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Throughout the history of drug discovery, an enzymatic-based approach for identifying
new drug molecules has been primarily utilized. Recently, protein-protein interfaces that
can be disrupted to identify small molecules that could be viable targets for certain
diseases, such as cancer and the human immunodeficiency virus, have been identified.
Existing studies computationally identify hotspots on these interfaces, with most models
attaining accuracies of ~70%. Many studies do not effectively integrate information
relating to amino acid chains and other structural information relating to the complex.
Herein, 1) a machine learning model has been created and 2) its ability to integrate
multiple features, such as those associated with amino-acid chains, has been evaluated to
enhance the ability to predict protein-protein interface hotspots. Virtual drug screening
analysis of a set of hotspots determined on the EphB2-ephrinB2 complex has also been
performed. The predictive capabilities of this model offer a precision-recall score of 0.605
and an AUROC of 0.846. Virtual screening of a set of hotspots identified by the machine
learning model developed in this study has identified potential medications to treat
diseases caused by the overexpression of the EphB2-ephrinB2 complex, including
prostate, gastric, colorectal and melanoma cancers which are linked to EphB2 mutations.
The efficacy of this model has been demonstrated through its successful ability to predict
drug-disease associations previously identified in literature, including cimetidine,
idarubicin, pralatrexate for these conditions. In addition, nadolol, a beta blocker, has also
been identified in this study to bind to the EphB2-ephrinB2 complex, and the possibility of
this drug treating multiple cancers is still relatively unexplored.
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14 ABSTRACT

15 Throughout the history of drug discovery, an enzymatic-based approach for identifying new drug 

16 molecules has been primarily utilized. Recently, protein-protein interfaces that can be disrupted to 

17 identify small molecules that could be viable targets for certain diseases, such as cancer and the human 

18 immunodeficiency virus, have been identified. Existing studies computationally identify hotspots on these 

19 interfaces, with most models attaining accuracies of ~70%. Many studies do not effectively integrate 

20 information relating to amino acid chains and other structural information relating to the complex. Herein, 

21 1) a machine learning model has been created and 2) its ability to integrate multiple features, such as 

22 those associated with amino-acid chains, has been evaluated to enhance the ability to predict protein-

23 protein interface hotspots. Virtual drug screening analysis of a set of hotspots determined on the EphB2-

24 ephrinB2 complex has also been performed. The predictive capabilities of this model offer a precision-

25 recall score of 0.605 and an AUROC of 0.846. Virtual screening of a set of hotspots identified by the 

26 machine learning model developed in this study has identified potential medications to treat diseases 

27 caused by the overexpression of the EphB2-ephrinB2 complex, including prostate, gastric, colorectal and 

28 melanoma cancers which are linked to EphB2 mutations.  The efficacy of this model has been 

29 demonstrated through its successful ability to predict drug-disease associations previously identified in 

30 literature, including cimetidine, idarubicin, pralatrexate for these conditions.  In addition, nadolol, a beta 

31 blocker, has also been identified in this study to bind to the EphB2-ephrinB2 complex, and the possibility 

32 of this drug treating multiple cancers is still relatively unexplored.

33 INTRODUCTION

34 Drug discovery is the scientific process where new drugs and small molecules are developed and 

35 identified to treat certain conditions.  Throughout most of the history of drug discovery, an enzymatic-

36 based (lock and key) approach for identifying new drug molecules was utilized (Bakail & Ochsenbein, 

37 2016).  As a result, many drugs targeting G-protein coupled receptors (GPCRs), which interact via this 

38 approach, constitute about 34% of the drugs in the market today (Hauser et al., 2017).
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39 Protein-protein interfaces have been of particular interest in regards to drug discovery, such as the 

40 EphA4-EphrinB2 complex, which is considered to be conformationally flexible (Ma & Nussinov, 2014). 

41 Protein-protein interfaces can be stabilized or disrupted to identify small molecules that could be viable 

42 targets for certain diseases such as cancer and the human immunodeficiency virus (HIV).  Identifying 

43 residue hotspots on these protein-protein interfaces and repurposing existing drugs to target these new 

44 hotspots can lead to novel drug targets, ultimately leading to new therapeutic treatments (Scott et al., 

45 2016).  Although protein-based drug discovery (as opposed to enzymatic-based drug discovery) is a 

46 relatively new and emerging field, recent studies have shown promising results in regards to its potential 

47 in a wide range of fields from drug discovery to drug repositioning.  For example, the SpotOn study has 

48 produced remarkable results in regards to identifying hotspots that are viable for drug discovery, and 

49 AnchorQuery, which identifies small molecule protein-interaction inhibitors. (Moreira et al., 2017; Koes, 

50 Dömling & Camacho, 2018)

51  In addition, PPI-based peptide drug discovery has been used to identify new therapeutic targets 

52 by disrupting PPIs.  Major advances in docking simulations and models in recent years have yielded to be 

53 effective in more accurately identifying peptide-protein interactions.  Although peptide-based PPI drug 

54 discovery does have its challenges, such as limited bioavailability and solubility of peptides, this 

55 emerging field highlights potentially exciting advances in computationally aided protein-protein 

56 interaction based discovery techniques with the use of interfering peptides. (Lee et al., 2019)

57 Currently, only 10-14% of the human proteome is considered to be “druggable”, and most targets 

58 with published leads are in the rhodopsin-like GPCR family, with a smaller number in cation channels 

59 and protein kinases (Hopkins & Groom, 2002; López-Cortés et al., 2019).  Druggability is the ability for a 

60 drug to bind to a specific target.  As protein-based drug discovery is a relatively new field compared to 

61 traditional drug discovery, more research is needed to identify new hotspots on protein-protein interfaces.  

