substrate.
They comprise a group of organisms largely overlooked in biodiversity estimates
because they are hard to collect and identify, and their collection causes disturbance
that is unsustainable in light of widespread reef degradation. Artificial substrate units
(ASUs) provide a better sampling alternative and have the potential to enhance
biodiversity estimates. The present study examines the effectiveness of ASUs made
with defaunated coral rubble to estimate the diversity of motile cryptic crustaceans in
the back-reef zone of the Puerto Morelos Reef National Park, Mexico. Species
richness, Simpson’s diversity index, Shannon–Wiener index and the composition of
assemblages were compared between ASUs and samples from the surrounding coral
rubble substrate. A combined total of 2,740 specimens of 178 different species,
belonging to five orders of Crustacea (Amphipoda, Cumacea, Isopoda, Tanaidacea
and Decapoda) were collected. Species richness was higher in the surrounding
coral rubble and Shannon–Wiener and Simpson indexes were higher in ASUs.
Species composition differed between methods, with only 71 species being shared
among sampling methods. Decapoda was more speciose in ASUs and Peracarids
in the surrounding coral rubble. Combining the use of ASUs with surrounding rubble
provided a better inventory of motile cryptic crustacean biodiversity, as 65% of the
species were represented by one or two specimens.

Subjects Biodiversity, Ecology
Keywords Coral reefs, Survey methods, Biodiversity, Peracarids, Decapods, Rubble

INTRODUCTION
Estimating the biodiversity of coral reefs is challenging as many invertebrate species are
rare, small, and inhabit microhabitats that are difficult to access. This is especially true
of cryptofauna, which are a major component of the biodiversity of coral reefs that are
hard to estimate (Reaka-Kudla, 1997; Small, Adey & Spoon, 1998), with the subphylum
Crustacea being one of the most abundant and speciose groups. Its representatives occupy
cracks, crevices and cavities within the reef, ranging from a few millimeters to several
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centimeters in diameter, including coral framework, bioerosion galleries, and the
interstices between large clasts in deposits of skeletal rubble (Hutchings & Weate, 1977;
Peyrot-Clausade, 1980; Reaka-Kudla, 1997). Skeletal rubble is common on coral reefs
that are impacted by tropical cyclones and is generated when storm and hurricane waves
destroy live coral stands on the shallow inner shelf, and deposit the fragmented corals as a
layer of coarse rubble covering the shallow reef zones (Blanchon, Jones & Kalbfleisch,
1997). In Caribbean fringing reefs, coral sand and rubble produced during these events is
deposited mainly over the crest and the back-reef causing a retrograde accretion through
time (Blanchon et al., 2017).

Skeletal rubble deposits are reported to be colonized by cryptic crustaceans in as little as
2–4 weeks (Takada, Abe & Shibuno, 2007), as they provide microhabitats, feeding areas,
and protection against predation (Moran & Reaka-Kudla, 1991; Buhl-Mortensen et al.,
2009; Humphries, La Peyre & DeCossas, 2011). Yet cryptic crustaceans inhabiting coral
rubble have been largely overlooked in biodiversity estimates because individuals are hard
to collect and identify. Furthermore, their collection is commonly destructive and involves
disturbance to the collection site, which is incompatible with coral reef health and
prohibited in marine protected areas.

Artificial substrate units (ASUs) are fabricated structures that mimic the characteristics
of natural habitats (Walker, Schlacher & Schlacher-Hoenlinger, 2007). Their design can
provide high spatial diversity, they are easy to place, recover, and relocate, and can provide
a standardized sampling effort, allowing direct comparison between different sites
(Chapman, 2002; Takada, Abe & Shibuno, 2007; Baronio & Bucher, 2008; Takada et al.,
2016). ASUs can also be tracked over time to study recruitment and succession processes
(Perkol-Finkel & Benayahu, 2005), and the response of biota to environmental gradients
or short-term disturbances (Walker, Schlacher & Schlacher-Hoenlinger, 2007).

