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Background. A main function of diet is to nurture the gut microbiota and this relationship affects host
health. However, different analysis strategies can generate different views on the relative abundance of
each microbial taxon, which can affect our conclusions about the significance of diet to gut health in lean
and obese subjects. Here we explored the impact of using different analysis strategies to study the gut
microbiota in a context of diet, health and obesity.

Methods. Over 15 million 16S rRNA gene sequences from published studies involving dietary
interventions in obese laboratory rodents were analyzed. Three strategies were used to assign the 16S
sequences to Operational Taxonomic Units (OTUs) based on the GreenGenes reference OTU sequence
files clustered at 97% and 99% similarity.

Results. Different strategies to select OTUs influenced the relative abundance of all bacterial taxa, but
the magnitude of this phenomenon showed a strong study effect. Different taxa showed up to 20%
difference in relative abundance within the same study, depending on the analysis strategy. Very few
OTUs were shared among the samples. ANOSIM test on unweighted UniFrac distances showed that study,
animal model, region of the 16S gene, and dietary treatment (in that order) were the most important
factors explaining the differences in bacterial communities. Except for obesity status, the contribution of
diet and other factors to explain the variability in bacterial communities was lower when using weighted
UniFrac distances. Predicted functional profile and high-level phenotypes of the microbiota showed that
each study was associated with unique features and patterns.

Conclusions. The results confirm previous findings showing a strong study effect on gut microbial
composition and raise concerns about the impact of analysis strategies on the membership and
composition of the gut microbiota. This study may be helpful to guide future research aiming to
investigate the relationship between diet, health, and the gut microbiota.
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22 Abstract

23 Background. A main function of diet is to nurture the gut microbiota and this relationship 

24 affects host health. However, different analysis strategies can generate different views on the 

25 relative abundance of each microbial taxon, which can affect our conclusions about the 

26 significance of diet to gut health in lean and obese subjects. Here we explored the impact of 

27 using different analysis strategies to study the gut microbiota in a context of diet, health and 

28 obesity. 

29 Methods. Over 15 million 16S rRNA gene sequences from published studies involving dietary 

30 interventions in obese laboratory rodents were analyzed. Three strategies were used to assign the 

31 16S sequences to Operational Taxonomic Units (OTUs) based on the GreenGenes reference 

32 OTU sequence files clustered at 97% and 99% similarity. 

33 Results. Different strategies to select OTUs influenced the relative abundance of all bacterial 

34 taxa, but the magnitude of this phenomenon showed a strong study effect. Different taxa showed 

35 up to 20% difference in relative abundance within the same study, depending on the analysis 

36 strategy. Very few OTUs were shared among the samples. ANOSIM test on unweighted UniFrac 

37 distances showed that study, animal model, region of the 16S gene, and dietary treatment (in that 

38 order) were the most important factors explaining the differences in bacterial communities. 

39 Except for obesity status, the contribution of diet and other factors to explain the variability in 
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40 bacterial communities was lower when using weighted UniFrac distances. Predicted functional 

41 profile and high-level phenotypes of the microbiota showed that each study was associated with 

42 unique features and patterns. 

43 Conclusions. The results confirm previous findings showing a strong study effect on gut 

44 microbial composition and raise concerns about the impact of analysis strategies on the 

45 membership and composition of the gut microbiota. This study may be helpful to guide future 

46 research aiming to investigate the relationship between diet, health, and the gut microbiota.

47

48 Introduction

49 The digestive tract of humans and other animals is inhabited by trillions of microbes and viruses 

50 that have evolved with their host as a unit throughout millennia. Host genetics is one of the most 

51 important factors shaping the gut microbiota (Bonder et al. 2016; Daᶀrowska & Witkiewicz, 

52 2016; Zhao et al. 2016; Knowles et al. 2019; Suzuki et al. 2019) but environmental factors may 

53 dominate over genetics in some circumstances (Muegge et al. 2011; Rothschild et al. 2018). 

54 Among all environmental factors that can modulate the gut microbiota, diet and dietary patterns 

55 have the strongest potential to do so. For example, diet can output similar microbiota functions 

56 across mammalian phylogeny (Muegge et al. 2011) and certain diets can induce and perpetuate 

57 obesity, a phenomenon that is closely interlinked with the gut microbiota (Bäckhed et al. 2004; 

58 Turnbaugh et al. 2008). 

59 Several food ingredients such as polysaccharides and polyphenols have been reported to 

60 influence lipid metabolism by altering gut microbiota composition. However, there are still many 

61 unknowns about the effect of diet and other factors on the gut microbial ecosystem and host’ 

62 health. For instance, microbes display high levels of cell-to-cell variability, even between 

63 members of the same strain under controlled homogeneous environments (Davidson et al. 2008). 

64 This individuality strengthens even more the notion of a highly personalized microbiome in each 

65 human or animal host, which ultimately affects host response to diet. Moreover, we often do not 

66 deal with the microbes per se; instead, we habitually deal with DNA nucleotide sequences 

67 obtained from these unique microbes at discrete time-points. In order to efficiently classify 

68 microbes based on molecular data (e.g. DNA sequences), scientists have developed 

69 categorization (or grouping) items and rules besides the idea of species, a term that is obviously 

70 ambiguous for organisms with eccentric reproductive strategies (Angert 2005). The term 

71 Operational Taxonomic Unit (OTU) was invented in a context of numerical taxonomy (Sneath 

72 1957; Sokal & Sneath 1963) and nowadays is mostly used to catalogue genetic sequences from 

73 marker genes (e.g. the 16S gene) based on nucleotide similarities. In short, similar sequences are 

74 catalogued within the same OTU, and therefore each OTU is thought to represent similar 

75 microorganisms. Alternatives to OTUs have been suggested (Callahan, McMurdie & Holmes 

76 2017) but the idea of using nucleotide similarities to catalogue microbes prevails. Note that the 

77 supposition that similar 16S sequences come from similar organisms is far from being true 

78 (Jaspers et al. 2004). 
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79 Several papers have investigated the gut microbiota in relationship to diet, health and 

80 obesity. However, only few have looked at data from multiple studies to expose the impact of 

81 analysis strategies on this relationship. Lozupone et al. (2013) performed a meta-analysis of 

82 studies of the human microbiota (gut, oral, vaginal, skin and other) and showed that samples of 

83 the Western adult fecal microbiota clustered strongly by study. However, the authors did not 

84 discuss the potential contribution of diet in the differences in the microbiota and only used one 

85 approach to select OTUs. Walters et al. (2014) performed a similar meta-analysis of human gut 

86 microbes associated with obesity and Inflammatory Bowel Disease and showed that specific 

87 microbial signatures of obesity were not consistent between studies. The authors suggested that 

88 this was due to differences in effect sizes and explained that some conditions such as 

89 inflammatory bowel disease are associated with more obvious differences in microbiota 

90 compared to other conditions such as obesity, whose association with the microbiota, 

91 accordingly to the authors, is less clear. The authors of this study also did not look at the 

92 contribution of diet to the observed differences and did not explore the use of different analysis 

93 strategies. A recent meta-analysis of samples from rodents and humans confirmed that diet can 

94 induce reproducible microbiome alterations but only focused on high-fat diets and did not assess 

95 the impact of analysis strategies on the relative abundance of taxa (Bisanz et al. 2019). Others 

96 have used a different approach looking only at the –published– abundance of a few selected 

97 bacterial groups (e.g. Bifidobacterium) and their relationship with dietary components (So et al. 