62 Existing studies do computationally identify hotspots on these interfaces, but most of the models 

63 developed only attain accuracies of around 70% (Kim, Chivian & Baker, 2004; Tuncbag, Keskin & 

64 Gursoy, 2010).  Moreover, many studies do not effectively integrate information relating to amino acid 
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65 chains and other structural information relating to the complex/interface, and/or have completely different 

66 approaches to predict the likelihood of hotspots on a particular interface.

67 For example, molecular dynamics (MD) simulations have been used to elucidate the mechanisms 

68 of protein interactions and their viability for drug discovery.  This strategy has mixed results however - 

69 although the approach of molecular dynamics simulations have relatively high predictive power, these 

70 simulations are computationally expensive (Cukuroglu et al., 2014).  In contrast, knowledge-based 

71 machine learning techniques have the advantage of providing accurate results based on the 

72 properties/features of a specific interaction.  Machine learning and other statistical approaches allow for a 

73 high predictive power of hotspot detection, while being computationally efficient, provided that the 

74 features inputted into the model are relevant.

75             This leads to the proposed research question, “Can the development of a machine learning model 

76 lead to the discovery of new druggable targets and new drug-disease associations?”  The hypothesis was 

77 that the integration of different protein-protein interaction features will lead to promising new hotspots.  

78 In addition, new drug-disease associations could potentially be identified from these hotspots to treat 

79 deadly diseases such as cancer.  

80 To test this hypothesis, 1) a machine learning model was developed and 2) its ability to integrate 

81 multiple features, including structural information, such as that associated with amino-acid chains, to 

82 enhance the ability to predict protein-protein interface hotspots was evaluated.  In addition, virtual drug 

83 screening of a set of hotspots identified by the machine learning model developed herein was performed 

84 in order to identify potentially new drug-disease associations.  Phase 1 consisted of developing the 

85 machine learning model to identify potential protein-protein interface hotspots that could be viable as a 

86 drug target, using the cancer-associated EphB2-ephrinB2 protein complex (PDB code: 1KGY) for 

87 illustration.  Phase 2 of this project aimed to identify small molecules that could act as inhibitors or 

88 disruptors to the hotspots identified for further analysis in Phase 1.  

89 The machine learning model developed in Phase 1 achieved a precision-recall score of 0.605 and an area 

90 under receiver operating characteristic (AUROC or AUC) of .846 on the testing test, and identified 
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91 residues 1122-1126 on this complex as potential hotspot residues.  This information was then used to 

92 generate a pharmacophore in Phase 2 which identified nine drug candidates to disrupt the EphB2-

93 ephrinB2 complex.  Out of these candidates, further literature review identified four drug candidates that 

94 could treat diseases that are overexpressed by this complex: cimetidine, idarubicin, pralatrexate, and 

95 nadolol.  Although nadolol has been relatively unexplored in its potential of treating certain cancers, a 

96 drug with a similar chemical makeup, propranolol, has been identified to treat multiple cancers including 

97 colon cancer, which is linked to the overexpression of the EphB2-ephrinB2 complex, (Pantziarka et al., 

98 2016) (Işeri et al., 2014), and thus highlights significant repositioning opportunities for nadolol.

99 METHODS

100 Dataset Collection and Feature Aggregation

101 As a starting point, the dataset and codebase from the SpotOn study (Moreira et al., 2017) were acquired.  

102 This study was selected as the starting point for its high effectiveness in identifying potential hotspots that 

103 could aid in drug discovery.  The SpotOn database already has information regarding amino acid 

104 composition, solvent-accessible surface area (SASA) information, position-specific scoring matrices 

105 (PSSMs), the number of amino acids at 2.5 and 4.0 Angstrom, the number of nearby hydrophobic 

106 residues, the total change in solvent accessible surface area, the number of interfacial residues, pseudo-

107 amino acid composition, and scales-based descriptors of 2D and 3D descriptors from the protr R package 

108 (see below) for a total of 881 features. 

109 In order to add more information to this dataset to better aid model prediction, the protr R package (Xiao 

110 et al., 2015) was used to add more features related to amino acid composition, dipeptide composition, etc., 

111 to the already pre-existing data.  Additionally, data related to pair potential, complex/monomer accessible 

112 surface area, residue information, amino acid information, etc. were extracted from the HotPoint database 

113 (Tuncbag, Keskin & Gursoy, 2010) and then added to the pre-existing dataset.  This data was added to 

114 add more information regarding the entire protein complex, as evidenced by most of protr’s features, and 

115 to add residue specific features such as pair potential that could improve predictive power.  The addition 

116 of new features in the protr R package and the HotPoint database led to a total of 2323 features.
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117 Upon further investigation of the SpotOn dataset, we found that chains I of proteins with PDB code 

118 2FTL, 3SG8, and 1CH0 do not exist as specified in the Protein Data Bank.  In the SpotOn study, these 

119 chains are specified, and features were derived for these chains; however, in this study, as additional 

120 information is added and these chains could not be identified, these chains have been removed from our 

121 dataset.  This leads to a total of 520 protein residues, lower than SpotOn’s 534 protein residues.