Several types of ASUs have been developed to study the biodiversity of hard bottom
marine habitats (Plaisance et al., 2011; Enochs et al., 2011; Takada et al., 2016). Artificial
Reef Matrix Structures, for example, are ASUs made of affordable materials which are
designed to mimic large head corals (Zimmerman & Martin, 2004). By contrast, ASUs
designed to study motile cryptofauna diversity commonly employ mesh trays filled
with defaunated coral rubble, which is reported to have the highest species richness,
compared to live or recently dead coral (Enochs & Manzello, 2012). This type of ASU
has been employed on Pacific reefs (Enochs et al., 2011; Takada, Abe & Shibuno, 2012;
Takada et al., 2016), but has been used to a lesser extent in the Caribbean, despite the
fact that coral rubble is an abundant substrate and plays an important role in harboring
diverse cryptofaunal communities, including fish (Choi & Ginsburg, 1983; Gischler &
Ginsburg, 1996; Valles, Kramer & Hunte, 2006). In order to determine their efficiency,
however, data derived from their employment needs to be compared with data obtained
through other sampling methods.

In this study, we evaluate the efficiency of ASUs made with plastic mesh-bags filled
with defaunated coral rubble as a means of obtaining the crustacean motile cryptofauna
diversity and improve the species inventory in the back-reef zone of a Mexican Caribbean
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reef, where the diversity of cryptic crustaceans in coral rubble has been reported previously
(Monroy-Velázquez, Rodríguez-Martínez & Alvarez, 2017).

MATERIALS AND METHODS
Study site
The study was carried out in the back-reef zone of the Bonanza reef site (20�57′58″ N,
086�48′27″ W; Fig. 1A), within the Puerto Morelos Reef National Park, in the Mexican
Caribbean. The site is characterized by well-developed back-reef and crest zones, and a
reef-front with limited structural relief and only small (<50 cm) scattered coral colonies
(Jordán-Dahlgren, 1979). Between the reef and the shore, lies a reef lagoon (~2.5 km wide)
colonized by seagrasses and macroalgae. The back-reef environment at Puerto Morelos
is the main zone of active coral growth at present and is dominated by Acropora
palmata, Orbicella spp., Pseudodiploria spp., Siderastrea siderea, Agaricia agaricites, and
Porites astreoides (Caballero-Aragón et al., 2020), whereas the crest zone is dominated by

Figure 1 Study area and method. Study area in the northeastern Caribbean coast of the Yucatan
Peninsula: (A) Google Earth image showing the location of Bonanza reef site; (B) Coral rubble collected
from the beach; (C) Artificial substrate unit placed inside a vented plastic crane in the back-reef at ~3 m
deep; (D) Artificial substrate unit anchored to the seafloor with a concrete block; (E) Scattered coral
rubble in the back-reef zone. Map data: SIO, NOAA, U.S. Navy, NGA, GEBCO; Image; Landsat/
Copernicus. Full-size DOI: 10.7717/peerj.10389/fig-1
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A. palmata and Millepora complanata (Jordán-Dahlgren, 1979). After tropical storms
and hurricanes, a large amount of skeletal detritus from these coral species accumulates in
the back-reef. Based on historical evidence, 27 hurricanes have passed within 50 km of the
town of Puerto Morelos between 1852 and 2019, with Hurricanes Gilbert (1988) and
Wilma (2005) being the most intense (National Hurricane Center, 2020). The site is also
under the influence of trade winds, which are interrupted by mild cold fronts for periods
of 3–10 days in the winter (Ruiz-Rentería, Van Tussenbroek & Jordán-Dahlgren, 1998).
The Yucatan current flows northward along the narrow shelf and, during the trade wind
season, its superficial waters are transported into the reef area. Monthly average sea surface
temperature ranges from 25.1 to 29.9 �C (Rodríguez-Martínez et al., 2010).

Artificial substrate unit design
The artificial substrate unit (ASU) was designed using a plastic tray (50 cm high by
40 cm wide) within which was placed a mesh bag (with a 35 mm mesh) filled with 3 kg of
coral rubble (collected from the beach behind to the study site and dried for 5 days to
ensure that it was uncolonized; Fig. 1). The coral rubble selected was naturally porous and
ranged in diameter from 5 to 20 cm (Fig. 1B). The crate was anchored with a concrete
block to prevent its displacement by waves and currents (Fig. 1C); the block holes
were open to the surface, allowing the recruitment of cryptofauna (Fig. 1D). Using
scuba, two ASUs were placed on the seafloor of the back-reef zone at a depth of 3 m, in the
area where coral rubble accumulates after storms and hurricanes. These ASUs were
replaced every 2–3 months with fresh rubble (May, August, and November of 2013,
and January of 2014); this period was selected based on the studies of Takada, Abe &
Shibuno (2007) who showed that a period of 2–4 weeks is sufficient for the establishment
of cryptofauna on coral reefs. For retrieval, each ASU was placed into a plastic bag to
prevent specimen loss. At the same time, 3 kg of the same-sized coral rubble was collected
in-situ from the area surrounding the ASU with an area no larger than 9 m2 (Fig. 1E).
Once in the boat, both bagged samples were placed in buckets containing seawater and
immediately transported to the laboratory. In total eight samples were obtained from ASUs
and eight from coral rubble collected in situ throughout the study. All surveys were
conducted under permit DGOPA.00008.080113.0006 granted by SAGARPA (Agriculture,
Natural Resources and Fisheries Secretariat) to F. Alvarez.