98 2018; Wilson et al. 2019).

99 The mucin-degrader bacterium Akkermansia muciniphila is a good example to emphasize 

100 the relevance of these issues. This bacterium has anti-inflammatory and anti-obesity effects that 

101 are mediated by a close biochemical interaction with the host through the colonic mucus (Cani & 

102 de Vos 2017). The relative abundance of this bacterium in feces ranges from 0.1% to up to 85%, 

103 and this variation is often considered to reflect a response to dietary components and health 

104 status (Garcia-Mazcorro et al. 2020). However, some of this variation may also be derived from 

105 the specific analysis strategy used during the analysis, although this issue has received little 

106 attention (Garcia-Mazcorro et al. 2020). The aim of this study was to explore how different 

107 analysis strategies impact the results from gut microbiological studies in a context of diet, health 

108 and obesity.

109

110 Materials & Methods

111 Ethical Considerations

112 This study used 16S rRNA gene sequence data from public datasets published by our research 

113 group (Table 1), all of which received approval for the use of the animals.

114

115 16S gene sequencing data

116 We used 16S gene sequencing data from seven of our previous publications dealing with 

117 modulation of the gut microbiota using dietary interventions in animal obese models (Table 1). 

118 Performing a comparative analysis of data generated by the same research group is advantageous 
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119 because technical variation is likely to be less compared to the variation obtained from multiple 

120 research groups. The sequencing procedure was performed at UC Davis for three studies, while 

121 the remaining four studies were sequenced at the Molecular Research LP. There were slight 

122 variations in the DNA extraction procedures, but we did not use FastPrep for bead beating in any 

123 of these studies. This is an important clarification because some people consider the use of 

124 FastPrep essential for optimal lysis. 

125 Six factors were studied across the samples: ‘dietary treatment’, with 11 levels; ‘study’, 

126 with seven levels, one for each study; ‘animal model’, with two levels: mice and rats; 

127 ‘sequencing technique’, with two levels: pyrosequencing and MiSeq; ‘obesity status’ at the time 

128 of sampling, with two levels: lean and obese; and ‘anatomical site’, with two levels: colon and 

129 feces. It is important to keep in mind that in the case that one factor is biologically significantly 

130 associated with a different microbiota in nature (e.g. obesity status), the existence of other 

131 interactive factors (e.g. dietary treatment) may mask the differences we observe during analysis. 

132 Unless otherwise stated, the data was analysed with QIIME (Caporaso et al. 2010) v.1.8.0. After 

133 demultiplexing and quality filtering, we used the sequence file to assign 16S reads to OTUs 

134 based on the GreenGenes reference OTU sequence files (v.13.8, August 2013 release) clustered 

135 at 97% (99,322 sequences) and 99% similarity (203,452 sequences). 

136

137 Assignment of 16S sequences to OTUs

138 Three strategies were used to assign the 16S sequences to OTUs. First, the conservative closed 

139 approach that discards sequences for not matching any sequence in the sequence reference data. 

140 Second, a de novo approach, which does not use a reference data set to cluster the sequences 

141 (Westcott & Schloss 2015), thus being relatively free to depict the variety of sequences in a 

142 sample. Finally, an open approach that combines these two approaches (Rideout et al. 2014), first 

143 performing a closed approach followed by clustering of remaining sequences de novo. From this 

144 point on, we will refer to these strategies as the name of the clustering method (e.g. closed) and 

145 the reference file utilized (e.g. OTUs clustered at 97%). For example, ‘closed97’ and ‘closed99’ 

146 will refer to a closed approach using the 97% and the 99% OTU reference files, respectively. We 

147 only used the default 97% in the similarity option of the pick_otus.py script but changing this 

148 parameter can also drastically affect the results (more on this in “Similarity percentage between 

149 16S rRNA gene sequences” in Supplemental Information).

150

151 Taxonomic and diversity analyses

152 We combined all OTU tables (one for each of the seven studies) from the closed97 and the 

153 closed99 approaches into two separate OTU tables (one for each approach) and used these OTU 

154 tables for taxonomic classification and diversity analyses. The unique fraction metric, or 

155 UniFrac, is a phylogenetic method for comparing microbial communities based on the 

156 phylogenetic distance between sets of taxa in a phylogenetic tree as the fraction of the branch 

157 length of the tree that leads to descendants from one environment or the other, but not both 

158 (Lozupone et al. 2005). Both weighted and unweighted UniFrac distances were used for 
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159 comparing microbial communities because they can lead to different insights into factors that 

160 structure microbial communities (Lozupone et al. 2007). Principal Coordinate Analyses (PCoA) 

161 using these UniFrac distances were performed in QIIME and visualized using Emperor. 

162

163 Prediction of functional profiling and phenotypes

164 PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved states, 

165 Langille et al. 2013) was used to predict the functional profiling based on the 16S sequences. 

166 PICRUSt results were analysed in STAMP (Parks et al. 2010). Additionally, we used BugBase 

167 (Ward et al. 2017) to predict organism-level microbiome phenotypes for each study separately.

168

169 QIIME2

170 QIIME2 was introduced in 2017 on the basis of a plugin architecture that allows third parties to 

171 contribute functionality (Bolyen et al. 2019). Based on the observations made by Thompson et 

172 al. (2017) in a context of OTUs and sequence variants, DADA2 (Callahan et al. 2016) and 

173 Deblur (Amir et al. 2017) were also used to select OTUs for a few selected studies in QIIME2.

174

175 Statistical analysis

176 The non-parametric analysis of similarities (ANOSIM) and the Adonis tests were used to 

177 determine whether the clustering of samples by a given factor (e.g. study) is statistically 

178 significant based on UniFrac distances, using the compare_categories.py script in QIIME with 

179 default number of permutations (999). In our experience, these tests usually have low sensitivity 

180 (they usually yield low p values even for weak clustering of samples), therefore it is informative 

181 to look at both the p values and the percentage of variation explained by the factor. We used the 

182 non-parametric Kruskal-Wallis to compare the number of OTUs between the different levels of 

183 any given factor, and also to compare the results from BugBase.

