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ABSTRACT
Background. One of the main functions of diet is to nurture the gut microbiota and
this relationship affects the health of the host. However, different analysis strategies
can generate different views on the relative abundance of each microbial taxon, which
can affect our conclusions about the significance of diet to gut health in lean and obese
subjects. Here we explored the impact of using different analysis strategies to study the
gut microbiota in a context of diet, health and obesity.
Methods. Over 15 million 16S rRNA gene sequences from published studies involving
dietary interventions in obese laboratory rodents were analyzed. Three strategies were
used to assign the 16S sequences to Operational Taxonomic Units (OTUs) based on
the GreenGenes reference OTU sequence files clustered at 97% and 99% similarity.
Results. Different strategies to select OTUs influenced the relative abundance of all
bacterial taxa, but the magnitude of this phenomenon showed a strong study effect.
Different taxa showed up to 20% difference in relative abundance within the same
study, depending on the analysis strategy. Very few OTUs were shared among the
samples. ANOSIM test on unweightedUniFrac distances showed that study, sequencing
technique, animalmodel, and dietary treatment (in that order)were themost important
factors explaining the differences in bacterial communities. Except for obesity status, the
contribution of diet and other factors to explain the variability in bacterial communities
was lower when using weighted UniFrac distances. Predicted functional profile and
high-level phenotypes of the microbiota showed that each study was associated with
unique features and patterns.
Conclusions. The results confirm previous findings showing a strong study effect on
gut microbial composition and raise concerns about the impact of analysis strategies
on the membership and composition of the gut microbiota. This study may be helpful
to guide future research aiming to investigate the relationship between diet, health, and
the gut microbiota.
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INTRODUCTION
The digestive tract of humans and other animals is inhabited by trillions of microbes and
viruses that have evolved with their host as a unit throughoutmillennia. Host genetics is one
of the most important factors shaping the gut microbiota (Bonder et al., 2016; Dąbrowska
& Witkiewicz, 2016; Zhao, Irwin & Dong, 2016; Knowles, Eccles & Baltrunaite, 2019; Suzuki
et al., 2019) but environmental factors may dominate over genetics in some circumstances
(Muegge et al., 2011; Rothschild et al., 2018). Among all environmental factors that can
modulate the gut microbiota, diet and dietary patterns have the strongest potential to do
so. For example, diet can output similarmicrobiota functions acrossmammalian phylogeny
(Muegge et al., 2011) and certain diets can induce and perpetuate obesity, a phenomenon
that is closely interlinked with the gut microbiota (Backhed et al., 2004; Turnbaugh et al.,
2008).

Several food ingredients such as polysaccharides and polyphenols have been reported to
influence lipid metabolism by altering gut microbiota composition. However, there are still
many unknowns about the effect of diet and other factors on the gut microbial ecosystem
and host’ health. For instance, microbes display high levels of cell-to-cell variability,
even between members of the same strain under controlled homogeneous environments
(Davidson & Surette, 2008). This individuality strengthens even more the notion of a
highly personalized microbiome in each human or animal host, which ultimately affects
host response to diet. Moreover, we often do not deal with the microbes per se; instead,
we habitually deal with DNA nucleotide sequences obtained from these unique microbes
at discrete time-points. In order to efficiently classify microbes based on molecular data
(e.g., DNA sequences), scientists have developed categorization (or grouping) items
and rules besides the idea of species, a term that is obviously ambiguous for organisms
with eccentric reproductive strategies (Angert, 2005). The term Operational Taxonomic
Unit (OTU) was invented in a context of numerical taxonomy (Sneath, 1957; Sokal &
Sneath, 1963) and nowadays is mostly used to catalogue genetic sequences from marker
genes (e.g., the 16S gene) based on nucleotide similarities. In short, similar sequences
are catalogued within the same OTU, and therefore each OTU is thought to represent
similar microorganisms. Alternatives to OTUs have been suggested (Callahan, McMurdie
& Holmes, 2017) but the idea of using nucleotide similarities to cataloguemicrobes prevails.
Note that the supposition that similar 16S sequences come from similar organisms is far
from being true (Jaspers & Overmann, 2004).

Numerous studies have investigated the gut microbiota in relationship to diet, health
and obesity. However, only few have looked at data from multiple studies to expose
the impact of analysis strategies on this relationship. Lozupone et al. (2013) performed
a meta-analysis of studies of the human microbiota (gut, oral, vaginal, skin and other)
and showed that samples of the Western adult fecal microbiota clustered strongly by
study. However, the authors did not discuss the potential contribution of diet in the
differences in the microbiota and only used one approach to select OTUs. Walters, Xu &
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Knight (2014) performed a similar meta-analysis of human gut microbes associated with
obesity and Inflammatory Bowel Disease and showed that specific microbial signatures
of obesity were not consistent between studies. The authors suggested that this was due
to differences in effect sizes and explained that some conditions such as inflammatory
bowel disease are associated with more obvious differences in microbiota compared to
other conditions such as obesity, whose association with the microbiota, accordingly to
the authors, is less clear. The authors of this study also did not look at the contribution of
diet to the observed differences and did not explore the use of different analysis strategies.
A recent meta-analysis of samples from rodents and humans confirmed that diet can
induce reproducible microbiome alterations but only focused on high-fat diets and did
not assess the impact of analysis strategies on the relative abundance of taxa (Bisanz et al.,
2019). Others have used a different approach looking only at the –published– abundance
of a few selected bacterial groups (e.g. Bifidobacterium) and their relationship with dietary
components (So et al., 2018; Wilson et al., 2019).

Themucin-degrader bacteriumAkkermansia muciniphila is a good example to emphasize
the relevance of these issues. This bacterium has anti-inflammatory and anti-obesity effects
that are mediated by a close biochemical interaction with the host through the colonic
mucus (Cani & De Vos, 2017). The relative abundance of this bacterium in feces ranges
from 0.1% to up to 85%, and this variation is often considered to reflect a response to
dietary components and health status (Garcia-Mazcorro et al., 2020). However, some of this
variation may also be derived from the specific analysis strategy used during the analysis,
although this issue has received little attention (Garcia-Mazcorro et al., 2020). The aim
of this study was to explore how different analysis strategies impact the results from gut
microbiological studies in a context of diet, health and obesity.

MATERIALS & METHODS
Ethical considerations
This study used 16S rRNA gene sequence data from public datasets published by our
research group (Table 1), all of which received approval for the use of the animals.

16S gene sequencing data
We used 16S gene sequencing data from seven of our previous publications dealing with
modulation of the gut microbiota using dietary interventions in animal obese models
(Table 1). Performing a comparative analysis of data generated by the same research group
is advantageous because technical variation is likely to be less compared to the variation
obtained from multiple research groups. The sequencing procedure was performed at UC
Davis for three studies, while the remaining four studies were sequenced at the Molecular
Research LP. The Quick-DNA Fecal/Soil Microbe Miniprep Kit (D6010; Zymo Research)
was used in all studies with only slight variations except for the peach study that used the
QIAamp R© PowerFecal R© DNA kit (Qiagen). We did not use FastPrep (MP Biomedicals)
for bead beating in any of these studies and this is important to clarify because some people
consider the use of FastPrep essential for optimal lysis.
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Table 1 List of publications fromwhich the data for this study came from†.

