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ABSTRACT
Stem cells are primitive and precursor cells with the potential to reproduce into diverse
mature and functional cell types in the body throughout the developmental stages of life.
Their remarkable potential has led to numerousmedical discoveries and breakthroughs
in science. As a result, stem cell–based therapy has emerged as a new subspecialty in
medicine. One promising stem cell being investigated is the induced pluripotent stem
cell (iPSC), which is obtained by genetically reprogramming mature cells to convert
them into embryonic-like stem cells. These iPSCs are used to study the onset of disease,
drug development, andmedical therapies.However, functional studies on iPSCs involve
the analysis of iPSC-derived colonies through manual identification, which is time-
consuming, error-prone, and training-dependent. Thus, an automated instrument for
the analysis of iPSC colonies is needed. Recently, artificial intelligence (AI) has emerged
as a novel technology to tackle this challenge. In particular, deep learning, a subfield
of AI, offers an automated platform for analyzing iPSC colonies and other colony-
forming stem cells. Deep learning rectifies data features using a convolutional neural
network (CNN), a type of multi-layered neural network that can play an innovative
role in image recognition. CNNs are able to distinguish cells with high accuracy based
on morphologic and textural changes. Therefore, CNNs have the potential to create
a future field of deep learning tasks aimed at solving various challenges in stem cell
studies. This review discusses the progress and future of CNNs in stem cell imaging for
therapy and research.

Subjects Bioinformatics, Cell Biology, Computational Biology, Radiology and Medical Imaging,
Translational Medicine
Keywords Stem cell, Biomedical imaging, Artificial intelligence, Machine learning, Deep learning,
Convolutional neural network, Induced pluripotent stem cell, Hematopoietic stem cell, Medical
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INTRODUCTION
Stem cells represent a new frontier for regenerative medicine and various therapeutic
applications. Stem cells are unspecialized cells in the human body. They have the ability
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to undergo self-renewal division and create more stem cells that are fundamental to
the maintenance of an undifferentiated stem cell pool. Specifically, self-renewal division
allows a stem cell to produce two daughter stem cells of different cellular fates, with
one cell undergoing terminal differentiation while the other one maintains its self-renewal
properties (Wilson, Laurenti & Trumpp, 2009). Stemcells also have the remarkable potential
to initiate differentiation into specialized progenitor cells and subsequently differentiate
into terminally differentiated mature and functional cells in respective organs. Stem cell
populations are established in niches that are known as ‘‘in vivo microenvironments,’’
where the stem cells can reside and receive stimuli that regulate their cellular fate (Zhang
& Li, 2008).

In general, stem cells are commonly classified into embryonic stem cells (ESCs), adult
stem cells (ASCs), and induced pluripotent stem cells (iPSCs) (Alvarez et al., 2012). ESCs
are pluripotent stem cells that can differentiate into all derivatives of the ectoderm,
endoderm, and mesoderm germ cell layers that consist of lineage-specific stem cells, such
as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), and neural stem
cells (NSCs). Thus, the germ layers contain stem cells that are crucial to the development
of various tissue types in the body and which are currently being used to treat various
pathological disorders (Mimeault, Hauke & Batra, 2007). In contrast, ASCs aremultipotent
stem cells that have less differentiation potency than ESCs. Of note, ASCs are tissue-specific
stem cells that can only undergo differentiation in tissue-specific cells, such as blood cells,
skin, bone, cartilage, and cardiac muscles (Pessina & Gribaldo, 2006). Lastly, iPSCs are
obtained by genetically reprogramming mature cells into embryonic-like stem cells. Via
iPSC technology, terminally differentiated cells are induced into becoming pluripotent
again, at which point they can function similarly to ESCs (Yamanaka & Blau, 2010).