184

185 Results

186 We analysed >15 million 16S reads from 164 samples from seven studies dealing with dietary 

187 interventions in obese laboratory animals (Table 1). In general, each study investigated the effect 

188 of different diets on the gut microbiota of obese laboratory animals and compared the results 

189 with data from control obese and/or lean animals (Supplemental Table S1). 

190 We detected 5,246 OTUs using the combined OTU table from the closed97 approach 

191 (n=162), and 8,898 OTUs from the closed99 approach (n=163). This difference of ~3,600 OTUs 

192 is substantial (70% more OTUs compared to the closed97 approach) and likely reflects the 

193 higher number of reference OTUs available for clustering the unknown 16S gene sequences. The 

194 number of detected OTUs from the closed97 approach was always lower, and with the exception 

195 of the peach study, the number of OTUs from the de novo approaches was always higher (Table 

196 2). No singletons were found in any analysis using the open approach because the default script 

197 prevents it, but the de novo approach always showed ~2 times higher percentage of singletons 

198 compared to the closed approach, except for the peach study (Table 2). The factor ‘animal 
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199 model’ generated the highest number of significantly different OTUs, and ‘obesity status’ the 

200 lowest (Table 3). The analysis of the combined OTU tables from the closed97 and the closed99 

201 approach showed that only 161 and 165 OTUs (~3% of all OTUs detected) were present in 50% 

202 of the samples, respectively. Very few OTUs (3-4) were present in >80% of samples using either 

203 approach, and no OTU was present in >90% of samples.

204

205 Community membership structure

206 Table 2 shows an accurate numerical impression of relative abundances of all bacterial phyla 

207 across different OTU picking strategies, with up to 20% difference in relative abundance of some 

208 taxa, depending on the strategy analysis. However, Table 2 lacks a general view of how each 

209 taxon is represented across the different levels of each factor. A visual analysis of membership 

210 data revealed interesting patterns, for instance, the relative abundances of Firmicutes and 

211 Bacteroidetes were equally represented in each level of all six factors studied, while 

212 Cyanobacteria was poorly represented in samples from mice (Figure 1). However, note that these 

213 results may also be misleading when considering the very few OTUs that were shared across all 

214 samples.

215

216 Peach study

217 The peach study was the only one using 454 pyrosequencing and a different primer set. As 

218 expected, an increase in quality threshold reduced the number of sequences that passed quality 

219 filtering. This is important because it has been suggested that a more stringent quality filtering 

220 helps to “reduce the number of spurious OTUs” (Buza et al. 2019), although in practice it is 

221 difficult to determine the exact quality threshold to differentiate “true” vs “false” OTUs (Edgar 

222 2017). We will not discuss this issue for Illumina platforms because defaults have already been 

223 established (Bokulich et al. 2013). 

224 Overall the different taxa remained similar in relative abundance but a higher base quality 

225 score (qual) threshold of 34 (default: qual 25) had a strong effect on the number of sequences 

226 available for OTU picking (62,971 sequences with qual 25 vs. 11,553 with qual 34) and 

227 consequently on the number of the OTUs discovered (758 OTUs with qual 25 vs 442 OTUs with 

228 qual 34 in the closed97 approach). The difference in qual threshold also had an effect in the 

229 proportions of Bacteroidetes that went down from ~37% (qual 25) to 15% (qual 34), and 

230 Firmicutes that went up from ~50% to 70%. This discrepancy was not related to the lower 

231 number of sequences available for OTU picking because a lower rarefaction in all other analyses 

232 (e.g. with qual 25) revealed similar relative proportions compared to the analysis with higher 

233 rarefaction depth. A higher base quality score threshold also affected the presence of some low 

234 abundant groups (e.g. at qual 34 Deferribacteres and Fusobacteria were not detected using all 

235 approaches).

236 In the peach study, Bacteroidetes displayed the highest standard deviation (SD) and 

237 showed the biggest difference (~5%) in relative abundances, particularly between the open97 and 

238 the open99 approaches (Table 2). The difference between the lowest and the highest value was 
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239 minimal for Firmicutes (~2%), Proteobacteria (~2%) and others (Table 2). Tenericutes showed 

240 the highest SD/average ratio (68.7), which implies that the variability was proportionally higher 

241 in this taxon, and Firmicutes the lowest (1.7), which implies that the variability was 

242 proportionally lower in this taxon. The detected phyla varied from 10 (closed97) to 13 (de 

243 novo97 and open97).

244

245 Wheat study

246 In the wheat study, Firmicutes displayed the highest SD and showed the biggest difference 

247 (~20%) in relative abundances, particularly between the closed97 and the closed99 approaches 

248 (Table 2). This contrasts heavily with the biggest difference of ~5% observed in the peach study. 

249 This difference in closed approaches was also noticeable in Bacteroidetes (~11% difference), 

250 Proteobacteria (~10% difference), and others (Table 2) and this was not related to rarefaction 

251 depth. This difference was not noticeable for the open and the de novo approaches where 

252 Firmicutes, Bacteroidetes, Proteobacteria and others showed very similar proportions in all cases 

253 (Table 2). Verrucomicrobia showed the highest SD/average ratio (107.9) and Firmicutes the 

254 lowest (11.3). The number of detected phyla varied between 10 (closed97) and 14 (de novo). 

255

256 Quinoa study

257 Similar to the wheat study, in the quinoa study Firmicutes displayed the highest SD and showed 

258 the biggest difference (~15%) in relative abundances, particularly in the closed approaches 

259 (Table 2). This difference in closed approaches was also noticeable in Bacteroidetes (~11% 

260 difference) and minimal for Proteobacteria (~2% difference) and others, and this was again not 

261 related to rarefaction depth. Also similar to the wheat study, this difference was not noticeable 

262 for the open and the de novo approaches where Firmicutes, Bacteroidetes, Proteobacteria and 

263 others showed very similar proportions in all cases (Table 2). Verrucomicrobia showed the 

264 highest SD/average ratio (101.8) and Firmicutes the lowest (7.3). The number of detected phyla 

265 varied from 8 (closed97) to 12 (de novo).

266

267 Barley study

268 In the barley study, Bacteroidetes displayed the highest SD but Firmicutes showed the biggest 

269 difference (~9%) in relative abundances, particularly in the closed approach (Table 2). This 

270 difference in closed approaches was minimal in Bacteroidetes (~3% difference), Proteobacteria 

271 (~2% difference) and others and this was again not related to rarefaction depth. Also similar to 

272 the other studies, this difference was not noticeable in the de novo and open approaches (Table 

273 2). Verrucomicrobia showed the highest SD/average ratio (91.9) and Firmicutes the lowest (5.5). 