Publication Number of
samples

SRA
Bioproject

Animal species Sequencing
Technique

Reported
OTUs

Peach (Noratto et al., 2014) 12 PRJNA217444 Zucker rats (obese) Pyrosequencing 1,549 (approach not mentioned)

Wheat (Garcia-Mazcorro et al., 2016) 30 PRJNA281761 db/db mice MiSeq (Illumina) 8,686 (open)/1,302 (closed)

Quinoa (Garcia-Mazcorro, Mills & Noratto, 2016) 9a PRJNA299688 db/db mice MiSeq 5,774 (open)

Barley (Garcia-Mazcorro et al., 2017) 10a PRJNA314690 db/db mice MiSeq 5,366 (open)

Cherry (Garcia-Mazcorro et al., 2018a) 44b PRJNA407462 db/db mice
(colon microbiota)

MiSeq Not mentionedc

Raspberry (Garcia-Mazcorro et al., 2018b) 27 PRJNA415476 db/db mice MiSeq 675d(open)

Apple (Garcia-Mazcorro et al., 2019) 32 PRJNA504388 Dawley Sprague rats MiSeq 69,010 (1,339d) (open)

Notes.
†In the original published articles, all of these studies used the 97% OTU files and a 97% similarity threshold. The compositional information about all diets is provided as Supplementary Information. All
of these studies used the primers F515 (5′-GTGCCAGCMGCCGCGGTAA-3′) and R806 (5′-GGACTACHVGGGTWTCTAAT-3′) targeting the V4 region of the 16S rRNA gene, with the exception of the
peach study that used the primers 28F (5′-GAGTTTGATCNTGGCTCAG-3′) and 519R (5′-GTNTTACNGCGGCKGCTG-3′) targeting the V1-V3 regions of the 16S rRNA gene. The Quick-DNA Fecal/-
Soil Microbe Miniprep Kit (Zymo Research) was used in all studies except for the peach study that used the QIAamp R© PowerFecal R© DNA kit (Qiagen).

aThese studies (quinoa and barley) used the lean and obese controls from the paper published about whole-wheat by Garcia-Mazcorro et al. (2016).
bThe associated BioProject does not contain all of these samples.
cThe original cherry study did not report the number of OTUs. In this work, we report 2,439 to 138,203 OTUs for the cherry study, depending on the approach (see Table 2).
dAfter removal of very low abundant OTUs (i.e., OTUs with <0.005% of all reads). By default, the open approach in QIIME discards singletons (i.e., OTUs that appear only once).
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Six factors were studied across the samples: ‘dietary treatment’, with 11 levels; ‘study’,
with seven levels, one for each study; ‘animal model’, with two levels: mice and rats;
‘sequencing technique’, with two levels: pyrosequencing and MiSeq; ‘obesity status’ at
the time of sampling, with two levels: lean and obese; and ‘anatomical site’, with two
levels: colon and feces. It is important to keep in mind that in the case that one factor
is biologically significantly associated with a different microbiota in nature (e.g., obesity
status), the existence of other interactive factors (e.g., dietary treatment) may mask the
differences we observe during analysis. Unless otherwise stated, the data was analyzed with
QIIME (Caporaso et al., 2010) v.1.8.0. After demultiplexing and quality filtering, we used
the sequence file to assign 16S reads to OTUs based on the GreenGenes reference OTU
sequence files (v.13.8, August 2013 release) clustered at 97% (99,322 sequences) and 99%
similarity (203,452 sequences).

Assignment of 16S sequences to OTUs
Three strategies were used to assign the 16S sequences to OTUs. First, the conservative
closed approach that discards sequences for not matching any sequence in the sequence
reference data. Second, a de novo approach, which does not use a reference data set to
cluster the sequences (Westcott & Schloss, 2015), thus being relatively free to depict the
variety of sequences in a sample. Finally, an open approach that combines these two
approaches (Rideout et al., 2014), first performing a closed approach followed by clustering
of remaining sequences de novo. From this point on, we will refer to these strategies as
the name of the clustering method (e.g., closed) and the reference file utilized (e.g., OTUs
clustered at 97%). For example, ‘closed97’ and ‘closed99’ will refer to a closed approach
using the 97% and the 99% OTU reference files, respectively. We only used the default
97% in the similarity option of the pick_otus.py script but changing this parameter can
also drastically affect the results (more on this in ‘‘Similarity percentage between 16S rRNA
gene sequences’’ in Supplemental Information).

Chimeras
Chimeras are possible combinations of two or more parent sequences that can inflate the
observed OTUs and other diversity parameters, especially for de novo and open-reference
strategies to select OTUs. However, there is a lack of consensus in chimera detection and
removal and even the existence of true chimeras has been questioned. In this study, we
subsampled the pynast alignment of representative sequences (one per OTU) separately
for each study and applied the public version of uchime (v.4.2.40) available in Mothur for
chimera detection. These analyses were performed on representative sequences from the
de novo and open strategies. All the GreenGenes reference OTU sequence files (total: 14
files; OTUs clustered at different similarity percentages, from 99% similarity with 203,451
sequences, to 61% similarity with 22 sequences) were used to explore the behavior of
uchime.

Taxonomic and diversity analyses
We combined all OTU tables (one for each of the seven studies) from the closed97 and the
closed99 approaches into two separate OTU tables (one for each approach) and used these
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OTU tables for taxonomic classification and diversity analyses. The relative abundance of
each taxon was calculated using all sequences (including possible chimeras and OTUs that
appear only once) because it is impossible to detect true chimeras and the possible relevance
of low abundant groups in the gut microbiome (Claussen et al., 2017). The unique fraction
metric, or UniFrac, is a phylogenetic method for comparing microbial communities based
on the phylogenetic distance between sets of taxa in a phylogenetic tree as the fraction
of the branch length of the tree that leads to descendants from one environment or the
other, but not both (Lozupone & Knight, 2005). Both weighted and unweighted UniFrac
distances were used for comparingmicrobial communities because they can lead to different
insights into factors that structure microbial communities (Lozupone et al., 2007). Principal
Coordinate Analyses (PCoA) using these UniFrac distances were performed in QIIME and
visualized using Emperor. Additionally, we used uniform manifold approximation and
projection (UMAP,McInnes et al., 2018), a non-linear dimensionality reduction technique,
to confirm the observed clusters, using the umap R package.