Laboratory work
In the laboratory, the coral rubble obtained from the ASUs and in situ was placed in
separate buckets filled with fresh water to provoke osmotic shock and force organisms out
of their cavities. The residue material was sieved through a 0.5 mm mesh. Organisms
were preserved in 70% ethanol and later identified to the lowest possible taxonomic
level and counted. Identifications followed Suárez-Morales et al. (2004) for Tanaidacea,
Heard, Roccatagliata & Petrescu (2007) for Cumacea, Kensley & Schotte (1989) for Isopoda,
Thomas (1993) and LeCroy (2000, 2002, 2004, 2007) for Amphipoda, and Williams (1984)
for Decapoda.
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Data analysis
Species diversity obtained using the two sampling methods was assessed using Hill
Numbers of the effective number of species (Hill, 1973; Chao et al., 2014), namely species
richness (q = 0), the exponential of Shannon entropy index, or Shannon diversity (q = 1),
and the inverse of the Simpson concentration index, or Simpson diversity (q = 2). Hill
Numbers and curves, and measures of sample coverage, were obtained by means of the
package iNEXT in the R environment (Hsieh, Ma & Chao, 2016). Sample coverage is a
measure of sample completeness that gives the proportion of the total number of
individuals in a community that belong to the species represented in the sample (Hsieh,
Ma & Chao, 2016). Subtracting the sample coverage from unity gives the probability that
the next individual collected belongs to a species not previously collected in the sample
(Hsieh, Ma & Chao, 2016).

To compare species composition between methods, non-metric multidimensional
scaling (NMDS) ordination was employed, using the metaMDS function (Vegan package),
with Bray–Curtis dissimilarity measure and 999 permutations. Assemblage compositions
were computed based on presence/absence of species. Differences in composition
among methods were tested by a permutational multivariate analysis of variance with
9,999 permutations, using the nonparametric ADONIS function of the Vegan package in
the R environment (Oksanen et al., 2013).

The Importance Value Index (IVI) (Curtis & McIntosh, 1951) was used as a proxy to
estimate the relative importance of each taxon within each substrate. The IVI of each taxon
is calculated as IVI = (RA+RF)/2, where RA is relative abundance, calculated from the
number of individuals per taxon with respect to the number of individuals of all species
found in the assemblage, and where RF is relative frequency, estimated as the proportion of
surveys where a taxon is present, normalized to the frequency of all species in the
assemblage. All analyses were done in R 3.6.3 (R Core Team, 2019).

RESULTS
A total of 2,740 specimens belonging to at least 178 species, encompassing five orders of
Crustacea (Amphipoda, Cumacea, Isopoda, Tanaidacea and Decapoda) and 58 families
were identified and recorded throughout the study. Of these, 129 taxa were identified
to species, 39 to genus and ten to higher taxonomic levels. The taxonomic composition of
the samples taken using the two methods is summarized in Table S1. Fifty-five species
(31%) were represented by a single specimen and 60 (34%) by two specimens each.
Forty percent of the species were shared among methods. Decapoda was the most speciose
order, with 57 species, followed by Isopoda (N = 48), Amphipoda (N = 39), Tanaidacea
(N = 18) and Cumacea (N = 16). Three species of Decapoda represent new records for
the Mexican Caribbean (Paguristes hernancortezi, Processa profunda, and Processa
riveroi). Other specimens that were rarely observed in samples, and were not included in
the data analyses, were crustaceans belonging to the class Ostracoda and to the subclass
Copepoda, as well as animals belonging to Mollusca, Polychaeta, and Echinodermata.