Recently, iPSCs have gained popularity because their usage does not raise major ethical
issues, as ESCs do (Fan et al., 2017). Moreover, iPSCs are known to express specific genes
and proteins as well as differentiation patterns that are believed to be identical to ESCs
(Chagastelles & Nardi, 2011; Nordin, Ahmad & Farzaneh, 2017). In addition, iPSCs are
known to assist in detecting the earliest disease-causing events in cells, making them
extremely beneficial in various cell-based therapies (Kavitha et al., 2017). However, there
is a limitation associated with using iPSCs in medicine. Human error is possible while
evaluating iPSCs quality through colony morphology, which is a crucial obstacle to
overcome prior to attempting further experimental or therapeutic approaches. This
problem calls for an automated system that can reduce errors and provide optimal
iPSC analysis. To overcome this limitation, the application of artificial intelligence (AI)
technology is recommended. Using AI with deep learning–based algorithmic frameworks
has become a common approach to solving various problems related to iPSC analysis
(Kusumoto & Yuasa, 2019). The major fields for AI include machine learning (ML),
natural language processing (NLP), computer vision, robotics, and autonomous vehicles.
ML is an algorithm that allows a computer to learn the formation and classification of
patterns in large datasets without being explicitly programmed to do so. One form of ML is
deep learning, which learns data features using a multi-layered neural network that mimics
the human neural circuit structure (Kusumoto & Yuasa, 2019).
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The convolutional neural network (CNN), which is one type of supervised approach to
deep learning, has improved the results of image recognition studies (Krizhevsky, Sutskever
& Hinton, 2012;Zeiler & Fergus, 2014; Szegedy et al., 2015;He et al., 2015;Zeng et al., 2016).
However, despite the findings reported in these studies about the potential applications
of AI in medical image analyses, such as for breast cancer detection (Azli et al., 2018;
Rodríguez-Ruiz et al., 2019) and lung pathology (Van Riel et al., 2017; Hwang et al., 2019),
studies into the applications of AI in stem cell analysis have been limited. Therefore, we
believe that AI-based technology, specifically CNNs, can have a great impact on stem cell
biology research, as the performance of CNNs has been proven to equal the performance
of human experts (Rawat & Wang, 2017; Yadav & Jadhav, 2019).

To date, only a few of studies concerning the use of AI in medical fields were focusing
on the use of CNNs in stem cell studies, specifically for iPSCs. These reports describe the
potential applications of CNNs in the recognition of cell regions of human iPSCs using
microscopy images (Yuan-Hsiang Chang et al., 2017), the recognition and classification
of iPSC colonies from microscopy images (Fan et al., 2017), the identification of iPSC-
derived endothelial cells (iPSC-ECs) without the need for immunostaining and lineage
tracing (Kusumoto et al., 2018), and the identification of undifferentiated pluripotent stem
cells from early differentiating cells with more than 99% accuracy (Waisman et al., 2019).
Therefore, the prime objective of this review is to highlight and discuss the progress and
future of AI-based technology, specifically CNNs, which can be used in the biomedical
field, particularly for stem cell–based therapy and research. Moreover, particular attention
is given to ongoing studies using AI-based technology as an automated and robust platform
for improving the analysis of iPSC-derived colonies and potentially for analyzing other
colony-forming stem cells, such as HSCs. This research is critical, as manual analysis of
colony-derived stem cells is time-consuming, error-prone, and training-dependent. Thus,
this review is intended for research scientists, medical practitioners, educators, and students
interested in using AI-based technology, particularly CNNs, for biomedical and stem cell
biology applications.

This review is organized as follows. ‘‘Survey Methodology’’ elaborates on the search
criteria we used to find articles and references. ‘‘Overview of Stem Cells’’ discusses the
properties of stem cells. ‘‘Stem Cell–Based Therapy’’ discusses the use of stem cells in
treatments of diseases. ‘‘Emerging Artificial Intelligence Technology’’ discusses the rise of
AI and how it is employed as a novel technology in various sectors. ‘‘Machine Learning’’
provides information on the relationships between ML and AI, the types of ML, and
how ML works. ‘‘Deep Learning’’ discusses the relationship of DL to ML and how DL
works. Current applications of CNNs, the history of CNNs, and a discussion of how CNNs
learn are provided in ‘‘Convolutional Neural Networks.’’ The applications of CNNs in
medical analysis and cell biology are discussed in ‘‘Convolutional Neural Networks in
Medical Analysis’’ and ‘‘Convolutional Neural Networks in Cytobiology,’’ respectively.
‘‘Convolutional Neural Networks in Pluripotent Stem Cell Studies’’ reviews the ability
of CNNs to identify and classify pluripotent stem cell colonies. Future applications of
AI-based CNNs in improving the analysis of other colony-forming stem cells, particularly
HSC-derived colonies from myeloid, erythroid, and lymphoid lineages, are described in
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‘‘Future Applications of Artificial Intelligence Technology in Hematopoeitic Stem Cell
Analysis.’’ Finally, the conclusions of this study are presented in ‘‘Conclusions.’’