Prediction of functional profiling and phenotypes
PICRUSt (phylogenetic investigation of communities by reconstruction of unobserved
states, Langille et al., 2013) was used to predict the functional profiling based on the 16S
sequences. PICRUSt results were analyzed in STAMP (Parks & Beiko, 2010). Additionally,
we used BugBase (Ward et al., 2017) to predict organism-level microbiome phenotypes for
each study separately.

QIIME2
QIIME2 was introduced in 2017 on the basis of a plugin architecture that allows third
parties to contribute functionality (Bolyen et al., 2019) and has been constantly updated
ever since (more than 20 versions of QIIME2 have been released). This paper was conceived
and started in QIIME1 in 2018 but because QIIME1 is no longer updated or supported,
DADA2 (Callahan et al., 2016) andDeblur (Amir et al., 2017) were also used to select OTUs
for a few selected studies in QIIME2, in part based on the observations made by Thompson
et al. (2017) in a context of OTUs and sequence variants. One interesting feature of DADA2
is the removal of chimeric sequences.

Statistical analysis
The non-parametric analysis of similarities (ANOSIM) and the Adonis tests were used to
determine whether the clustering of samples by a given factor (e.g., study) is statistically
significant based on UniFrac distances, using the compare_categories.py script in QIIME
with default number of permutations (999). In our experience, these tests usually have low
sensitivity (they usually yield low p values even for weak clustering of samples), therefore
it is informative to look at both the p values and the percentage of variation explained
by the factor. We used the non-parametric Kruskal-Wallis to compare the number of
OTUs between the different levels of any given factor, and also to compare the results from
BugBase.
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RESULTS
Weanalyzed>15million 16S reads from164 samples from seven studies dealingwith dietary
interventions in obese laboratory animals (Table 1). In general, each study investigated the
effect of different diets on the gut microbiota of obese laboratory animals and compared
the results with data from control obese and/or lean animals (Table S3).

We detected 5,246 OTUs using the combined OTU table from the closed97 approach
(n= 162), and 8,898 OTUs from the closed99 approach (n= 163) (two samples from the
closed97 and one sample from the closed99 approach with the lowest number of sequences
were discarded to generate a better assessment of diversity). This difference of ∼3,600
OTUs is substantial (70% more OTUs compared to the closed97 approach) and likely
reflects the higher number of reference OTUs available for clustering the unknown 16S
gene sequences. The number of detected OTUs from the closed97 approach was always
lower, and with the exception of the peach study, the number of OTUs from the de novo
approaches was always higher (Table 2). The percentage of possible chimeras in the OTU
representative sequences ranged from 11% (wheat study) to 55% (apple study) for the de
novo approach (median: 21%), and from 4% (quinoa study) to 45% (apple study) for the
open approach (median: 13%). Interestingly, the percentage of possible chimeras reached
a plateau in all the studies, where increasing the number of reference OTU sequences
did no longer yield higher numbers of chimeras, and were lower for the open approach
in all the studies with the exception of the raspberry study. No singletons (OTUs that
appear only once) were found in any analysis using the open approach because the default
script prevents it, but the de novo approach always showed ∼2 times higher percentage
of singletons compared to the closed approach, except for the peach and the cherry study
(Table 2). The factor ‘animal model’ (mice and rats) generated the highest number of
significantly different OTUs, and ‘obesity status’ (obese and lean) the lowest (Table 3).
The analysis of the combined OTU tables from the closed97 and the closed99 approach
showed that only 161 and 165 OTUs (∼3% of all OTUs detected) were present in 50%
of the samples, respectively. Very few OTUs (3-4) were present in >80% of samples using
either approach, and no OTU was present in >90% of samples.

Community membership structure
Table 2 shows an accurate numerical impression of relative abundances of all bacterial phyla
across different OTU picking strategies, with up to 20% difference in relative abundance
of some taxa, depending on the strategy analysis. However, Table 2 lacks a general view of
how each taxon is represented across the different levels of each factor. A visual analysis
of membership data revealed interesting patterns, for instance, the relative abundances of
Firmicutes and Bacteroidetes were equally represented in each level of all six factors studied,
while Cyanobacteria was poorly represented in samples from mice (Fig. 1). However, note
that these results may also be misleading when considering the very few OTUs that were
shared across all samples.
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Table 2 Number of OTUs and relative proportions (i.e., percentages of 16S rRNA gene sequences) of the most abundant phyla.

Approach OTUs Singletons Firmicutes Bacteroidetes Proteobacteria Verrucomicrobia Actinobacteria Tenericutes Cyanobacteria

Peach study

Closed97 758 ↓ 114 (15%) 50.39% 40.84% ↑ 6.09% ↑ 2.37% ↑ 0.072% ↑ 0.128% ↓ 0.065% ↓

Closed99 1,074 192 (18%) 52.35% ↑ 39.31% 5.77% 2.23% 0.069% 0.148% 0.077%

De novo 1,549 147 (9%) 50.14% ↓ 35.95% 4.28% ↓ 1.67% ↓ 0.042% 1.766% 0.112%

Open97 1,603 NA 50.18% 35.15% ↓ 4.29% 1.73% 0.040% ↓ 1.766% 0.113% ↑

Open99 1,680 ↑ NA 50.15% 39.95% 4.29% 1.73% 0.042% 1.775% ↑ 0.112%

SD: 0.88 2.45 ↑ 0.85 0.31 0.02 ↓ 0.85 0.02

Wheat study

Closed97 1,302 ↓ 414 (32%) 45.81% ↓ 32.52% 13.41% ↑ 5.89% ↑ 2.25% ↓ 0.0249% 0.0282% ↓

Closed99 2,008 734 (37%) 65.97% ↑ 21.29% ↓ 7.64% 2.06% 2.90% 0.0161% ↓ 0.0456%

De novo 37,474 ↑ 28,466 (76%) 57.96% 31.82% 3.18% ↓ 0.81% ↓ 3.46% 0.3405% 0.0927%

Open97 8,686 NA 58.73% 32.78% 3.22% 0.85% 3.53% ↑ 0.3471% 0.0912%

Open99 9,013 NA 58.73% 32.79% ↑ 3.21% 0.85% 3.53% ↑ 0.3476% ↑ 0.0908%

SD: 6.51 ↑ 4.53 4.19 2.03 0.52 0.17 0.03 ↓

Quinoa study

Closed97 1,062 ↓ 333 (31%) 55.34% ↓ 30.29% ↑ 4.68% ↑ 7.20% ↑ 2.20% ↓ 0.051% 0.050%

Closed99 1,606 578 (36%) 69.77% ↑ 21.32% ↓ 2.73% 3.29% 2.61% 0.045% ↓ 0.070% ↑

De novo 17,046 ↑ 11,500 (67%) 63.70% 27.53% 2.45% ↓ 1.04% ↓ 3.30% 0.280% ↑ 0.041%