274 The number of detected phyla varied from 8 (closed97) to 12 (de novo).

275

276 Cherry study

277 In contrast to the wheat, quinoa and barley studies, where the closed97 and the closed99 

278 approaches showed different abundance of taxa, in the cherry study there was good agreement 
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279 between the closed97 and the closed99 approaches for Firmicutes, Bacteroidetes, Proteobacteria 

280 and other groups, but these approaches showed dissimilar proportions compared to the open and 

281 the de novo approaches (Table 2). The cherry study was also interesting because the de novo 

282 approach showed the presence of bacterial groups (e.g. Nitrospirae, Chlorobi, Planctomycetes) 

283 that were not detectable using the closed and the open approaches, and this was likely not related 

284 to rarefaction depth because the open approach used similar thresholds. Bacteroidetes displayed 

285 the highest SD and showed the biggest difference (~7%) in relative abundances. Tenericutes 

286 showed the highest SD/average ratio (100.9) and Firmicutes the lowest (3.4). The number of 

287 detected phyla varied from 14 (open99) to 22 (de novo). The use of DADA2 and Deblur in 

288 QIIME2 showed 1,329 and 1,263 OTUs, respectively. This is about half the lower number of 

289 OTUs (2,439 with closed97) obtained with the other approaches (Table 2).

290

291 Raspberry study

292 Unlike the other studies discussed above, the raspberry study was very interesting because it had 

293 the lowest variation among the different OTU picking approaches (0.56% difference in 

294 Bacteroidetes and 0.55% difference in Firmicutes between the lowest and the highest results), 

295 which was also reflected in the SD/average ratio (highest: 32.8 for Cyanobacteria, lowest: 1.2 for 

296 Firmicutes) (Table 2). Moreover, both the open97 and the open99 approaches detected as many 

297 as 41 different taxa at the phylum level, while the number of taxa in all other studies using the 

298 same approach only varied from 8 to 22. This strongly suggests that the microbiota data 

299 contained within each study is unique and may sometimes contain a high proportion of taxa that 

300 go unnoticed in other studies. This is very important in a context of the role of rare taxa in 

301 maintaining the stability of ecosystems (Jousset et al. 2017). DADA2 and Deblur showed 791 

302 and 721 OTUs, respectively. This contrasts heavily with the numbers (2,751-92,486 OTUs) 

303 obtained from all approaches (Table 2). 

304

305 Apple study

306 In the apple study, Bacteroidetes showed the highest variation and also the biggest difference 

307 (~11%) especially between the closed and the de novo approaches (Table 2). This difference 

308 between the two approaches was also noticeable in Firmicutes and Tenericutes (Table 2). 

309 Tenericutes showed the highest SD/average ratio (77.3) and Proteobacteria the lowest (4.9). The 

310 number of detected phyla varied from 15 to 35, thus making the apple study the second study 

311 more variable after the raspberry study. The use of DADA2 and Deblur in QIIME2 showed 

312 1,357 and 1,149 OTUs, respectively. This contrasts heavily with the numbers (2,095-153,681 

313 OTUs) obtained from all approaches (Table 2).

314

315 Firmicutes/Bacteroidetes ratio

316 The first paper that discussed about the possible usefulness of the Firmicutes/Bacteroidetes ratio 

317 was published by Ley et al. (2005), where the showed that obese mice had 50% more Firmicutes, 

318 with a proportionally lower abundance of Bacteroidetes, thus leading to a higher 
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319 Firmicutes/Bacteroidetes ratio compared to lean mice. However, each phylum is composed by 

320 hundreds of different species, and therefore the ratio between the two has little significance as 

321 discussed elsewhere (Delzenne & Cani 2011). In this current study, this ratio varied from 1.1 to 

322 3.3 due to the differences in relative abundance in the two phyla (Table 2). 

323

324 The phylum Verrucomicrobia

325 Firmicutes and Bacteroidetes are usually the most abundant phyla in the gut microbiota 

326 and they have attracted most of the attention. However, other taxa deserve attention to better 

327 comprehend the functioning of the gut microbial ecosystem. A. muciniphila is a taxon that has 

328 generated interest as a new generation probiotic candidate to help obese patients and is 

329 considered to be a member of Verrucomicrobia based on 16S gene analysis. Akkermansia was 

330 detected in ~15% the samples (25/164) with an average of 3% and it was more represented in 

331 colon samples (Figure 1). Interestingly, the whole Verrucomicrobia phylum also had an average 

332 of 3%, which implies that most or all Verrucomicrobia was represented by Akkermansia. If we 

333 translate the proportions of 16S reads into numbers, a 3% would represent approximately 300 

334 million cells (3x108) in a hypothetical environment of 1x1010 cells/g of intestinal contents. While 

335 this conversion is not necessarily accurate, the high numbers may bear some ecological relevance 

336 if one considers that as low as 1,000 cells of other microbes are enough to thrive (Nilsson et al. 

337 2019). In three studies, the abundance of Verrucomicrobia was >5 times higher using a closed 

338 approach compared to the other approaches (Table 2).

339

340 The phylum Cyanobacteria

341 Another group of interest for gut health is Cyanobacteria (Bárcena et al. 2019), which is often 

342 considered a contaminant and removed from 16S gene analysis. However, Ley et al. (2005) 

343 showed a deep-branching clade of Cyanobacteria in the guts of animals and mentioned that they 

344 may represent descendants of non-photosynthetic ancestral Cyanobacteria that have become 

345 adapted to life in the mammalian gut. Here, Cyanobacteria was detected in ~50% the samples 

346 (74/164), was always low in relative abundance (<0.5%) and showed the lowest SD among the 

347 OTU picking strategies (Table 2). While 0.5% may be considered low, this percentage implies 

348 approximately 50 million (5x107) cells in the same hypothetical environment of 1x1010 cells/g of 

349 intestinal contents as discussed above.

350

351 Analyses of UniFrac distances

352 UniFrac analyses from the closed97 approach

353 The first two coordinates explained 18% of the variation using unweighted distances (Figure 2), 

354 which is similar to other studies that have shown that the first two coordinates explained 23% of 

355 the variation in a data set of unweighted UniFrac distances from samples of the human 

356 microbiota (Lozupone et al. 2013). Study, animal model, sequencing procedure, and dietary 

357 treatment were the factors that explained the highest proportion of variability in the data (Figure 
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358 2, Table 4). This is interesting because others have also shown a strong study effect (Lozupone et 

359 al. 2013).

360 In this study, the first 2 coordinates explained 34% of the variation using the weighted 

361 UniFrac distances (Table 4), which is about twice the variation explained by the first two axes 

362 using unweighted UniFrac. Accordingly to ANOSIM tests, the effect of study, animal model, 

363 and sequencing procedure explained much smaller proportion of the variability in the data using 

364 weighted distances, while obesity status explained a higher proportion of the variation (23.6% vs 

365 9.5% using unweighted distances, Table 4). 