SURVEY METHODOLOGY
Table 1 summarizes the article selection criteria used to construct this review. Briefly,
journal databases, mainly Google Scholar and PubMed, were used to research the scholarly
articles reviewed in this paper. The keywords used to search for these articles included
‘‘AI,’’ ‘‘ML,’’ ‘‘deep learning,’’ ‘‘convolutional neural network,’’ ‘‘induced pluripotent stem
cell,’’ ‘‘hematopoietic stem cell,’’ ‘‘biomedical imaging,’’ ‘‘medical analysis,’’ ‘‘cell biology,’’
‘‘morphology,’’ and ‘‘pattern recognition.’’ The inclusion criteria for the selected articles
required the articles to be related directly to AI and its technology, medical and biological
imaging, and stem cell studies. The searches were not refined by publishing date, authors,
author affiliations, journals, or the impact factors of the journals. The quantitative articles
provided measurable data that uncovered trends and patterns in medical image analysis
via AI. The qualitative articles provided insights into the problems and ideas or hypotheses
underlying the applications of AI in various medical sectors. In summary, this review is
based on 124 references comprised of 54 original research articles, 48 review articles, five
conference papers, five books, four commentary papers, four reports, two webpages, one
regular article, and one essay. These references focused on the use of AI technology in
medical analysis, cell biology, and stem cell analysis, primarily for colony-forming stem
cells.

Overview of stem cells
Stem cells are defined as undifferentiated cells with the ability to perform self-renewal
division and differentiation into any specific cell types of an organism. Self-renewal is a
fundamental property of stem cells that distinguishes them from terminally differentiated
cells, which allow the stem cells to go through numerous cycles of cell growth and cell
division while sustaining their undifferentiated state and tissue regenerative potential
(Molofsky, Pardal & Morrison, 2004; Menon et al., 2016). Stem cells undergo self-renewal
division via two distinct models that are crucial for the maintenance of tissue hemostasis
(Fig. 1). In the symmetrical division model, a stem cell can divide into two new stem
cells while maintaining its self-renewal properties or to two differentiated daughter cells.
Alternatively, asymmetrical cell divisions can take place, through which a stem cell gives
rise to an identical stem cell, and the other daughter cell undergoes differentiation into a
more specialized cell (Shahriyari & Komarova, 2013; Łos, Skubis & Ghavami, 2018).

Stem cells can be further classified based on their differentiation potency and
origin. In terms of potency, stem cells are divided into five main categories: totipotent,
pluripotent, multipotent, oligopotent, and unipotent (Kmiecik et al., 2013; Maleki et al.,
2014). Totipotent stem cells are cells that can divide and differentiate into all cell lineages of
the whole organism in all three germ layers (mesoderm, endoderm, and ectoderm) as well as
into placental cells. These cells are regarded as having the highest differentiation potential,
as they are able to generate both embryonic and extra-embryonic cells (Zakrzewski et al.,
2019). An example of a totipotent cell is the zygote, which is formed from the fertilization
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Table 1 Summary of the article selection criteria used to construct this review.

No. Category Description

1 Journal Databases 1. Google Scholar
2. Pubmed

2 Inclusion Criteria 1. Articles contain the keywords ‘‘artificial intelligence’’,
‘‘machine learning’’, ‘‘deep learning,’’ ‘‘convolutional
neural network,’’ ‘‘induced pluripotent stem cell,’’
‘‘hematopoietic stem cell,’’ ‘‘biomedical imaging,’’ ‘‘medical
analysis,’’ ‘‘cell biology,’’ ‘‘morphology,’’ and ‘‘pattern
recognition.’’
2. Articles that are related directly to artificial intelligence
and its technology, medical and biological imaging, and
stem cell studies.
3. The searches for articles were not refined by publishing
date, authors, author affiliations, journals, or the impact
factors of the journals.
4. Quantitative articles that provided measurable data that
uncovered trends and patterns in medical image analysis via
artificial intelligence.
Qualitative articles that provided insights into the problems
and ideas or hypotheses underlying the applications of
artificial intelligence in various medical sectors.