Open97 5,774 NA 64.08% 28.18% 2.46% 1.07% 3.35% 0.275% 0.037%

Open99 5,976 NA 64.07% 28.17% 2.46% 1.07% 3.36% ↑ 0.275% 0.035% ↓

SD: 4.62 ↑ 3.04 0.89 2.49 0.49 0.12 0.01 ↓

Barley study

Closed97 1,078 ↓ 342 (32%) 53.50% ↓ 32.38% 5.09% ↑ 6.63% ↑ 2.29% ↓ 0.0157% 0.022% ↓

Closed99 1,586 572 (36%) 62.54% ↑ 29.04% ↓ 3.01% 2.67% 2.60% 0.0131% ↓ 0.053%

De novo 15,599 ↑ 10,429 (67%) 55.65% 36.03% 2.08% 1.20% ↓ 3.25% 0.2859% 0.106% ↑

Open97 5,366 NA 55.86% 36.75% 2.07% 1.23% 3.32% 0.2809% 0.104%

Open99 5,594 NA 55.85% 36.77% ↑ 2.06% ↓ 1.23% 3.32% ↑ 0.2812% 0.102%

SD: 3.09 3.14 ↑ 1.21 2.17 0.45 0.14 0.04 ↓

(continued on next page)

G
arcia-M

azcorro
etal.(2020),PeerJ,D

O
I10.7717/peerj.10372

8/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.10372


Table 2 (continued)
Approach OTUs Singletons Firmicutes Bacteroidetes Proteobacteria Verrucomicrobia Actinobacteria Tenericutes Cyanobacteria

Cherry study

Closed97 2,439 ↓ 1,942 (80%) 50.89% 36.60% 6.75% ↑ 4.67% 0.180% 0.000% ↓ 0.000% ↓

Closed99 4,217 3,226 (77%) 51.68% ↑ 36.00% ↓ 6.18% 5.11% ↑ 0.172% ↓ 0.012% 0.001%

De novo 138,203 ↑ 64,000 (46%) 47.27% ↓ 43.20% ↑ 4.80% 3.46% 0.208% 0.079% 0.002%

Open97 69,658 NA 48.53% 41.71% 4.73% ↓ 2.90% ↓ 0.208% 0.096% ↑ 0.002% ↑

Open99 70,886 NA 48.53% 41.75% 4.73% ↓ 2.90% ↓ 0.209% ↑ 0.001% 0.002%

SD: 1.68 3.12 ↑ 0.90 0.98 0.02 0.05 0.00 ↓

Raspberry study

Closed97 2,751 ↓ 722 (26%) 44.99% ↓ 40.66% ↑ 13.33% ↑ 0.052% ↑ 0.092% 0.002% ↓ 0.001% ↓

Closed99 4,433 1,231 (28%) 45.13% 40.53% 13.32% 0.052% ↑ 0.092% 0.002% ↓ 0.001% ↓

De novo 92,486 ↑ 69,306 (75%) 46.13% ↑ 39.40% ↓ 12.90% ↓ 0.049% ↓ 0.097% ↑ 0.005% ↑ 0.002% ↑

Open97 21,243 NA 46.10% 39.73% 12.99% 0.049% ↓ 0.088% ↓ 0.004% 0.001% ↓

Open99 21,834 NA 46.10% 39.72% 12.99% 0.049% ↓ 0.088% ↓ 0.004% 0.001% ↓

SD: 0.55 0.56 ↑ 0.19 0.002 0.004 0.001 0.0004 ↓

Apple study

Closed97 2,095 ↓ 510 (24%) 55.32% ↓ 39.17% ↑ 3.48% ↓ 0.499% 0.270% 0.002% ↓ 0.542% ↑

Closed99 3,363 907 (27%) 55.43% 38.74% 3.97% ↑ 0.510% ↑ 0.246% ↓ 0.002% ↓ 0.448%

De novo 153,681 ↑ 81,032 (53%) 61.48% 28.63% ↓ 3.89% 0.279% ↓ 0.432% 1.517% 0.361%

Open97 69,010 NA 61.84% ↑ 29.28% 3.96% 0.282% 0.435% 1.578% ↑ 0.364%

Open99 70,056 NA 61.83% 29.61% 3.96% 0.282% 0.436% 1.577% 0.364%

SD: 3.25 5.14 ↑ 0.19 0.12 0.09 0.79 0.07 ↓

Notes.
The symbols (↑) and (↓) are used for the highest and the lowest value of each dataset, respectively. As explained in the main text, closed97 and closed99 refer to the closed OTU picking approach using the
reference OTUs clustered at 97% (99,322 sequences) and 99% similarity (203,442 sequences), respectively. All these results were obtained using the default 97% in the similarity option of the pick_otus
script (more on this in ‘‘Similarity percentage between 16S rRNA gene sequences’’ in Supplemental Information). The relative abundance of each phyla includes singletons and possible chimeras (see
main text for more information about this). SD: standard deviation across all five OTU picking approaches.
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Table 3 Number of OTUs that were significantly differenta accordingly to the different factors.

Factor FDR Bonferroni

Study (7 levels) 309 174
Treatment (11 levels) 278 105
Sequencing (two levels) 225 112
Animal model (two levels) 134 53
Anatomical site (two levels) 31 14
Obesity (two levels) 4 3

Notes.
aDefined as an adjusted p< 0.01 in non-parametric Kruskal-Wallis (adjusted for False Discovery Rate and Bonferroni).

Peach study
The peach study was the only one using 454 pyrosequencing, a different DNA extraction
method, and a different primer set. As expected, an increase in quality threshold reduced
the number of sequences that passed quality filtering. This is important because it has been
suggested that a more stringent quality filtering helps to ‘‘reduce the number of spurious
OTUs’’ (Buza et al., 2019), although in practice it is difficult to determine the exact quality
threshold to differentiate ‘‘true’’ vs ‘‘false’’ OTUs (Edgar, 2017). We will not discuss this
issue for Illumina platforms because defaults have already been established (Bokulich et al.,
2013).

Overall the different taxa remained similar in relative abundance but a higher base
quality score (qual) threshold of 34 (default: qual 25) had a strong effect on the number of
sequences available for OTU picking (62,971 sequences with qual 25 vs. 11,553 with qual
34) and consequently on the number of the OTUs discovered (758 OTUs with qual 25 vs
442 OTUs with qual 34 in the closed97 approach). The difference in qual threshold also had
an effect in the proportions of Bacteroidetes that went down from∼37% (qual 25) to 15%
(qual 34), and Firmicutes that went up from∼50% to 70%. This discrepancywas not related
to the lower number of sequences available for OTU picking because a lower rarefaction
in all other analyses (e.g., with qual 25) revealed similar relative proportions compared
to the analysis with higher rarefaction depth. A higher base quality score threshold also
affected the presence of some low abundant groups (e.g., at qual 34 Deferribacteres and
Fusobacteria were not detected using all approaches).