366

367 UniFrac analyses from the closed99 approach 

368 The analysis of unweighted UniFrac distances from the closed99 approach revealed similar 

369 results compared to the closed97 regarding the relative contribution of each factor in explaining 

370 the variability in the data (Figure 3 and Table 5). The first two coordinates explained 25% of the 

371 variation (Figure 3), which is even closer to the results of Lozupone et al. (2013). Interestingly, 

372 Akkermansia was not part of the ten most abundant groups (Figure 3) and the factor ‘study’ 

373 explained 80% of the variability in the unweighted UniFrac data accordingly to the ANOSIM 

374 test (Table 5). In our experience it is uncommon that one single factor explains that much of the 

375 variability between microbial communities. Similar to the analysis using the closed97 approach, 

376 the effect of ‘study’, ‘animal model’ and ‘sequencing procedure’ at explaining the variability in 

377 the data was lower using weighted UniFrac, while obesity status explained much more of the 

378 variability in the data (Table 5). 

379

380 UniFrac analyses from closed97 approach on mice samples

381 To discover any additional pattern or association between the microbial communities, we 

382 performed a separate analysis of mice samples only (n=120). Briefly, unweighted UniFrac 

383 analyses using closed97 showed that ‘treatment’ and ‘study’ were the most important factors, 

384 each explaining almost half of the variability in the data accordingly to ANOSIM tests, while the 

385 use of weighted UniFrac distances revealed a lower contribution of ‘study’ and ‘treatment’ and a 

386 higher contribution of obesity status at differentiating microbial communities (more about this in 

387 “UniFrac analyses from closed97 approach on mice samples” in Supplemental Information).

388

389 Prediction of functional profiling

390 PICRUSt revealed a total of 217 features that were significantly different between different 

391 studies, 211 between different treatments, 145 between sequencing techniques, 136 between 

392 mice and rats, 69 between lean and obese, and 32 between feces and colon contents (adjusted P < 

393 0.05, see ‘PICRUSt results’ in Supplemental Information). This is interesting because the factor 

394 ‘study’ was also associated with the highest amount of variability. The weighted Nearest 

395 Sequenced Taxon Index (weighted NSTI) score was developed to summarize the extent to which 

396 microorganisms in a given sample are related to sequenced genomes (e.g. a NSTI score of 0.03 

397 indicates that the genomes of the microbes were well represented and that the average microbe in 
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398 the sample can be predicted using a relative from the same “species”). Higher NSTI values 

399 indicate a lower accuracy of the predictions. Here, NSTI scores varied widely, from a minimum 

400 of 0.03 (sample W11, feces from lean mice sequenced with MiSeq, wheat study) to a maximum 

401 of 0.34 (sample W32, feces from obese mice on quinoa sequences with MiSeq, quinoa study). 

402 There was no indication to suggest that any group of sequences were associated with lower or 

403 higher NSTI scores.

404

405 Prediction of organism-level microbiome phenotypes

406 BugBase revealed interesting differences in phenotypes within each study. For example, obese 

407 rats in a high-fat diet had higher proportions of bacteria with the potential of forming biofilms 

408 among the different treatments in the apple study, lean mice had higher proportions of bacteria 

409 containing mobile elements in the barley study, and obese mice had higher proportions of stress-

410 tolerant bacteria in the cherry study (more on this in ‘BugBase results’ in Supplemental 

411 Information). Overall, these results also indicate that each study showed unique peculiarities, 

412 ultimately derived from the molecular composition of the 16S gene sequences at any given time-

413 point within each particular study.

414

415 Discussion

416 Bacteria and other microorganisms are artificially classified for various reasons, for example to 

417 understand their relationship with other organisms. In most scientific publications, it is implicitly 

418 assumed that this artificial classification yields biologically relevant groups that exist in nature at 

419 real, normal abundances in a state of “normobiosis”. This cannot be better exemplified by the 

420 widespread use of the opposite term “dysbiosis”, a term that is not only inaccurate but also 

421 misleading (Brüssow 2019). However, the true abundance of any bacterial group in nature is very 

422 difficult to determine with accuracy, due to both biological facts (Davidson & Surette 2008; 

423 Jaspers & Overmann 2004), methodological biases, and the many remaining unknowns in 

424 microbiome research (Thomas & Segata 2019). This work provides clear evidence of this issue 

425 by showing that different analysis strategies generate up to 20% difference in relative abundance 

426 of some taxa from the same samples, depending on the strategy.

427 Our work also sheds light into the issue of the number of bacterial species in the gut. 

428 Considering the lowest sequence abundance threshold of one, it has been suggested that our 

429 planet harbor about 10,000 bacterial species (Caporaso et al. 2011) but others have suggested 

430 5.6 million OTUs as the lower bound of the microbial diversity on Earth (Rideout et al. 2014). 

431 On the other hand, the human microbiome is thought to harbor 15,000 to 36,000 species (Frank 

432 et al. 2007) yet others have suggested only 4,930 species of bacteria in that environment (Pasolli 

433 et al. 2019). In technical terms, the number of OTUs is dependent on the number of sequences 

434 that pass quality filtering (i.e. the higher the quality threshold, the lower the number of sequences 

435 available to catalogue). However, the number of OTUs is also dependent on the specific strategy 

436 used to catalogue sequences into OTUs. For instance, in this study the number of OTUs from the 

437 closed97 approach was always lower, and with one exception, the number of OTUs from the de 
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438 novo approaches was always higher. While the higher number of OTUs detected by the de novo 

439 approach may not be biologically relevant (Edgar 2017), this may deserve more thought if we 

440 consider the unexplored variety of microbes in nature.

441 As mentioned above, bacteria and other microbes display high levels of cell-to-cell 

442 variability; in other words, these organisms show high levels of individuality, which implies that 

443 every host carries a unique set of microbes. In support of this hypothesis, the analysis of the 

444 combined OTU tables from the closed97 and the closed99 approach showed that only very few 

445 OTUs were shared among the samples (3-4 OTUs were present in >80% of samples using either 

446 approach, and no OTU was present in >90% of samples). These results strongly suggest a unique 

447 microbial profile (i.e. variety of 16S sequences) in each sample. More importantly, the fact that 

448 each bacterial cell displays a high level of individuality raises doubts about the relevance of 

449 nucleotide similarities to estimate or predict similarities in nature. In other words, it is feasible 

450 and very likely that even those same OTUs that were apparently shared by multiple samples 

451 represent different microorganisms.

452 The analysis of 16S data from each study revealed interesting patterns. However, there 

453 were two studies that attracted our attention. The raspberry study was very interesting because it 

454 had the lowest variation in relative abundance of taxa among the different OTU picking 

455 approaches, which was also reflected in the SD/average ratio. Also, in the raspberry study both 

456 the open97 and the open99 approaches detected as many as 41 different taxa at the phylum level, 

457 while the number of taxa in all other studies using the same approach only varied from 8 to 22. 