122 In order to derive features on our prediction dataset with the EphB2-ephrinB2 complex (PDB code: 

123 1KGY), we first downloaded the structure from the Protein Data Bank, and ran this structure through the 

124 SpotOn’s codebase/pipeline to collect features specific to the SpotOn study.  Then, we sequentially added 

125 additional features unique to this study, such as from the protr’s R package and features from the 

126 HotPoint database.

127

128

129 Preprocessing and Feature Engineering

130 Similar to the SpotOn study, both the training and testing sets were normalized, and the testing set was 

131 normalized using mean and standard deviation of the training set.  In addition, before the model was run, 

132 data balance had to be accounted for, and oversampling was performed in order to retain the properties of 

133 the majority class without sacrificing the information available in this class (More, 2016).  SMOTE, or 

134 synthetic minority oversampling technique, was performed with k=5 nearest neighbors.  (Chawla et al., 

135 2002)  To account for multicollinearity, principal component analysis was also performed.  This leads to 

136 four different combinations: a pipeline without any changes to the training data, a pipeline with only 

137 SMOTE applied, a pipeline with only PCA applied, and a pipeline with both SMOTE and PCA applied.

138

139 Before the model was trained, the dataset was first subjected to feature engineering.  Three existing 

140 features that were selected for further exploration are the number of intermolecular contacts within 4.0 

141 Angstroms (#Dist-4.0), the number of hydrophobic contacts (#Hydrophobic), and the pair potential of a 

142 specific residue (Pair Potential).  We hypothesized that an increase of hydrophobic contacts would cause a 
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143 decrease in hydrophobic pair potential due to the attractive interaction because of the hydrophobic effect 

144 (Israelachvili & Pashley, 1982).  As a result, we multiplied both variables and multiplied by -1 to amplify 

145 the effects of this association and accounting for the inverse correlation.  In addition, we hypothesized 

146 that the number of intermolecular contacts will increase the pair potential as this may lead to many body 

147 potentials, which are mostly repulsive at short distances (Byggmästar, Granberg & Nordlund, 2018).  To 

148 model this association, #Dist-4.0 and #Hydrophobic are multiplied to amplify the effects as well.  These 

149 two new engineered variables were named #Dist-4.0 * Pair Potential and -#Hydrophobic * Pair 

150 Potential.  This lead to a total of 2323 features on the training and testing datasets, as well as our dataset 

151 containing residue information on the crystal structure of the EphB2-ephrinB2 complex (PDB code: 

152 1KGY).

153

154 Machine Learning Model Selection

155 Five different machine learning models were selected in order to evaluate and develop a model: linear 

156 support vector classifier (LSVC), XGBoost (XGB), a random forest classifier (RF), K Nearest Neighbors 

157 (KNN), multilayer perceptron neural network (MLP), and a Gaussian Naïve Bayes (GNB). This data was 

158 then split into a training:testing set ratio of 80:20.  10-fold cross validation was performed on the training 

159 set to prevent overfitting.  GridSearch was performed in order to identify the best combination of 

160 hyperparameters/parameters that could yield the best results.  The following hyperparameters/parameters 

161 were tested: LSVM, with C equal to 1, 10, 50, 100, 500, 1e3, 5e3, 1e4, 5e4, 1e5; RF, with the number of 

162 estimators equal to 50, 100, 150, 250, 350, 500, and maximum depth of 5, 6, 7, 8, 9, 10; XGB, with a 

163 learning rate of .001, .01, .1,  the number of estimators as 50, 100, 150, 200, and maximum depth of 4, 5, 

164 6; KNN, with n neighbors of 1, 3, 5, 10, 15, 20; a multilayer perceptron model of hidden_layer_sizes (10, 

165 10, 10), (50, 1), (10, 10), (10, 1), and alpha of 0.0001, 0.0002, 0.0005, 0.001; and GNB with variance 

166 smoothing of 1e-8, 1e-7, 1e-6, 1e-5, and 1e-4.  The metric used to identify the best model from these sets 

167 of parameters on the validation set is precision-recall, as it is incredibly robust in dealing with imbalanced 

168 data.  Four different run conditions on the four different pipelines was also run and the results are 
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169 compared.  The run conditions on the highest scoring pre-processing dataset will be used to build an 

170 ensemble model, similar to the SpotOn study.  If the ensemble model has a higher predictive capability 

171 than any individual model, the ensemble model will then be used to predict hotspots on the EphB2-

172 ephrinB2 complex, as this complex has been overexpressed in many cancer cells, most notably in 

173 prostate, gastric, colorectal and melanoma cancers. (Pasquale, 2010) PyMol was utilized to visualize the 

174 hotspots predicted on the EphB2-ephrinB2 complex.