In the peach study, Bacteroidetes displayed the highest standard deviation (SD) and
showed the biggest difference (∼5%) in relative abundances, particularly between the
open97 and the open99 approaches (Table 2). The difference between the lowest and
the highest value was minimal for Firmicutes (∼2%), Proteobacteria (∼2%) and others
(Table 2). Tenericutes showed the highest SD/average ratio (68.7), which implies that the
variability was proportionally higher in this taxon, and Firmicutes the lowest (1.7), which
implies that the variability was proportionally lower in this taxon. The detected phyla
varied from 10 (closed97) to 13 (de novo97 and open97).

Wheat study
In the wheat study, Firmicutes displayed the highest SD and showed the biggest difference
(∼20%) in relative abundances, particularly between the closed97 and the closed99
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Figure 1 Proportions of relative abundances (percentages) of 16S reads. The data is shown accord-
ingly to the factors (A) animal model, (B) obesity status, (C) sequencing, (D) anatomical site, (E) study,
and (F) treatment. Letters in bars represent different taxa (A: Firmicutes, B: Bacteroidetes, C: Proteobacte-
ria, D: Verrucomicrobia, E: Deferribacteres, F: Actinobacteria, G: Cyanobacteria, and H: others). The bars
do not represent the relative abundance of each taxon; instead, they show the proportion of 16S relative
abundances from each level of the factors investigated. A balanced stacked bar denotes that the taxon was
equally represented in each level of the factor (e.g., Firmicutes and Bacteroidetes between levels of all fac-
tors). An unbalanced stacked bar denotes that the taxon was more or less represented between the levels of
the factor, for example Cyanobacteria between mice and rats, or between colon and feces.

Full-size DOI: 10.7717/peerj.10372/fig-1
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approaches (Table 2). This contrasts heavily with the biggest difference of ∼5% observed
in the peach study. This difference in closed approaches was also noticeable in Bacteroidetes
(∼11% difference), Proteobacteria (∼10% difference), and others (Table 2) and this was
not related to rarefaction depth. This difference was not noticeable for the open and the de
novo approaches where Firmicutes, Bacteroidetes, Proteobacteria and others showed very
similar proportions in all cases (Table 2). Verrucomicrobia showed the highest SD/average
ratio (107.9) and Firmicutes the lowest (11.3). The number of detected phyla varied
between 10 (closed97) and 14 (de novo).

Quinoa study
Similar to the wheat study, in the quinoa study Firmicutes displayed the highest SD
and showed the biggest difference (∼15%) in relative abundances, particularly in the
closed approaches (Table 2). This difference in closed approaches was also noticeable
in Bacteroidetes (∼11% difference) and minimal for Proteobacteria (∼2% difference)
and others, and this was again not related to rarefaction depth. Also similar to the wheat
study, this difference was not noticeable for the open and the de novo approaches where
Firmicutes, Bacteroidetes, Proteobacteria and others showed very similar proportions in
all cases (Table 2). Verrucomicrobia showed the highest SD/average ratio (101.8) and
Firmicutes the lowest (7.3). The number of detected phyla varied from 8 (closed97) to 12
(de novo).

Barley study
In the barley study, Bacteroidetes displayed the highest SD but Firmicutes showed the
biggest difference (∼9%) in relative abundances, particularly in the closed approach
(Table 2). This difference in closed approaches was minimal in Bacteroidetes (∼3%
difference), Proteobacteria (∼2% difference) and others and this was again not related to
rarefaction depth. Also similar to the other studies, this difference was not noticeable in the
de novo and open approaches (Table 2). Verrucomicrobia showed the highest SD/average
ratio (91.9) and Firmicutes the lowest (5.5). The number of detected phyla varied from 8
(closed97) to 12 (de novo).

Cherry study
In contrast to the wheat, quinoa and barley studies, where the closed97 and the closed99
approaches showed different abundance of taxa, in the cherry study there was good
agreement between the closed97 and the closed99 approaches for Firmicutes, Bacteroidetes,
Proteobacteria and other groups, but these approaches showed dissimilar proportions
compared to the open and the de novo approaches (Table 2). The cherry study was also
interesting because the de novo approach showed the presence of bacterial groups (e.g.,
Nitrospirae, Chlorobi, Planctomycetes) that were not detectable using the closed and the
open approaches, and this was likely not related to rarefaction depth because the open
approach used similar thresholds. Bacteroidetes displayed the highest SD and showed
the biggest difference (∼7%) in relative abundances. Tenericutes showed the highest
SD/average ratio (100.9) and Firmicutes the lowest (3.4). The number of detected phyla
varied from 14 (open99) to 22 (de novo). The use of DADA2 and Deblur in QIIME2

Garcia-Mazcorro et al. (2020), PeerJ, DOI 10.7717/peerj.10372 12/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.10372


showed 1,329 and 1,263 OTUs, respectively. This is about half the lower number of OTUs
(2,439 with closed97) obtained with the other approaches (Table 2).

Raspberry study
Unlike the other studies discussed above, the raspberry study was very interesting because
it had the lowest variation among the different OTU picking approaches (0.56% difference
in Bacteroidetes and 0.55% difference in Firmicutes between the lowest and the highest
results), which was also reflected in the SD/average ratio (highest: 32.8 for Cyanobacteria,
lowest: 1.2 for Firmicutes) (Table 2).Moreover, both the open97 and the open99 approaches
detected as many as 41 different taxa at the phylum level, while the number of taxa in all
other studies using the same approach only varied from 8 to 22. This strongly suggests that
the microbiota data contained within each study is unique and may sometimes contain
a high proportion of taxa that go unnoticed in other studies. This is very important in a
context of the role of rare taxa in maintaining the stability of ecosystems (Jousset et al.,
2017). DADA2 and Deblur showed 791 and 721 OTUs, respectively. This contrast with the
numbers (2,751-92,486 OTUs) obtained from all approaches (Table 2).

Apple study
In the apple study, Bacteroidetes showed the highest variation and also the biggest difference
(∼11%) especially between the closed and the de novo approaches (Table 2). This difference
between the two approaches was also noticeable in Firmicutes and Tenericutes (Table 2).
Tenericutes showed the highest SD/average ratio (77.3) and Proteobacteria the lowest
(4.9). The number of detected phyla varied from 15 to 35, thus making the apple study
the second study more variable after the raspberry study. The use of DADA2 and Deblur
in QIIME2 showed 1,357 and 1,149 OTUs, respectively. This contrast with the numbers
(2,095-153,681 OTUs) obtained from all approaches (Table 2).

Firmicutes/Bacteroidetes ratio
The first paper that discussed about the possible usefulness of the Firmicutes/Bacteroidetes
ratio was published by Ley et al. (2005), where the showed that obese mice had 50% more
Firmicutes, with a proportionally lower abundance of Bacteroidetes, thus leading to a
higher Firmicutes/Bacteroidetes ratio compared to lean mice. However, each phylum is
composed by hundreds of different species, and therefore the ratio between the two has
little significance as discussed elsewhere (Delzenne & Cani, 2011). In this current study,
this ratio varied from 1.1 to 3.3 due to the differences in relative abundance in the two
phyla (Table 2).