In total, 868 specimens of crustaceans, consisting of at least 116 species, were obtained
from the ASUs, and 1,872 specimens, consisting of at least 133 species, were obtained from
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coral rubble collected in situ (Table 1). Species richness was not significantly different
between methods (confidence intervals overlap; Fig. 2) but the identity of the species
differed, showing that both contribute to unique taxa; 45 were exclusive to ASUs and
62 were unique to coral rubble collected in situ. In both methods, over half of the species
were represented by one or two specimens (ASUs = 57%; Coral rubble = 52%). Overall,
Decapoda was more speciose in ASUs, while Isopoda, Amphipoda, Tanaidacea and
Cumacea were more speciose in coral rubble collected in situ (Table 1). Regarding the
number of individuals, Isopoda was the most abundant order in ASUs and Tanaidacea in

Table 1 Number of families, species, and individuals of five Crustacea orders.

Order ASUs Coral rubble Total Species shared

F S N F S N F S N

Amphipoda 17 25 159 15 29 195 19 39 354 15

Cumacea 3 4 11 3 14 21 3 16 32 2

Isopoda 10 29 267 11 39 438 12 48 705 20

Tanaidacea 7 11 244 9 17 1140 9 18 1,384 10

Decapoda 13 47 187 9 34 78 15 57 265 24

Total 50 116 868 47 133 1,872 58 178 2,740 71

Note:
Number of families (F), species (S) and individuals (N) of five orders of Crustacea retrieved from artificial sampling units
(ASUs) and from coral rubble collected in situ in the Bonanza reef unit of the Puerto Morelos Reef National Park in
2013–2014.

Figure 2 Diversity of cryptic crustacea by method. Sample-size-based rarefaction (solid lines) and
extrapolation (dashed lines up to double the reference sample size) curves of motile cryptic crustacean
diversity in artificial sampling units (ASU), in coral rubble collected in situ (CR), and in both methods
combined (Total) based on three Hill’s numbers: (A) q = 0 species richness, (B) q = 1 the exponential of
Shannon’s entropy index, and (C) q = 2 the inverse of Simpson’s concentration index. The 95% con-
fidence intervals (shaded areas) were obtained by bootstraping (300 replications). Reference samples are
denoted by solid markers. Full-size DOI: 10.7717/peerj.10389/fig-2
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coral rubble collected in situ; species of the order Cumacea were rare in samples obtained
by both methods (Table 1).

Shannon and Simpson indexes were significantly higher in ASUs (H′ = 39.4; D = 18.2)
than in coral rubble collected in situ (H′ = 27.3; D = 13.5) (confidence intervals don’t
overlap; Fig. 2). Rarefaction curves of species richness constructed to estimate the
reliability of diversity estimates for both methods (Fig. 3) failed to reach a plateau,
indicating that sample size was insufficient to reliably estimate the total number of species
and thus diversity measurements for each method are conservative (Fig. 2). Estimates
of sample coverage, a measure of sampling completeness, were 0.95 for ASUs, 0.97 for
coral rubble collected in situ, and 0.98 when both methods were combined (Fig 3).

The nMDS plot, based on presence/absence data in Fig. 4, showed no distinct
separation of the cryptic crustacean assemblages in the two methods, as confirmed by
the high stress value (0.1704). Assemblages obtained from coral rubble collected from in
situ samples at different periods were more similar than samples of rubble in ASUs,
nevertheless the samples from both methods overlap for some sampling periods;
ASUs samples from the first and last surveys were more similar to coral rubble samples
collected in situ than to ASUs samples collected in the second and third surveys (Fig. 4).
ADONIS test indicated that the method had a small effect, although it was significant
(R2 = 0.1142, p = 0.0027).

According to the Importance Value Index (IVI), the dominant species differed between
methods. In ASUs, the dominant species were the tanaidacean Chondrochelia dubia
(IVI = 9.5%) and the isopod Cirolana parva (IVI = 6.2%), with other relatively important
species being the amphipod Elasmopus rapax (IVI = 3.5%) and the tanaidacean Apseudes
sp. A (IVI = 3.4%) (Fig. 5). In coral rubble collected in situ, the dominant species
were the tanaidaceans Apseudes sp. A (IVI = 8.6%), Paratanais sp. A (IVI = 7.9%),
Pseudoleptochelia sp. A (IVI = 6.2%) and Chondrochelia dubia (IVI = 5.2%) (Fig. 5).