175

176

177 Small Molecule Selection

178 A cluster of hotspots was identified and LigandScout (Wolber & Langer, 2005) was used to create an apo-

179 site pharmacophore.  Virtual screening was then performed on this pharmacophore to identify possible 

180 new drug indications.  To perform the drug screening, an approved Drugbank (Wishart et al., 2008) 

181 database that has a library of all molecules that have molecular weight from 150 to 500 daltons was used.  

182 These small molecules were then ranked by the LigandScout software to identify molecules that most 

183 strongly conform to the pharmacophore based on the chemical and structural properties of that molecule.  

184 The drug-disease associations were then verified with scientific literature to assess the validity and 

185 efficacy of the model, and then we identified new drug-disease associations that have not been previously 

186 identified by cross-referencing existing scientific literature.

187

188 RESULTS

189 Phase 1

190

191

192 Table 1: Average test metrics of algorithms tested on pre-processing pipelines

193
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194 The average test metrics of each of the six algorithms tested on the 4 different pre-processing pipelines 

195 are shown in Table 1.  As the preprocessing pipeline where only SMOTE is applied has the highest 

196 precision-recall, F1-score, MCC, and Kappa – all metrics that account for class imbalanced data – the top 

197 algorithms from this pipeline are used in order to create an ensemble model.

198

199 Table 2: Best Individual Algorithms in SMOTE-only pipeline

200 In Table 2 are the best individual algorithms tested in the SMOTE only pipeline.  The best set of 

201 hyperparameters were selected using GridSearch as follows: the support vector classifier with C=1000, 

202 the random forest classifier with maximum depth of 9 trees and the total number of estimators at 250 

203 trees, an XGBoost classifier with learning rate .01, maximum depth of 4, and 150 estimators, K-nearest 

204 neighbors with 5 neighbors, a multi-layer perceptron classifier with alpha as .0005 and two layers of 10 

205 neurons each, and a Gaussian Naïve Bayes of variable smoothing of .001.

206

207 Table 3: Comparison of our study vs SpotOn

208 *This data was adapted from the SpotOn study

209 The results of the SMOTE only pipeline were compared with SpotOn’s highest pre-processing procedure, 

210 which was the upsampling of their dataset.  Although the precision-recall statistic was not provided by the 

211 SpotOn study, other class imbalance-sensitive metrics, such as F1 and MCC, were provided.  Our 

212 algorithms outperform that of SpotOn’s ScaledUp processing step in class imbalance-sensitive metrics 

213 and sensitivity.

214

215

216 Table 4: Different ensemble classifiers (stacking and voting) were tested

217 The top ranking algorithms in the SMOTE only pipeline are used to develop an ensemble classifier to 

218 achieve better performance compared to any single algorithm.  Different ensemble algorithms are tested: 

219 stacking, where a meta-classifier is used to combine the predictive power multiple base classifiers, and 
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220 voting, a simple ensemble method where each of the six algorithms tested votes on a specific data point, 

221 and a simple majority vote is used to predict the classification of that data point.  In this case, the meta-

222 classifier used during stacking is a Logistic Regression classifier where C=5.  Each individual model is 

223 used as a base model separately with the meta-classifier, and all models are combined with the meta-

224 classifier.  All ensemble models are run on the SMOTE only pipeline.  In the voting ensemble, hard 

225 voting was implemented, and all six algorithms are subjected to majority voting.  Here, the best 

226 performing classifier was the stacking classifier where all models are combined with the meta-classifier.  

227 However, the precision-recall score of this ensemble method is still lower than that of the top individual 

228 model, the MLPClassifier in the SMOTE only pipeline.

229

230 Table 5: Comparison of our study to other studies

231 * Columns 2 through 7 are adapted from the SpotOn study to perform the side-by-side comparison among the algorithms

232 A comparison of the accuracy and performance of the model developed herein, shown in bold, compared 

233 with SpotOn.  In our model, the multilayer perceptron classifier was our top performing algorithm, and 

234 was thus used to develop to predict hotspots with high accuracies.  The SpotOn study (Moreira et al., 

235 2017) was used in order to identify the testing accuracies of the SpotOn study and those of the other 

236 studies as well.  The other studies that are compared to are SpotOn, SBHD213, Robetta23, KFC2-A24, 

237 KFC2-B, and CPORT25. (Kim, Chivian & Baker, 2004; Martins et al., 2014) (de Vries & Bonvin, 2011; 

238 Zhu & Mitchell, 2011)

239

240 Figure 1: Feature importances of the top tree-based classifier 

241 The top features in the top ranking tree-based classifier (random forest).  Features near the bottom of the graph have higher 

242 feature importances.