The phylum Verrucomicrobia
Firmicutes and Bacteroidetes are usually the most abundant phyla in the gut microbiota
and they have attracted most of the attention. However, other taxa deserve attention to
better comprehend the functioning of the gut microbial ecosystem. A. muciniphila is a
taxon that has generated interest as a new generation probiotic candidate to help obese
patients and is considered to be a member of Verrucomicrobia based on 16S gene analysis.
Akkermansia was detected in ∼15% the samples (25/164) with an average of 3% and it
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was more represented in colon samples (Fig. 1). Interestingly, the whole Verrucomicrobia
phylum also had an average of 3%, which implies that most or all Verrucomicrobia was
represented byAkkermansia. If we translate the proportions of 16S reads into numbers, a 3%
would represent approximately 300 million cells (3×108) in a hypothetical environment of
1 ×1010 cells/g of intestinal contents. While this conversion is not necessarily accurate, the
high numbers may bear some ecological relevance if one considers that as low as 1,000 cells
of other microbes are enough to thrive (Nilsson, Kari & Steele-Mortimer, 2019). In three
studies, the abundance of Verrucomicrobia was >5 times higher using a closed approach
compared to the other approaches (Table 2).

The phylum Cyanobacteria
Another group of interest for gut health is Cyanobacteria (Barcena et al., 2019), which
is often considered a contaminant and removed from 16S gene analysis. However,
Ley et al. (2005) showed a deep-branching clade of Cyanobacteria in the guts of
animals and mentioned that they may represent descendants of non-photosynthetic
ancestral Cyanobacteria that have become adapted to life in the mammalian gut. Here,
Cyanobacteria was detected in ∼50% the samples (74/164) and was always low in relative
abundance (<0.5%) (Table 2). While 0.5% may be considered low, this percentage implies
approximately 50 million (5 ×107) cells in the same hypothetical environment of 1 ×1010

cells/g of intestinal contents as discussed above.

Analyses of UniFrac distances
UniFrac analyses from the closed97 approach
The first two coordinates explained 18%of the variation using unweighted distances (Fig. 2),
which is similar to other studies that have shown that the first two coordinates explained
23% of the variation in a data set of unweighted UniFrac distances from samples of the
human microbiota (Lozupone et al., 2013). Accordingly to ANOSIM tests on unweighted
distances, study, sequencing procedure, animal model, and dietary treatment were the
factors most highly associated with the differences in the bacterial communities (Fig. 2,
Table 4). UMAP confirmed the clustering by animal model and study (Supplemental
Information). This is interesting because others have also shown a strong study effect
(Lozupone et al., 2013).

In this study, the first 2 coordinates explained 34% of the variation using the weighted
UniFrac distances, which is about twice the variation explained by the first two axes using
unweighted UniFrac, but produced a very similar clustering of samples. Accordingly to
ANOSIM tests, the effect of study, animalmodel, and sequencing procedure explainedmuch
smaller proportion of the variability in the data using weighted distances, while obesity
status explained a higher proportion of the variation (23.6% vs 9.5% using unweighted
distances, Table 4).

UniFrac analyses from the closed99 approach
The analysis of unweighted UniFrac distances from the closed99 approach revealed similar
results compared to the closed97 regarding the relative contribution of each factor in
explaining the variability in the data (Fig. 3 and Table 5). The first two coordinates
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Figure 2 PCoA plots of unweighted UniFrac distances using data from the closed approach using the
reference OTUs sequence file at 97% similarity (closed97 approach). Each point represents a sample
from one of the studies detailed in Table 1, and the plots highlight the effect of (A) animal model, (B) obe-
sity status, (C) sequencing technique, (D) anatomical site, (E) study and (F) treatment. The labels ‘‘lean’’
and ‘‘obese’’ refer to lean and obese controls. The ten most abundant bacterial groups are superimposed
in all plots (the bigger the circle, the bigger the relative abundance of each taxa) and labelled with numbers
on the first plot (1: Ruminococcaceae, 2: Bacteroides, 3: Clostridiales, 4: Lachnospiraceae, 5: Oscillospira,
6: Enterobacteriaceae, 7: S24-7, 8: Lactobacillus, 9: Akkermansia, 10: Allobaculum) to show that clustering
of samples is driven by specific bacterial groups that have previously been shown to influence (or be in-
fluenced by) health status, such as Akkermansia. The values for each axis are only shown in A to facilitate
viewing. These plots were built using a rarefaction depth of 100 sequences per sample to account for as
many samples as possible (only two samples were left out using this rarefaction depth). The UniFrac data
was obtained from the closed97 approach but other approaches may reveal other patterns (see Tables 4
and 5).

Full-size DOI: 10.7717/peerj.10372/fig-2
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Table 4 Summary of results for all samples (n= 162) from the Adonis and ANOSIM tests for compar-
ing categories using UniFrac data from the closed97 approach.

Adonis ANOSIM

Unweighted Weighted Unweighted Weighted

Study P < 0.001 P < 0.001 P = 0.001 P = 0.001
R2
= 24.8% R2

= 19.8% R= 66.3 R= 31.5
Model P < 0.001 P < 0.001 P = 0.001 P = 0.145

R2
= 8.8% R2

= 7.4% R= 56.7 R= 4.5
Sequencing P < 0.001 P < 0.01 P = 0.001 P = 0.612

R2
= 5.5% R2

= 3.2% R= 57.8 R=−3.2
Treatment P < 0.001 P < 0.001 P = 0.001 P = 0.001

R2
= 20.4% R2

= 21.1% R= 34.2 R= 20.1
Obesity P < 0.001 P < 0.001 P = 0.023 P = 0.001

R2
= 1.9% R2

= 4.4% R= 9.5 R= 23.6
Site P < 0.001 P < 0.01 P = 0.702 P = 0.868

R2
= 3.8% R2

= 2.2% R=−1.9 R=−4.7

Notes.
According to QIIME documentation, the R2 value (effect size) calculated with Adonis test shows the percentage of variation
explained by the factor (e.g., the factor ‘study’ explained 24.8% of the variation in the unweighted distances), and the R statis-
tic calculated with ANOSIM test reflects the degree of dissimilarity (an R value near 1, or 100, means that there is dissimilar-
ity between the groups, while an R value near 0 indicates no significant dissimilarity between the groups). A rarefaction depth
of 100 sequences per sample to account for as many samples as possible (only two samples were left out using this rarefaction
depth). A total of 999 permutations were used to calculate the statistics.

explained 25% of the variation (Fig. 3), which is even closer to the results of Lozupone et al.
(2013). Interestingly, Akkermansia was not part of the ten most abundant groups (Fig. 3)
and the factor ‘study’ explained most of the dissimilarity in the communities using the
unweighted UniFrac data accordingly to the ANOSIM test (Table 5). In our experience it is
uncommon that one single factor explains that much of the variability between microbial
communities. Similar to the analysis using the closed97 approach, the clustering of samples
was very similar but the effect of ‘study’, ‘animal model’ and ‘sequencing procedure’ at
explaining the variability in the data was lower using weighted UniFrac, while obesity status
explained much more of the variability in the data (Table 5).