458 This strongly suggests that the microbiota data contained within each study is unique and may 

459 sometimes contain a high proportion of taxa that go unnoticed in other studies. This is very 

460 important in a context of the role of rare taxa in maintaining the stability of ecosystems (Jousset 

461 et al. 2017).

462 This paper shows interesting results about the impact of the analysis strategies in the 

463 relative abundance of Verrucomicrobia and Cyanobacteria and these taxa are also important in a 

464 context of low abundant or rare taxa (or OTUs in datasets). Several strategies have been used to 

465 remove the so-called rare sequences. Needham et al. (2017) used 99% de novo OTUs (i.e. OTUs 

466 generated using 99% similarity without the use of a reference database) that exceeded a threshold 

467 of 0.4% in relative abundance without providing any rationale for using this threshold. In 

468 contrast, Navas-Molina et al. (2013) filtered the data based on the proportions of sequences 

469 represented by the OTUs (the authors suggested to remove OTUs that represents less than 

470 0.005% of all sequence reads based on the analyses by Bokulich et al. 2013) and Lozupone et al. 

471 (2013) discarded whole samples that did not have at least 100 sequences after quality filtering 

472 and OTU assignment. Although the decision of removing rare sequences is often based on 

473 rational arguments (Bokulich et al. 2013) it is still arbitrary to choose one strategy or another. 

474 This is important because the so-called rare microbes may in fact be keystone species that can 

475 regulate entire microbial environments, including host-associated microbiomes (Jousset et al. 

476 2017).
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477 The factor(s) that better explain the differences in gut microbial communities are of 

478 interest for various disciplines in biomedical sciences. For instance, the results of this current 

479 work showed that the factor ‘animal model’ generated the highest number of significantly 

480 different OTUs, while ‘obesity status’ the lowest. Unlike other studies suggesting that microbial 

481 signatures of obesity are not consistent between studies because of effect sizes (Walters et al. 

482 2014), in this study the lack of statistical difference in gut microbiota between obese and lean is 

483 most likely due to the fact that the obese rodents were subject to different dietary treatments, thus 

484 making difficult to dissect between obesity status and dietary treatment. In this regard, the results 

485 of the analysis of UniFrac distances are particularly important considering the thoughts discussed 

486 by Lozupone et al. (2007) that explained that unweighted UniFrac is better suited to detect 

487 effects of different “founding” populations (e.g. the source of bacteria that first colonize the gut 

488 of newborn individuals and factors that are restrictive for microbial growth such as temperature). 

489 In contrast, they suggested that weighted UniFrac can more accurately reveal the effects of more 

490 transient factors, for example nutrient availability. Host genetics can be considered as a founding 

491 effect that since the moment of birth imposes certain restrictions to growth of some microbes, 

492 and in our analyses the factor ‘animal model’ explained high proportion of the variation when 

493 using unweighted distances. In contrast, the analysis of weighted distances revealed that the 

494 effect of obesity status at sampling explained much more variability in the data compared to 

495 unweighted analyses, a result that also makes sense if we consider obesity as a more transient 

496 condition that suddenly appeared in the host-microbiota relationship. More research is needed to 

497 better investigate the relationship of the different factors as well as their interactions in the gut 

498 microbiota.   

499

500 Conclusions

501 In summary, diet and the gut microbiota are strongly related to host health and their interactions 

502 are “convoluted and multi-faceted” (Xu & Knight 2015). This paper aimed to contribute to 

503 current knowledge about the impact of using different analysis strategies in the relationship 

504 between the gut microbiota, diet and obesity. The results show that the use of different strategies 

505 to select OTUs have an impact on the relative proportions of bacterial taxa, particularly when 

506 using a closed OTU picking approach. We also demonstrated the impact of using OTU reference 

507 sequences clustered at different similarity percent and confirmed previous observations regarding 

508 a strong study effect. We invite others to consider and further expand the feasible possibility that 

509 the variations among studies are related to the individuality of bacteria. Overall, the results are 

510 useful to guide future research and meta-analyses aiming to investigate the complex relationship 

511 between diet, health, and the gut microbiota.

512
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Figure 1
Proportions of relative abundances (percentages) of 16S reads.

The data is shown accordingly to the factors (A) animal model, (B) obesity status, (C)
sequencing, (D) anatomical site, (E) study, and (F) treatment. Letters in bars represent
different taxa (A: Firmicutes, B: Bacteroidetes, C: Proteobacteria, D: Verrucomicrobia, E:
Deferribacteres, F: Actinobacteria, G: Cyanobacteria, and H: others). The bars do not
represent the relative abundance of each taxon; instead, they show the proportion of 16S
relative abundances from each level of the factors investigated. A balanced stacked bar
denotes that the taxon was equally represented in each level of the factor (e.g. Firmicutes
and Bacteroidetes between levels of all factors). An unbalanced stacked bar denotes that the
taxon was more or less represented between the levels of the factor, for example
Cyanobacteria between mice and rats, or between colon and feces.
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Figure 2
PCoA plots of unweighted UniFrac distances using data from the closed approach using
the reference OTUs sequence file at 97% similarity (closed97 approach).

Each point represents a sample from one of the studies detailed in Table 1, and the plots
highlight the effect of (A) animal model, (B) obesity status, (C) sequencing technique, (D)
anatomical site, (E) study and (F) treatment. The ten most abundant bacterial groups are
superimposed in all plots (the bigger the circle, the bigger the relative abundance of each
taxa) and labelled with numbers on the first plot (1: Ruminococcaceae, 2: Bacteroides, 3:
Clostridiales, 4: Lachnospiraceae, 5: Oscillospira, 6: Enterobacteriaceae, 7: S24-7, 8:
Lactobacillus, 9: Akkermansia, 10: Allobaculum) to show that clustering of samples is driven
by specific bacterial groups that have previously been shown to influence (or be influenced
by) health status, such as Akkermansia. The values for each axis are only shown in A to
facilitate viewing. These plots were built using a rarefaction depth of 100 sequences per
sample to account for as many samples as possible (only two samples were left out using this
rarefaction depth). The UniFrac data was obtained from the closed97 approach but other
approaches may reveal other patterns (see Table 4 and Table 5).
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Figure 3
PCoA plots of unweighted UniFrac distances using data from the closed approach using
the reference OTUs sequence file at 99% similarity (closed99 approach).