243 As the highest ranking classifier, the multilayer perceptron model, is considered a “black box”, and the 

244 interpretability of the predictions of the model are difficult to understand, the top tree-based classifier – 

245 the random forest - was used to identify features.  In order to identify the most relevant features, highest 
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246 ranking tree-based classifier from the SMOTE only pipeline, the random forest classifier, was used in 

247 order to analyze top features, and to understand the significance of adding new features to the existing 

248 dataset as provided by the SpotOn study.  Five out of the top fifteen features (Pair Potential, Relative 

249 Complex ASA, Complex ASA, and the engineered features Dist-4.0*Pair Potential and -Pair Potential * 

250 Hydrophobic), were added in this study exclusively, and highlights the improvement in predictive 

251 capabilities of the addition of these features.

252

253 Figure 2: The EphB2-ephrinB2 complex with highlighted residues using PyMol

254 Residues 1112 and 1122-1126 are highlighted as shown in green as surface markers.  The rest of the complex is in pink.

255 The chain E of the EphB2-ephrinB2 complex associated with cancer cells.  PyMol (Delano WL, 2002) 

256 was used to derive the complex and highlight residues 1112 and 1122-1126.  Predicted druggable hotspot 

257 residues are shown as more visible surface markers (in green), and the other residues are shown in pink or 

258 light red.  Residues 1122-1126 were selected for further investigation for drug screening as consecutive 

259 residues may be used as initial fragments in drug screening. (Modell, Blosser & Arora, 2016)  These 

260 residues were then utilized to create the apo-site pharmacophore as shown in Figure 3, and the 26-feature 

261 pharmacophore in Figure 4.

262 To determine whether this approach accurately predicts new hotspots in comparison with existing 

263 models, analysis was performed comparing the predictive capability of the existing models with the 

264 model developed herein.  In this study, a multilayer perceptron model is utilized to predict new hotspots, 

265 and performed better overall compared to most other protein-protein interface models, as shown in Table 

266 5.  However, our model did perform worse than the existing SpotOn study.  

267 In context, sensitivity is the ability for the model to identify the hotspots and the specificity/recall 

268 is the ability for the model to identify the non-hotspots, and both of these statistics are defined as:

269 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
270 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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271 Precision is defined as:

272 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
273 F1, MCC, Kappa, and Precision-Recall are all metrics that are robust in dealing with data imbalance.  

274 They are defined as:

275 𝑓1 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
276

𝑀𝐶𝐶
=

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∗ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ‒ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∗ 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠)(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔)(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠)(𝑇𝑟𝑢𝑒 𝑁𝑒𝑔 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔)
277

278  where po is the probability of agreement assigned to any sample, and pe is 𝐾𝑎𝑝𝑝𝑎 = (𝑝𝑜 ‒ 𝑝𝑒)/(1 ‒ 𝑝𝑒)
279 the expected/hypothetical probability of chance agreement.

280  where Pn and Rn are precision and recall, respectively, at the nth 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ‒ 𝑅𝑒𝑐𝑎𝑙𝑙 = ∑𝑛(𝑅𝑛 ‒ 𝑅𝑛 ‒ 1)𝑃𝑛
281 threshold.  

282 All of these calculations are calculated using the Scikit-learn package in Python.  In Figure 3, the 

283 predicted hotspot residues of the EphB2-ephrinB2 complex associated with cancer cells are shown as 

284 more pronounced surface markers.  The EphB2-ephrinB2 complex was selected for its role in a variety of 

285 cancers, as detailed in the discussion section.  

286

287 Phase 2

288 In phase 2 of this project, virtual drug screening was utilized to identify novel drug-disease associations 

289 using the hotspots previously identified.   An apo-site grid was implemented on hotspot residues 1122, 

290 1123, 1124, 1125, and 1126 as identified via the machine learning model on the EphB2-ephrinB2 

291 complex in Figure 3.  This grid was then utilized to develop the pharmacophore.

292

293 Figure 3: Apo-Site Grid for residues 1122-1126
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294

295 Apo site pharmacophore of residues 1122-1126.  The gray parts of the grid indicate the levels of buriedness and surface area.

296 An apo-site grid was developed and implemented on hotspot residues 1122, 1123, 1124, 1125, and 1126 as 

297 identified via the machine learning model on the EphB2-ephrinB2 complex.  This grid was developed by 

298 first calculating the pockets of hotspot residues 1122-1126 on LigandScout (Wolber & Langer, 2005).  This 

299 grid was then utilized to develop the pharmacophore in Figure 4.

300

301

302 Figure 4: Pharmacophore model of residues 1122-1126

303 This figure shows the 26-feature pharmacophore developed using an apo-site grid derived using hotspot 

304 residues 1122, 1123, 1124, 1125, and 1126 identified in Figure 3 via the machine learning model.  A 

305 pharmacophore identifies the key parts of the molecular features that define the function and shape of a 

306 specific ligand, and includes features such as H-bond acceptors and donors, hydrophobic and aromatic 

307 rings, etc.  This pharmacophore is then used to identify drugs that fit its features.  The scoring of this 

308 screening procedure follows a pharmacophore-fit scoring function as provided in LigandScout.  A 

309 maximum number of two features are omitted from this multi-feature pharmacophore to identify small 

310 molecule hits, and the best matching conformation is selected.