UniFrac analyses from closed97 approach on mice samples
To discover any additional pattern or association between the microbial communities, we
performed a separate analysis of mice samples only (n= 120). Briefly, unweighted UniFrac
analyses using closed97 showed that ‘treatment’ and ‘study’ were the most important
factors, each explaining almost half of the dissimilarity in the data accordingly to ANOSIM
tests, while the use of weighted UniFrac distances revealed a lower contribution of ‘study’
and ‘treatment’ and a higher contribution of obesity status at differentiating microbial
communities (more about this in ‘‘UniFrac analyses from closed97 approach on mice
samples’’ in Supplemental Information).

Prediction of functional profiling
PICRUSt revealed a total of 217 features that were significantly different between different
studies, 211 between different treatments, 145 between sequencing techniques, 136 between
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Figure 3 PCoA plots of unweighted UniFrac distances using data from the closed approach using the
reference OTUs sequence file at 99% similarity (closed99 approach). Each point represents a sample
from one of the studies detailed in Table 1, and the plots highlight the effect of (A) animal model, (B) obe-
sity status, (C) sequencing technique, (D) anatomical site, (E) study and (F) treatment. The labels ‘‘lean’’
and ‘‘obese’’ refer to lean and obese controls. The ten most abundant bacterial groups are superimposed
in all plots (the bigger the circle, the bigger the relative abundance of each taxa) and labelled with numbers
on the first plot (1: Ruminococcaceae, 2: Bacteroides, 3: Clostridiales, 4: Lachnospiraceae, 5: Oscillospira,
6: Enterobacteriaceae, 7: S24-7, 8: Lactobacillus, 9: Parabacteroides, 10: Allobaculum) to show that cluster-
ing of samples is driven by specific bacterial groups that have previously been shown to influence (or be
influenced by) health status, such as Ruminococcaceae. The values for each axis are only shown in A to fa-
cilitate viewing. These plots were built using a rarefaction depth of 440 sequences per sample to account
for as many samples as possible (only two samples were left out using this rarefaction depth). The UniFrac
data was obtained from the closed99 approach but other approaches may reveal other patterns (see Tables
4 and 5).

Full-size DOI: 10.7717/peerj.10372/fig-3
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Table 5 Summary of results for all samples (n= 163) from the Adonis and ANOSIM tests for compar-
ing categories using UniFrac data from the closed99 approach.

Adonis ANOSIM

Unweighted Weighted Unweighted Weighted

Study P < 0.001 P < 0.001 P = 0.001 P = 0.001
R2
= 33.2% R2

= 33.4% R= 80.1 R= 43.5
Model P < 0.01 P < 0.001 P = 0.001 P = 0.016

R2
= 11.9% R2

= 10.4% R= 53.9 R= 9.8
Sequencing P < 0.001 P < 0.001 P = 0.001 P = 0.529

R2
= 6.7% R2

= 3.7% R= 61.6 R=−2
Treatment P < 0.001 P < 0.001 P = 0.001 P = 0.001

R2
= 24.6% R2

= 28.2% R= 33.8 R= 25
Obesity P < 0.001 P < 0.001 P = 0.237 P = 0.001

R2
= 1.8% R2

= 5.5% R= 3.1 R= 20.6
Site P < 0.001 P < 0.01 P = 0.960 P = 0.953

R2
= 5.1% R2

= 2.4% R=−5.3 R=−6.3

Notes.
According to QIIME documentation, the R2 value (effect size) calculated with Adonis test shows the percentage of variation
explained by the factor (e.g., the factor ‘study’ explained 33.2% of the variation in the unweighted distances), and the R statis-
tic calculated with ANOSIM test reflects the degree of dissimilarity (an R value near 1, or 100, means that there is dissimilar-
ity between the groups, while an R value near 0 indicates no significant dissimilarity between the groups). A rarefaction depth
of 440 sequences per sample to account for as many samples as possible (only one sample was left out using this rarefaction
depth). A total of 999 permutations were used to calculate the statistics.

mice and rats, 69 between lean and obese, and 32 between feces and colon contents (adjusted
P < 0.05, see ‘PICRUSt results’ in Supplemental Information). This is interesting because
the factor ‘study’ was also associated with the highest amount of variability. The weighted
Nearest Sequenced Taxon Index (weighted NSTI) score was developed to summarize the
extent to which microorganisms in a given sample are related to sequenced genomes (e.g.,
a NSTI score of 0.03 indicates that the genomes of the microbes were well represented
and that the average microbe in the sample can be predicted using a relative from the
same ‘‘species’’). Higher NSTI values indicate a lower accuracy of the predictions. Here,
NSTI scores varied widely, from a minimum of 0.03 (sample W11, feces from lean mice
sequenced with MiSeq, wheat study) to a maximum of 0.34 (sample W32, feces from obese
mice on quinoa sequences with MiSeq, quinoa study). There was no indication to suggest
that any group of sequences were associated with lower or higher NSTI scores.

Prediction of organism-level microbiome phenotypes
BugBase revealed interesting differences in phenotypes within each study. For example,
obese rats in a high-fat diet had higher proportions of bacteria with the potential of
forming biofilms among the different treatments in the apple study, lean mice had higher
proportions of bacteria containing mobile elements in the barley study, and obese mice had
higher proportions of stress-tolerant bacteria in the cherry study (more on this in ‘BugBase
results’ in Supplemental Information). Overall, these results also indicate that each study
showed unique peculiarities, ultimately derived from the molecular composition of the
16S gene sequences at any given time-point within each particular study.
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DISCUSSION
Bacteria and othermicroorganisms are artificially classified for various reasons, for example
to understand their relationship with other organisms. In most scientific publications, it
is implicitly assumed that this artificial classification yields biologically relevant groups
that exist in nature at real, normal abundances in a state of ‘‘normobiosis’’. This cannot
be better exemplified by the widespread use of the opposite term ‘‘dysbiosis’’, a term that
is not only inaccurate but also misleading (Brussow, 2020). However, the true abundance
of any bacterial group in nature is very difficult to determine with accuracy, due to both
biological facts (Davidson & Surette, 2008; Jaspers & Overmann, 2004), methodological
biases, and the many remaining unknowns in microbiome research (Thomas & Segata,
2019). This work provides clear evidence of this issue by showing that different analysis
strategies generate up to 20% difference in relative abundance of some taxa from the same
samples, depending on the strategy.