Each point represents a sample from one of the studies detailed in Table 1, and the plots
highlight the effect of (A) animal model, (B) obesity status, (C) sequencing technique, (D)
anatomical site, (E) study and (F) treatment. The ten most abundant bacterial groups are
superimposed in all plots (the bigger the circle, the bigger the relative abundance of each
taxa) and labelled with numbers on the first plot (1: Ruminococcaceae, 2: Bacteroides, 3:
Clostridiales, 4: Lachnospiraceae, 5: Oscillospira, 6: Enterobacteriaceae, 7: S24-7, 8:
Lactobacillus, 9: Parabacteroides, 10: Allobaculum) to show that clustering of samples is
driven by specific bacterial groups that have previously been shown to influence (or be
influenced by) health status, such as Ruminococcaceae. The values for each axis are only
shown in A to facilitate viewing. These plots were built using a rarefaction depth of 440
sequences per sample to account for as many samples as possible (only two samples were
left out using this rarefaction depth). The UniFrac data was obtained from the closed99
approach but other approaches may reveal other patterns (see Table 4 and Table 5).
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Table 1(on next page)

List of publications from which the data for this study came from.
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Table 1 List of publications from which the data for this study came from†.
Publication Number of 

samples

SRA Bioproject Animal species Sequencing Technique Reported OTUs

Peach (Noratto et al. 

2014)

12 PRJNA217444 Zucker rats (obese) Pyrosequencing 1,549 (approach not 

mentioned)

Wheat (Garcia-

Mazcorro et al. 

2016)

30 PRJNA281761 db/db mice MiSeq (Illumina) 8,686 (open)/1,302 (closed)

Quinoa (Garcia-

Mazcorro, Mills & 

Noratto 2016)

9a PRJNA299688 db/db mice MiSeq 5,774 (open)

Barley (Garcia-

Mazcorro et al. 

2017)

10a PRJNA314690 db/db mice MiSeq 5,366 (open)

Cherry (Garcia-

Mazcorro et al. 

2018)

44b PRJNA407462 db/db mice (colon 

microbiota)

MiSeq Not mentionedc

Raspberry (Garcia-

Mazcorro et al. 

2018)

27 PRJNA415476 db/db mice MiSeq 675d (open)

Apple (Garcia-

Mazcorro et al. 

2019)

32 PRJNA504388 Dawley Sprague rats MiSeq 69,010 (1,339d) (open)

†In the original published articles, all of these studies used the 97% OTU files and a 97% similarity threshold. The compositional 

information about all diets is provided as Supplementary Information.
aThese studies (quinoa and barley) used the lean and obese controls from the paper published about whole-wheat by Garcia-Mazcorro et al. 

(2016). bThe associated BioProject does not contain all of these samples.  cThe original cherry study did not report the number of OTUs. In 

this work, we report 2,439 to 138,203 OTUs for the cherry study, depending on the approach (see Table 2). dAfter removal of very low 

abundant OTUs (i.e. OTUs with <0.005% of all reads). By default, the open approach in QIIME discards singletons (i.e. OTUs that appear 

only once).
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Number of OTUs and relative proportions (i.e. percentages of 16S rRNA gene
sequences) of the most abundant phyla.
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Table 2 Number of OTUs and relative proportions (i.e. percentages of 16S rRNA gene sequences) of the most abundant phyla.
Peach study

Approach OTUs Singletons Firmicutes Bacteroidetes Proteobacteria Verrucomicrobia Actinobacteria Tenericutes Cyanobacteria

Closed97 758 ↓ 114 50.39% 40.84% ↑ 6.09% ↑ 2.37% ↑ 0.072% ↑ 0.128% ↓ 0.065% ↓
Closed99 1,074 192 52.35% ↑ 39.31% 5.77% 2.23% 0.069% 0.148% 0.077%
De novo 1,549 147 50.14% ↓ 35.95% 4.28% ↓ 1.67% ↓ 0.042% 1.766% 0.112%
Open97 1,603 NA 50.18% 35.15% ↓ 4.29% 1.73% 0.040% ↓ 1.766% 0.113% ↑
Open99 1,680 ↑ NA 50.15% 39.95% 4.29% 1.73% 0.042% 1.775% ↑ 0.112%
SD NA NA 0.88 2.45 ↑ 0.85 0.31 0.02 ↓ 0.85 0.02

Wheat study
Approach OTUs Singletons Firmicutes Bacteroidetes Proteobacteria Verrucomicrobia Actinobacteria Tenericutes Cyanobacteria

Closed97 1,302 ↓ 414 45.81% ↓ 32.52% 13.41% ↑ 5.89% ↑ 2.25% ↓ 0.0249% 0.0282% ↓
Closed99 2,008 734 65.97% ↑ 21.29% ↓ 7.64% 2.06% 2.90% 0.0161% ↓ 0.0456%
De novo 37,474 ↑ 28,466 57.96% 31.82% 3.18% ↓ 0.81% ↓ 3.46% 0.3405% 0.0927%
Open97 8,686 NA 58.73% 32.78% 3.22% 0.85% 3.53% ↑ 0.3471% 0.0912%
Open99 9,013 NA 58.73% 32.79% ↑ 3.21% 0.85% 3.53% ↑ 0.3476% ↑ 0.0908%
SD NA NA 6.51 ↑ 4.53 4.19 2.03 0.52 0.17 0.03 ↓

Quinoa study
Approach OTUs Singletons Firmicutes Bacteroidetes Proteobacteria Verrucomicrobia Actinobacteria Tenericutes Cyanobacteria

Closed97 1,062 ↓ 333 55.34% ↓ 30.29% ↑ 4.68% ↑ 7.20% ↑ 2.20% ↓ 0.051% 0.050%
Closed99 1,606 578 69.77% ↑ 21.32% ↓ 2.73% 3.29% 2.61% 0.045% ↓ 0.070% ↑
De novo 17,046 ↑ 11,500 63.70% 27.53% 2.45% ↓ 1.04% ↓ 3.30% 0.280% ↑ 0.041%
Open97 5,774 NA 64.08% 28.18% 2.46% 1.07% 3.35% 0.275% 0.037%
Open99 5,976 NA 64.07% 28.17 % 2.46% 1.07% 3.36% ↑ 0.275% 0.035% ↓
SD NA NA 4.62 ↑ 3.04 0.89 2.49 0.49 0.12 0.01 ↓

Barley study
Approach OTUs Singletons Firmicutes Bacteroidetes Proteobacteria Verrucomicrobia Actinobacteria Tenericutes Cyanobacteria

Closed97 1,078 ↓ 342 53.50% ↓ 32.38% 5.09% ↑ 6.63% ↑ 2.29% ↓ 0.0157% 0.022% ↓
Closed99 1,586 572 62.54% ↑ 29.04% ↓ 3.01% 2.67% 2.60% 0.0131% ↓ 0.053%
De novo 15,599 ↑ 10,429 55.65% 36.03% 2.08% 1.20% ↓ 3.25% 0.2859% 0.106% ↑
Open97 5,366 NA 55.86% 36.75% 2.07% 1.23% 3.32% 0.2809% 0.104%
Open99 5,594 NA 55.85% 36.77% ↑ 2.06% ↓ 1.23% 3.32% ↑ 0.2812% 0.102%
SD NA NA 3.09 3.14 ↑ 1.21 2.17 0.45 0.14 0.04 ↓