311

312 Figure 5: Structure and relative structure of cimetidine in relation to the developed pharmacophore

313 Cimetidine, currently an acid reflux medication, was identified via virtual screening to potentially bind to 

314 the EphB2-ephrinB2 complex associated with cancer cells.  The right image is cimetidine in relation to 

315 the 26-feature pharmacophore developed as shown in Figure 4.  A pharmacophore-fit score of 43.86 was 

316 achieved during drug screening.  Further literature review identified cimetidine as a potential 

317 repositioning target for many different types of cancers, including melanoma, gastric, and colorectal 

318 cancers. (Pantziarka et al., 2014) 

319
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320

321 Figure 6: Structure and relative structure of idarubicin in relation to the developed pharmacophore

322 Idarubicin, a chemotherapy medication that’s currently used to treat breast cancer, was identified via 

323 virtual screening to potentially bind to the EphB2-ephrinB2 complex, where the expression of the 

324 complex is associated with cancer cells.  The pharmacophore fit score of this small molecule is 45.46.  

325 This drug was also found to treat cancers liked to the EphB2-ephrinB2 complex such as melanoma and 

326 leukemia. (Martoni et al., 1986) (Jabbour et al., 2017)  The right image is idarubicin in relation to the 

327 pharmacophore developed as shown in Figure 4.

328

329

330 Figure 7: Structure and relative structure of pralatrexate in relation to the developed 

331 pharmacophore

332 Pralatrexate, a T-cell lymphoma medication, was identified via virtual screening to potentially bind to the 

333 EphB2-ephrinB2 complex, where the expression of the complex is associated with cancer cells.  This 

334 small molecule has a pharmacophore fit score of 47.41, and literature review suggests that this drug could 

335 potentially treat breast cancer and prostate cancer. (Yu, Zhao & Gao, 2018) (Serova et al., 2011)  The 

336 right image is pralatrexate in relation to the pharmacophore developed as shown in Figure 4.

337

338 Figure 8: Structure and relative structure of nadolol in relation to the developed pharmacophore

339 Nadolol, a beta blocker, was identified via virtual screening to potentially bind to the EphB2-ephrinB2 

340 complex, where the expression of the complex is associated with cancer cells.  This small molecule has a 

341 pharmacophore fit score of 45.97, and literature review suggests that beta blockers could potentially treat 

342 a variety of cancers, including breast cancer and pancreatic cancer. (Ishida et al., 2016)  A close relative 

343 of this drug, propranolol, can induce apoptosis in liver cancer cells.  (Wang et al., 2018)  This research 

344 suggests nadolol’s potential role in mitigating the effects of other cancers as well.  The right image is 

345 nadolol in relation to the pharmacophore developed as shown in Figure 4.
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346

347 Virtual drug screening identified nine drugs (pralatrexate, chlortetracycline, nadolol, imipenem, 

348 idarubicin, valganciclovir, conivaptan, cimetidine, and barnidipine) that bind to the pharmacophore 

349 shown in Figure 4.  Further analysis via literature review identified four drug candidates to potentially 

350 treat various types of cancers: cimetidine, idarubicin, pralatrexate, and nadolol.  Figure 5 shows the 

351 possibility for cimetidine, an antacid, to bind with the EphB2-ephrinB2 complex, and scientific literature 

352 identified the possibility for this drug to potentially treat melanoma, gastric, and colorectal cancers 

353 (Pantziarka et al., 2014).  Figure 6 identifies the possibility for idarubicin, a chemotherapy drug used to 

354 treat leukemia, to bind with the EphB2-ephrinB2 complex, and literature review identified the possibility 

355 for this drug to potentially treat melanoma and leukemia (Martoni et al., 1986) (Jabbour et al., 2017).  

356 Figure 7 demonstrates the possibility for pralatrexate, a T-cell lymphoma medication to bind to the 

357 EphB2-ephrinB2 complex.  

358

359 DISCUSSION

360 In this paper, we presented our development of a machine learning approach for identifying druggable 

361 hotspots at protein-protein interfaces. Our algorithm builds on previously existing methods, most notably 

362 the SpotOn study. Our approach combines molecular features that have not previously been combined, 

363 such as the molecular descriptors used in the SpotOn and HotPoint studies, and additional information 

364 related to amino acid composition as provided by the protr module. It applies various machine learning 

365 techniques, such as 10-fold cross-validation, feature engineering, and ensembling techniques, including 

366 voting and stacking.  A multilayer perceptron classifier with two hidden layers of 10 neurons each and an 

367 alpha of .0005 was used in order to achieve an AUROC of .846 and a precision-recall score of .605.

368 In order to find the most optimal pipeline, all four pipelines were run, and the pipeline that used 

369 only SMOTE during the pre-processing step was chosen the most optimal pipeline due to its high 

370 precision-recall score.  The average metrics of all classifiers in each of the pre-processing steps are 

371 recorded in Table 1.  Furthermore, the results of each top performing classifier in the SMOTE only pre-
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372 processing step are illustrated in Table 2.  In Table 3, the average of the metrics of each individual 

373 algorithm in the most optimal pipeline, the SMOTE-only pre-processing pipeline, are compared with the 

374 average of each top-performing model in the ScaledUp pre-processing dataset in SpotOn, the highest 

375 performing dataset in that study.  SpotOn-specific metrics are provided by the study itself.  The individual 

376 models of our study performed better than the individual models of SpotOn as highlighted in Table 3.  