Our work also sheds light into the issue of the number of bacterial species in the
gut. Considering the lowest sequence abundance threshold of one, it has been suggested
that our planet harbor about 10,000 bacterial species (Caporaso et al., 2011) but others
have suggested 5.6 million OTUs as the lower bound of the microbial diversity on Earth
(Rideout et al., 2014). On the other hand, the human microbiome is thought to harbor
15,000 to 36,000 species (Frank et al., 2007) yet others have suggested only 4,930 species of
bacteria in that environment (Pasolli et al., 2019). In technical terms, the number of OTUs
is dependent on the number of sequences that pass quality filtering (i.e., the higher the
quality threshold, the lower the number of sequences available to catalogue). However, the
number of OTUs is also dependent on the specific strategy used to catalogue sequences into
OTUs. For instance, in this study the number of OTUs from the closed97 approach was
always lower, and with one exception, the number of OTUs from the de novo approaches
was always higher. While the higher number of OTUs detected by the de novo approach
may not be biologically relevant (Edgar, 2017), this may deserve more thought if we
consider the unexplored variety of microbes in nature.

As mentioned above, bacteria and other microbes display high levels of cell-to-cell
variability; in other words, these organisms show high levels of individuality, which implies
that every host carries a unique set of microbes. In support of this hypothesis, the analysis
of the combined OTU tables from the closed97 and the closed99 approach showed that
only very few OTUs were shared among the samples (3–4 OTUs were present in >80% of
samples using either approach, and noOTUwas present in >90% of samples). These results
strongly suggest a unique microbial profile (i.e., variety of 16S sequences) in each sample.
More importantly, the fact that each bacterial cell displays a high level of individuality
raises doubts about the relevance of nucleotide similarities in the 16S gene (or even whole
genomes, see Lukjancenko, Wassenaar & Ussery, 2010) to estimate or predict similarities in
nature. In other words, it is feasible and very likely that even those same OTUs that were
apparently shared by multiple samples represent in fact different microorganisms.

The analysis of 16S data from each study revealed interesting patterns. However, there
were two studies that attracted our attention. The raspberry study was very interesting
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because it had the lowest variation in relative abundance of taxa among the different OTU
picking approaches, which was also reflected in the SD/average ratio. Also, in the raspberry
study both the open97 and the open99 approaches detected as many as 41 different taxa at
the phylum level, while the number of taxa in all other studies using the same approach only
varied from 8 to 22. This strongly suggests that the microbiota data contained within each
study is unique and may sometimes contain a high proportion of taxa that go unnoticed
in other studies. This is very important in a context of the role of rare taxa in maintaining
the stability of ecosystems (Jousset et al., 2017).

This paper shows interesting results about the impact of the analysis strategies in the
relative abundance ofVerrucomicrobia andCyanobacteria and these taxa are also important
in a context of low abundant or rare taxa (or OTUs in datasets). Several strategies have
been used to remove the so-called rare sequences. Needham, Sachdeva & Fuhrman (2017)
used 99% de novo OTUs (i.e., OTUs generated using 99% similarity without the use of
a reference database) that exceeded a threshold of 0.4% in relative abundance without
providing any rationale for using this threshold. In contrast, Navas-Molina et al. (2013)
filtered the data based on the proportions of sequences represented by the OTUs (the
authors suggested to remove OTUs that represents less than 0.005% of all sequence reads
based on the analyses by Bokulich et al., 2013) and Lozupone et al. (2013) discarded whole
samples that did not have at least 100 sequences after quality filtering and OTU assignment.
Although the decision of removing rare sequences is often based on rational arguments
(Bokulich et al., 2013) it is still arbitrary to choose one strategy or another. This is important
because the so-called rare microbes may in fact be keystone species that can regulate entire
microbial environments, including host-associated microbiomes (Jousset et al., 2017).

The factor(s) that better explain the differences in gut microbial communities are of
interest for various disciplines in biomedical sciences. For instance, the results of this current
work showed that the factor ‘animal model’ generated the highest number of significantly
different OTUs, while ‘obesity status’ the lowest. Unlike other studies suggesting that
microbial signatures of obesity are not consistent between studies because of effect sizes
(Walters, Xu & Knight, 2014), in this study the lack of statistical difference in gutmicrobiota
between obese and lean is most likely due to the fact that the obese rodents were subject
to different dietary treatments, thus making difficult to dissect between obesity status
and dietary treatment. In this regard, the results of the analysis of UniFrac distances are
particularly important considering the thoughts discussed by Lozupone et al. (2007) that
explained that unweighted UniFrac is better suited to detect effects of different ‘‘founding’’
populations (e.g., the source of bacteria that first colonize the gut of newborn individuals
and factors that are restrictive for microbial growth such as temperature). In contrast, they
suggested that weighted UniFrac can more accurately reveal the effects of more transient
factors, for example nutrient availability. Host genetics can be considered as a founding
effect that since the moment of birth imposes certain restrictions to growth of some
microbes, and in our analyses the factor ‘animal model’ explained high proportion of the
variation when using unweighted distances. In contrast, the analysis of weighted distances
revealed that the effect of obesity status at sampling explained much more variability in the
data compared to unweighted analyses, a result that also makes sense if we consider obesity
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as a more transient condition that suddenly appeared in the host-microbiota relationship.
More research is needed to better investigate the relationship of the different factors as well
as their interactions in the gut microbiota.

This paper is not free of limitations. For instance, the transport, storage and DNA
extraction methods can drastically affect the reported microbial community structure
(Martinez et al., 2019). These and other factors should be considered when studying
the microbial composition of gut samples. Also, there is often overlap between factors
affecting our view of the gut microbiota, for instance in this study the weight of the
factor ‘‘sequencing technique’’ may be masked by the use of different primers or DNA
extraction method, and obesity status influenced the dietary regimen (i.e., obese animals
are more often subject to dietary manipulation). More importantly, the most recent ways
to catalogue marker 16S genes (e.g., DADA2) are offering more accurate but also more
conservative views of microbial diversity that may need radical conceptual improvements,
for example considering the evolution of the non-coding strand of the 16S rRNA gene
(Garcia-Mazcorro & Barcenas-Walls, 2016).

CONCLUSIONS
In summary, diet and the gut microbiota are strongly related to host health and their
interactions are ‘‘convoluted and multi-faceted’’ (Xu & Knight, 2015). This paper aimed
to contribute to current knowledge about the impact of using different analysis strategies
in the relationship between the gut microbiota, diet and obesity. The results show that the
use of different strategies to select OTUs have an impact on the relative proportions of
bacterial taxa, particularly when using a closed OTU picking approach. This may be due
to the higher number of reference OTUs available for clustering the unknown 16S gene
sequences as well as the number of used reads between closed97 and closed99 strategies.
We also demonstrated the impact of using OTU reference sequences clustered at different
similarity percent and confirmed previous observations regarding a strong study effect.
We invite others to consider and further expand the feasible possibility that the variations
among studies are related to the individuality of bacteria. Overall, the results are useful to
guide future research and meta-analyses aiming to investigate the complex relationship
between diet, health, and the gut microbiota.
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