3 Exclusion Criteria None
4 Types of articles 1. 53 original research articles

2. 48 review articles
3. 5 conference papers
4. 5 books
5. commentary papers
6. 4 reports
7. 2 webpages
8. 1 regular article
9. 1 essay

of an oocyte by a sperm. Pluripotent stem cells are the cells that can differentiate into
all three germ layers, excluding the placenta. Specifically, they can differentiate into any
fetal or adult cell types, but not embryos (Loya, 2014). ESCs are one example. ESCs are
derived from the inner cell mass of a blastocyst. Another example of a pluripotent stem
cell is the iPSC, which is artificially produced from somatic cells by induction/genetic
reprogramming and displays similar functional properties to the PSC (Zakrzewski et al.,
2019). Multipotent stem cells can differentiate into discrete cell types. Examples include
HSCs, which can develop into all blood cell types (red blood cells, white blood cells,
and platelets), and MSCs, which can differentiate into a variety of cell types, including
osteoblasts, chondrocytes, and adipocytes (Mitalipov & Wolf, 2009). Oligopotent stem
cells, which usually are present in a specific tissue, only differentiate into cells of a specific
lineage (Kolios & Moodley, 2013). Examples include the myeloid and lymphoid progenitor
cells, which differentiate into the blood cells of their respective lineages (Zakrzewski et
al., 2019). Lastly, unipotent stem cells, which have the narrowest differentiation ability,
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Figure 1 Schematic representation of a stem cell division models in relation to self-renewal and the
differentiation potential. (A) In symmetrical division model, a stem cell divides into two new stem cells
or two differentiated cells; (B) In the asymmetrical division, one parent stem cell divides into one stem cell
and one differentiated cell. Image adapted from Shahriyari & Komarova (2013).

Full-size DOI: 10.7717/peerj.10346/fig-1

can only produce cells of their own type, though they have a self-renewal property (Loya,
2014; Zakrzewski et al., 2019). Hepatoblasts, which can differentiate into hepatocytes, are
an example of unipotent stem cells.

Stem cells can also be categorized based on their origin. The common categories of
stem cells based on their origin are ESCs, ASCs, and iPSCs (Bongso & Richards, 2004; Ilic &
Polak, 2011). Being a pluripotent, ESCs derive from the inner cell mass of the late blastocyst
(Evans & Kaufman, 1981) and are capable of differentiating into cells in the three germ
layers 5–6 days after fertilization (Łos, Skubis & Ghavami, 2018). Human ESCs were first
obtained in 1998 but were limited in use due to the debatable ethical concerns around
their harvesting, which required the destruction of an embryo (Zhao et al., 2012;Wu, 2015;
Menon et al., 2016; Damdimopoulou et al., 2016). Most ESCs are now generated from eggs
fertilized in an in vitro clinic rather than from eggs fertilized in vivo (Zakrzewski et al.,
2019). ASCs, which are also regarded as somatic stem cells, are multipotent and therefore
involved in tissue maintenance and growth (Seo, Hong & Do, 2017). They are found in
the microenvironment (niche) of the body and among differentiated cells (Łos, Skubis &
Ghavami, 2018; Zakrzewski et al., 2019). Some examples of ASCs include MSCs, which are
responsible for generating bone, cartilage, and fat cells; neural cells, which differentiate into
nerve cells, oligodendrocytes, and astrocytes; HSCs, which form progenitor and mature
blood cells; and skin stem cells, which produce layers of protective skin (Zakrzewski et al.,
2019). In addition, iPSCs are cells generated from adult somatic stem cells through genetic
reprogramming (Wasik et al., 2014; Hirschi, Li & Roy, 2014; Hosoya & Czysz, 2016; Cieślar-
Pobuda et al., 2017). In 2006, Yamanaka and Takahashi overexpressed four transcription
factor genes, encoding Oct4, Sox2, Klf4, and c-Myc into somatic cells, which induced the
cells to revert to the pluripotent state (Takahashi & Yamanaka, 2006). This breakthrough
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made iPSCs a better candidate than ESCs for new drug development, disease modeling, and
regenerativemedicine (Kolios & Moodley, 2013), as the iPSCs exhibited similar self-renewal,
morphology, growth kinetics, and gene expression properties to the ESCs without raising
major ethical issues (Łos, Skubis & Ghavami, 2018).