377 After this step, ensemble methods such as stacking and voting were implemented to potentially achieve 

378 even better results than any single model.  The results of performing this step are shown in Table 4.

379 Although our models outperform that of SpotOn’s individual models without any type of 

380 ensembling, the results of our approach are lower on three out of four metrics than the top performing 

381 ensemble model from the SpotOn study, as illustrated in Table 5.  This may be due to one of many 

382 reasons.  Even though there was an increase in the total number of features as compared to the SpotOn 

383 study, the slight decrease in the total number of samples could potentially negatively affect predictive 

384 performance.  Another reason could be that the models tested are not diverse enough from each other to 

385 significantly boost performance via ensembling.  Two of the models in this study are tree-based methods 

386 (random forest and gradient boosting).  A greater diversity of these models would probably have boosted 

387 performance during stacking or voting, as a greater variety of base models have been shown to boost 

388 predictive performance. (Whalen & Pandey, 2013)

389

390 To illustrate our approach, we applied this model to analyze the EphB2-ephrinB2 complex, which has 

391 been overexpressed and associated with multiple types of cancer, including prostate, gastric, colorectal 

392 and melanoma cancers. (Pasquale, 2010)  As the overexpression of the EphB2-ephrinB2 complex is 

393 associated with these cancers, further analysis for drug discovery could aid in identifying possible new 

394 hotspots that potentially aid in drug discovery in the fight against cancer (Barquilla & Pasquale, 2015).  In 

395 addition, the viability for the EphB2-ephrinB2 complex, and more specifically the EphB2 receptor, for 

396 drug discovery has been examined, and it was determined that small molecules could potentially disrupt 

397 and/or bind to the ephrin binding pocket. (Chrencik et al., 2007) (Noberini, Lamberto & Pasquale, 2012)
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398  The effectiveness of introducing new engineered features was demonstrated by the feature 

399 importances of our top tree-based classifier, the random forest classifier (Figure 1).  Our algorithm 

400 identified a set of residue hotspots (Figure 2). These hotspots were then used to generate a pharmacophore 

401 model (Figure 4). This model was used to identify drugs with similar characteristics that could be 

402 potentially used to modulate the molecular functions of the EphB2-ephrinB2 complex. The identified 

403 drugs included compounds already used for cancer treatment, such as pralatrexate, a T-cell lymphoma 

404 medication, as well as non-cancer medication, such as cimetidine, an antacid, and nadolol, a beta blocker 

405 that can treat cardiac conditions. Literature review suggests that pralatrexate can potentially treat breast 

406 cancer and prostate cancer, and highlights the possibility for this small molecule to treat other conditions. 

407 (Yu, Zhao & Gao, 2018) (Serova et al., 2011)  Figure 8 identifies nadolol, a beta blocker that can treat 

408 cardiac conditions, as a candidate to bind to the EphB2-ephrinB2 complex.  Literature review strongly 

409 supports that beta blockers can be repositioned to treat other cancers, such as cancer, and has identified a 

410 close relative of nadolol, propranolol, as a potential treatment against multiple cancers, including colon 

411 cancer. (Işeri et al., 2014)

412

413

414 Conclusion

415 The model developed herein in phase one compares favorably with those developed in prior studies and 

416 offers enhanced predictive ability for identifying new druggable hotspots, including possible druggable 

417 hotspots for cancer-related protein interfaces.  The predictive capabilities of the model developed herein 

418 are high, offering a high AUROC and overall predictive performance to date.  Herein, a multilayer 

419 feedforward perceptron model with alpha .0005 and two layers of ten neurons was developed to 

420 successfully identify hotspots.  

421 Phase two of this project aims to identify possible drugs for repositioning.  Structural properties of the 

422 identified hotspot residues, such as H-bond acceptors and donors, were identified as feature sets to aid in 

423 drug development.  The efficacy of the model developed herein has been demonstrated through its 
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424 successful ability to predict drug-disease associations previously identified in literature, including 

425 cimetidine, idarubicin, and pralatrexate. Importantly, nadolol has been uniquely identified in this study to 

426 potentially treat conditions caused by the overexpression of the EphB2-ephrinB2 complex.  This work 

427 aims to yield better predictions in terms of hotspot discovery by primarily increasing the sheer amount of 

428 data that is available regarding protein-protein interactions.  As a consequence, this work has shown that 

429 the increases in predictive power as a result of this addition of data.  

430 Possible avenues for future work include drug development using the pharmacophores identified in this 

431 study to treat these diseases.  Hopefully, by identifying hotspot residues with unparalleled accuracy and 

432 identifying possible drug repositioning opportunities, traditional drug development based on these 

433 residues and repositioned drugs could yield new and effective treatments for diseases such as cancer.  In 

434 addition, adding additional novel features and data for hotspot identification, especially those that directly 

435 correlate with the extent of how energetically favorable residues are, could further improve model 

436 performance.  Another avenue for future work would be to streamline the workflow of both phases.  