Cherry study
Approach OTUs Singletons Firmicutes Bacteroidetes Proteobacteria Verrucomicrobia Actinobacteria Tenericutes Cyanobacteria

Closed97 2,439 ↓ 1,942 50.89% 36.60% 6.75% ↑ 4.67% 0.180% 0.000% ↓ 0.000% ↓
Closed99 4,217 3,226 51.68% ↑ 36.00% ↓ 6.18% 5.11% ↑ 0.172% ↓ 0.012% 0.001%
De novo 138,203 ↑ 64,000 47.27% ↓ 43.20% ↑ 4.80% 3.46% 0.208% 0.079% 0.002%
Open97 69,658 NA 48.53% 41.71% 4.73% ↓ 2.90% ↓ 0.208% 0.096% ↑ 0.002% ↑
Open99 70,886 NA 48.53% 41.75% 4.73% ↓ 2.90% ↓ 0.209% ↑ 0.001% 0.002%
SD NA NA 1.68 3.12 ↑ 0.90 0.98 0.02 0.05 0.00 ↓

Raspberry study
Approach OTUs Singletons Firmicutes Bacteroidetes Proteobacteria Verrucomicrobia Actinobacteria Tenericutes Cyanobacteria

Closed97 2,751 ↓ 722 44.99% ↓ 40.66% ↑ 13.33% ↑ 0.052% ↑ 0.092% 0.002% ↓ 0.001%↓
Closed99 4,433 1,231 45.13% 40.53% 13.32% 0.052% ↑ 0.092% 0.002% ↓ 0.001% ↓
De novo 92,486 ↑ 69,306 46.13% ↑ 39.40% ↓ 12.90% ↓ 0.049% ↓ 0.097% ↑ 0.005% ↑ 0.002% ↑
Open97 21,243 NA 46.10% 39.73% 12.99% 0.049% ↓ 0.088% ↓ 0.004% 0.001% ↓
Open99 21,834 NA 46.10% 39.72% 12.99% 0.049% ↓ 0.088% ↓ 0.004% 0.001% ↓
SD NA NA 0.55 0.56 ↑ 0.19 0.002 0.004 0.001 0.0004 ↓

Apple study
Approach OTUs Singletons Firmicutes Bacteroidetes Proteobacteria Verrucomicrobia Actinobacteria Tenericutes Cyanobacteria

Closed97 2,095 ↓ 510 55.32% ↓ 39.17% ↑ 3.48% ↓ 0.499% 0.270% 0.002% ↓ 0.542% ↑
Closed99 3,363 907 55.43% 38.74% 3.97% ↑ 0.510% ↑ 0.246% ↓ 0.002% ↓ 0.448%
De novo 153,681 ↑ 81,032 61.48% 28.63% ↓ 3.89% 0.279% ↓ 0.432% 1.517% 0.361%
Open97 69,010 NA 61.84% ↑ 29.28% 3.96% 0.282% 0.435% 1.578% ↑ 0.364%
Open99 70,056 NA 61.83% 29.61% 3.96% 0.282% 0.436% 1.577% 0.364%
SD NA NA 3.25 5.14 ↑ 0.19 0.12 0.09 0.79 0.07 ↓
The symbols (↑) and (↓) are used for the highest and the lowest value of each dataset, respectively. This data was obtained from the analysis of sequences using a 

97% similarity against the reference OTU files.
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Table 3(on next page)

Number of OTUs that were significantly different accordingly to the different factors.
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1 Table 3 Number of OTUs that were significantly different* accordingly to the different factors.

Factor FDR Bonferroni

Study (7 levels) 309 174

Treatment (11 levels) 278 105

Sequencing (two levels) 225 112

Animal model (two levels) 134 53

Anatomical site (two levels) 31 14

Obesity (two levels) 4 3

*Defined as an adjusted p<0.01 in non-parametric Kruskal-Wallis (adjusted for False Discovery Rate 

and Bonferroni).
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Table 4(on next page)

Summary of results for all samples (n=162) from the Adonis and ANOSIM tests for
comparing categories using UniFrac data from the closed97 approach.
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Table 4. Summary of results for all samples (n=162) from the Adonis and ANOSIM tests for comparing categories 

using UniFrac data from the closed97 approach.

Adonis ANOSIM

Unweighted Weighted Unweighted Weighted

Study P < 0.001

24.8%

P < 0.001

19.8%

P = 0.001

66.3%

P = 0.001

31.5%

Model P < 0.001

8.8%

P < 0.001

7.4%

P = 0.001

56.7%

P = 0.145

4.5%

Sequencing P < 0.001

5.5%

P < 0.01

3.2%

P = 0.001

57.8%

P = 0.612

-3.2%

Treatment P < 0.001

20.4%

P < 0.001

21.1%

P = 0.001

34.2%

P = 0.001

20.1%

Obesity P < 0.001

1.9%

P < 0.001

4.4%

P = 0.023

9.5%

P = 0.001

23.6%

Site P < 0.001

3.8%

P < 0.01

2.2%

P = 0.702

-1.9%

P = 0.868

-4.7%

A rarefaction depth of 100 sequences per sample to account for as many samples as possible (only two samples 

were left out using this rarefaction depth). A total of 999 permutations were used to calculate the statistics.

1
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Table 5(on next page)

Summary of results for all samples (n=163) from the Adonis and ANOSIM tests for
comparing categories using UniFrac data from the closed99 approach.
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Table 5. Summary of results for all samples (n=163) from the Adonis and ANOSIM tests for comparing categories 

using UniFrac data from the closed99 approach.

Adonis ANOSIM

Unweighted Weighted Unweighted Weighted

Study P < 0.001

33.2%

P < 0.001

33.4%

P = 0.001

80.1%

P = 0.001

43.5%

Model P < 0.01

11.9%

P < 0.001

10.4%

P = 0.001

53.9%

P = 0.016

9.8%

Sequencing P < 0.001

6.7%

P < 0.001

3.7%

P = 0.001

61.6%

P = 0.529

-2%

Treatment P < 0.001

24.6%

P < 0.001

28.2%

P = 0.001

33.8%

P = 0.001

25%

Obesity P < 0.001

1.8%

P < 0.001

5.5%

P = 0.237

3.1%

P = 0.001

20.6%

Site P < 0.001

5.1%

P < 0.01

2.4%

P = 0.960

-5.3%

P = 0.953

-6.3%

A rarefaction depth of 440 sequences per sample to account for as many samples as possible (only one sample was left 

out using this rarefaction depth). A total of 999 permutations were used to calculate the statistics.

1
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