Figure 3 Sample coverage by method. Coverage-based rarefaction (solid lines) and extrapolation curves
(dashed lines up to double the reference sample size) based on species richness of the motile cryptic
crustaceans in Bonanza reef site in 2013–2014. The 95% confidence intervals (shaded regions) were
obtained by bootstrapping (300 replications). Reference samples are denoted by solid markers.

Full-size DOI: 10.7717/peerj.10389/fig-3
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DISCUSSION
Artificial sampling units (ASUs) made with fresh coral rubble and deployed in different
seasons for short periods of time (2–3 months) are an effective method for improving

Figure 4 Non-metrical multidimensional scaling (nMDS) ordination plot. Non-metrical multi-
dimensional scaling (nMDS) ordination plot based on Bray–Curtis similarities of motile cryptofauna
communities between artificial sampling units (ASUs) and coral rubble collected in situ (CR). Letters
A–D correspond to sampling periods: (A) May 2013, (B) August 2013, (C) November of 2013, and
(D) January 2014. Full-size DOI: 10.7717/peerj.10389/fig-4

Figure 5 Ecological Importance Value Index. Ecological Importance Value Index of cryptic Crustacea
species in artificial sampling units (ASUs) and in coral rubble collected in situ from Bonanza reef site in
2013–2014. The index is based on the relative abundance and frequency of each species with respect to
the assemblage on each substrate. Only species with relative importance above 2% on either of the
substrates are shown. Full-size DOI: 10.7717/peerj.10389/fig-5
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species inventory of motile cryptic crustaceans on Caribbean coral reefs. Using this
method we recorded 116 species of this group during the 1-year study duration at the
Bonanza site, 45 of which were not recorded in the surrounding coral rubble. Nevertheless,
the ASUs failed to record 62 species that were unique to the surrounding coral rubble.
However, the rarefaction curves of species richness for both methods failed to reach a
plateau, indicating that more samples were needed to have a complete inventory.
By combining both ASUs and surrounding rubble samples, we recorded a total of
178 species, with 65% being represented by one or two individuals, and reached a
sample coverage of 98% in our sampling size. The nMDS analyses showed no distinct
separation of the cryptic crustacean assemblages obtained by the two methods, as samples
obtained from ASUs in the first and last surveys overlapped with those obtained from
coral rubble collected in situ. However, ASUs samples from intermediate surveys were
dissimilar to all others suggesting that it would take more ASUs to provide estimates of the
community structure recorded in coral rubble samples, or that ASUs need to be left in
place for longer periods. Further studies are needed to determine at which point in time, or
after how many samples, the two methods would yield similar results.

Our results support the finding of other studies which suggest that sampling of
coral rubble using different techniques would render a higher taxonomic richness (Costello
et al., 2017) and a greater potential for the discovery of new species (Souza, Oliveira &
Almeida, 2012; Paz-Ríos, Simões & Ardisson, 2013). Our ASUs were more effective in
sampling decapods, with 23 out of the 57 species recorded being exclusive to this method,
while the surrounding coral rubble was more effective for recording unique species of
Amphipoda, Cumacea, Isopoda and Tanaidacea, even though some families of these
orders were only sampled by ASUs, including the Amphilochidae and Bateidae, of the
order Amphipoda, and the Munnidae, of the order Isopoda. Decapod families exclusively
found in ASUs were: Hippolytidae, Paguridae, Pilumnidae, Porcellanidae, Spongicolidae
and Thoridae.