437 Phase one is automated with the help of the machine learning model.  However, phase two requires 

438 manual input of the hotspot residues as identified in phase one to identify potential drug candidates.  A 

439 more streamlined process would improve functionality and ease of use.

440
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1 Table 1: Average test metrics of algorithms tested on pre-processing pipelines

Test Precision-

Recall

Precision Recall F1 AUROC Accuracy MCC Kappa Specificity

ONLY 

SMOTE

0.455 0.542 0.708 0.605 0.754 0.779 0.474 0.460 0.800

RAW 0.421 0.560 0.597 0.559 0.712 0.774 0.427 0.416 0.827

NO 

SMOTE

, PCA

0.438 0.551 0.653 0.582 0.733 0.776 0.451 0.438 0.814

SMOTE

, PCA

0.413 0.503 0.674 0.572 0.732 0.764 0.427 0.416 0.792

2
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Best Individual Algorithms in SMOTE-only pipeline
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1 Table 2: Best Individual Algorithms in SMOTE-only pipeline

Test Precision-

Recall

Precision Recall F1 AUROC Accuracy MCC Kappa Specificity

SVC 0.478 0.500 0.917 0.647 0.821 0.769 0.547 0.497 0.725

RF 0.521 0.667 0.667 0.667 0.783 0.846 0.567 0.567 0.900

GBC 0.477 0.625 0.625 0.625 0.756 0.827 0.513 0.513 0.888

KNN 0.306 0.359 0.583 0.444 0.635 0.664 0.236 0.222 0.688

MLP 0.605 0.704 0.792 0.745 0.846 0.875 0.665 0.663 0.900

Gaussian 0.344 0.400 0.667 0.500 0.683 0.692 0.318 0.297 0.700

2
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Comparison of our study vs SpotOn
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1 Table 3: Comparison of our study vs SpotOn

Test SMOTE 

only

SpotOn's 

ScaledUp*

Accuracy 0.779 0.79

F1 0.605 0.52

AUROC 0.754 0.83

MCC 0.475 0.38

Sensitivity 0.708 0.48

Specificity 0.800 0.88

2 *This data was adapted from the SpotOn study

3
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Different ensemble classifiers (stacking and voting) were tested
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1 Table 4: Different ensemble classifiers (stacking and voting) were tested

2

Test Metrics Precision-

Recall

Precision Recall F1 AUROC Accuracy MCC Kappa Specificity

SVC (Stacking) 

w/ Logistic 

Regression

0.421 0.536 0.625 0.577 0.731 0.789 0.439 0.437 0.838

RF (Stacking) 

w/ Logistic 

Regression

0.541 0.696 0.667 0.681 0.790 0.856 0.588 0.588 0.913

GBC (Stacking) 

w/ Logistic 

Regression

0.558 0.667 0.750 0.706 0.819 0.856 0.613 0.611 0.888

KNN 

(Stacking) w/ 

Logistic 

Regression

0.487 0.615 0.667 0.640 0.771 0.827 0.527 0.526 0.875

MLP (Stacking) 

w/ Logistic 

Regression

0.523 0.621 0.750 0.679 0.806 0.837 0.576 0.571 0.863

Gaussian 

(Stacking)  w/ 

Logistic 

Regression

0.508 0.600 0.750 0.667 0.800 0.827 0.558 0.552 0.850

All (Stacking) 0.569 0.708 0.708 0.708 0.810 0.865 0.621 0.621 0.913
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w/ Logistic 

Regression

Voting 

Classifier

0.462 0.6 0.625 0.612 0.75 0.817 0.493 0.493 0.875

3
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Comparison of our study to other studies
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1 Table 5: Comparison of our study to other studies

 Our 

model

SpotOn* SBHD2* Robetta* KFC2-

A*

KFC2-

B*

CPORT*

AUROC 0.846 0.91 0.69 0.62 0.66 0.67 0.54

Sensitivity 0.792 0.98 0.7 0.29 0.53 0.28 0.54

Specificity 0.900 0.84 0.71 0.88 0.81 0.96 0.47

F1-score 0.745 0.96 0.62 0.39 0.56 0.42 0.42

2 * Columns 2 through 7 are adapted from the SpotOn study to perform the side-by-side comparison among the algorithms

3

4
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Figure 1
Feature importances of the top tree-based classifier

The top features in the top ranking tree-based classifier (random forest). Features near the
bottom of the graph have higher feature importances.
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Figure 2
The EphB2-ephrinB2 complex with highlighted residues using PyMol

Residues 1112 and 1122-1126 are highlighted as shown in green as surface markers. The
rest of the complex is in pink.
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Figure 3
Apo-Site Grid for residues 1122-1126

Apo site pharmacophore of residues 1122-1126. The gray parts of the grid indicate the levels
of buriedness and surface area.
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Figure 4
Pharmacophore model of residues 1122-1126
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Figure 5
Structure and relative structure of cimetidine in relation to the developed
pharmacophore
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Figure 6
Structure and relative structure of idarubicin in relation to the developed
pharmacophore
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Figure 7
Structure and relative structure of pralatrexate in relation to the developed
pharmacophore
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Figure 8
Structure and relative structure of nadolol in relation to the developed pharmacophore
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