Differences between sampling methods in motile cryptic crustacean species richness,
diversity, and assemblage composition could also be explained by the duration of time
that each substrate remained underwater, and thus differences in the composition and
coverage of algal turfs. Peracarids like a layer of turf algae and fine sediment particles on
which to feed, while decapods were more likely recruiting to ASUs for shelter from
predators or could be actively foraging within the ASUs. Coral rubble within ASUs had
low algal turf coverage, as it stayed in the water for only a few months (≤3). Although
biofilms formed by bacteria and microalgae can be formed within hours (Cuba & Blake,
1983), the composition and coverage of the algal assemblage can change significantly
within months (Fricke et al., 2011), as opportunistic filamentous species are replaced by
more competitive fleshy ones and Cyanobacteria (Wanders, 1977; Fricke et al., 2011).
Given that the pattern of succession of algae can shape their communities (Connell &
Slatyer, 1977), the absence, or low coverage, of certain algal species could have inhibited
the colonization or permanence of some of the cryptic crustacean species in the ASUs.
Biofilms, for example, are known to release peptides that induce the settlement of
several species of sessile invertebrate larvae (Johnson et al., 1997) and sessile
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assemblages on coral rubble may later affect the colonization of cryptic motile fauna
(Klumpp, McKinnon & Mundy, 1988; Kramer, Bellwood & Bellwood, 2012). In the coral
rubble collected around the ASUs, the algal-turf cover was higher, increasing habitat
heterogeneity and allowing detritus to be trapped (Danovaro & Fraschetti, 2002).
This possibly favored a higher species richness of peracarids, in particular of tanaidaceans,
which are typically found in early successional stages (Larsen & Shimomura, 2008).

Despite its apparent permanence in back-reef environments, coral rubble cannot be
seen as a static substrate, particularly in shallow reef sites, where it can be periodically
reworked by currents and large wave events during storms, hurricanes, and north
winds, or disturbed by fish feeding and bioerosion, among other factors, thus becoming
periodically available for colonization (Takada, Abe & Shibuno, 2007). All these factors
may drive the distribution and structure of cryptic assemblages (Choi & Ginsburg, 1983;
Meesters et al., 1991) and contribute to the maintenance of high species diversity, by
avoiding competitive exclusion and facilitating the colonization of less competitive species
(Enochs et al., 2011). A higher peracarid species richness would likely be obtained by
increasing the number of ASUs per survey and allowing the artificial substrate to become
covered by an algal matrix before deployment.

The dominant cryptic crustacean species, as obtained by the IVI, differed between
sampling methods. Coral rubble substrates were dominated by tanaids (Apseudes sp.,
Paratanais sp., Pseudoleptochelia sp. and Chondrochelia dubia), while in ASUs, C. dubia
was co-dominant with isopod Cirolana parva, and the amphipod Elasmopus rapax:
these species were probably opportunistic colonizers of new habitat space. Juveniles
and ovigerous females of E. rapax, and decapods (families Alpheidae and Mithracidae)
were observed in ASUs throughout the study. The dominant species in ASUs were
previously reported as abundant in coral rubble substrates on the Puerto Morelos
reef (Monroy-Velázquez, Rodríguez-Martínez & Alvarez, 2017; Winfield et al., 2017),
suggesting that, despite their artificial nature, ASUs were not only colonized by some of
the most abundant reef species, but also by rare ones too. More studies are needed to
determine if ASUs have an effect on the abundance, life stage, and sizes of the individuals
recruited.

Our findings show that when assessing the effectiveness of ASUs on coral reefs, or
other ecosystems, care should be taken in comparing the experimental results with
controls collected simultaneously from the same sample station. Changes in either of
these variables can produce significant differences in species composition and abundance
that will affect comparisons (Moran & Reaka-Kudla, 1991; Takada, Abe & Shibuno, 2007).
Sessile encrusting or colony forming species are not expected to be common in ASUs,
unless they remain in the water for several months or more (Malella, 2007; Duckworth &
Wolff, 2011). Once a broad survey of the species composition of the local coral rubble
has been undertaken, it is then possible to evaluate the effectiveness of ASUs. Our results
show that the use of ASUs made with defaunated coral rubble is effective in detecting
cryptic and rare motile crustaceans, and can help improve species inventories of this group
on Caribbean coral reefs.

Monroy-Velázquez et al. (2020), PeerJ, DOI 10.7717/peerj.10389 10/16

http://dx.doi.org/10.7717/peerj.10389
https://peerj.com/


CONCLUSION
Artificial sampling units (ASUs) made with defaunated coral rubble constitute a valuable
tool to study the diversity of motile cryptic crustaceans in Caribbean coral reefs.
Our results show that combining data from ASUs with that from surrounding coral
rubble gives a more complete inventory of species, as both methods contribute unique
species. ASUs gave a better estimate of diversity, whereas the surrounding coral rubble
gave a better estimate of species richness. By combining both methods we recorded an
assemblage of motile cryptic crustaceans composed of at least 178 species encompassing
five orders at a single reef site in 1 year.
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