Stem cell therapy
The ability of stem cells to build every tissue in the human body makes them a great
candidate for therapeutic tissue regeneration. As mentioned above, stem cells are able to
undergo self-renewal and differentiation. Self-renewal produces progeny that are identical
to the originating cell, whereas differentiation can produce specialized cell types that can
repair or replace old or damaged cells (Reya et al., 2001). Since the 1960s, multipotent
blood stem cells taken from bone marrow have been used to treat blood disorders, such
as leukemia, myeloma, and lymphoma, as these cells are able to generate lymphocytes,
megakaryocytes, and erythrocytes. Recent studies have investigated the treatment of other
diseases using stem cells derived from bone marrow. One such study reported success
in engineering an entire articular condyle in rats using MSCs, giving rise to bone and
cartilage (Alhadlaq & Mao, 2005). In the future, multipotent stem cells are speculated to
revolutionize regenerative medicine due to their potentially high plasticity, which may
make them capable of differentiating into unrelated cell types.

Another cell with the potential to be used in stem cell therapy is the PSC. Although
pluripotent stem cells are likely to be used in stem cell therapy due to their potency, these
cells were not used in this field at first, as multiple animal studies resulted in the formation
of teratomas, a mixture of cell types from all the germ layers (Biehl & Russell, 2009). This
issue was solved later when the PSCs were modified to limit their proliferative capacity.
This breakthrough allowedmanymore studies to be conducted on animals to treat a variety
of diseases, such as heart failure, muscular dystrophy, and Parkinson’s disease (Laflamme et
al., 2007; Darabi et al., 2008; Wernig et al., 2008). However, ethical issues still surrounded
the use of pluripotent cells in multiple types of therapy. This controversy began because
scientists isolating ESCs in the lab had to damage the embryo, which had the potential to
become a living organism (Zakrzewski et al., 2019). This issue was solved when Yamanaka
and Takahashi successfully reverted multipotent ASCs into a pluripotent state (Takahashi
& Yamanaka, 2006). This new cell, the iPSC, faced no ethical issues, as no embryos were
damaged. Following this breakthrough, iPSCs became a promising source of PSCs that
could be used in stem cell therapy for the treatment of various diseases.

Emerging artificial intelligence technology
AI has been used widely in a number of industries related to computerized personal
assistants and self-driving cars (Galbusera, Casaroli & Bassani, 2019). Recently, AI has
also been employed to solve problems and challenges in medical data analysis (Saad et al.,
2019). AI is an artificial form of human intelligence that can support wide-ranging branches
of computer science. AI procedures involve learning, self-thinking, and self-amendment
(Wang, Zhang & Wang, 2019). In the learning phase, AI machines acquire and standardize
data for further use. The output from the learning phase is then used to generate rules in
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the thinking phase. Then, during self-amendment, which is the last phase, the system will
determine the optimal rules and make changes to the system based on the data obtained.

To date, many AI structures incorporate expert systems, speech recognition, and
machine vision. Due to the need in medicine for an automated data analysis system
to analyze huge numbers of microscopic images, ML is promising (Conrad & Gerlich,
2010; Lock & Strömblad, 2010). The main aim of computer data analysis is to maintain
objectivity and consistency while processing huge datasets in addition to reducing the
workload for researchers (Danuser, 2011). Bio-image strategies offer ground-breaking
solutions for specific image analysis tasks, such as object recognition, morphometric
feature measurements, or motility analysis (Danuser, 2011; Eliceiri et al., 2012;Myers, 2012;
Murphy, 2014). However, for most biological tests, specific image analysis algorithms have
been developed, and using each algorithm for every cell marker and cell type often requires
reprogramming the software and adjusting the parameters of which ML offers the most
intriguing and promising performance.

Machine learning
While the terms ‘‘artificial intelligence’’ and ‘‘machine learning’’ are sometimes used
interchangeably,ML is actually a branchofAI. The term ‘‘machine learning’’ was introduced
in 1959 by Arthur Samuel, who characterized it as the ability of computers to learn
without being expressly modified (Samuel, 2000). This concept requires humans to furnish
machines with the information they require for learning so that the machines can complete
tasks or make choices without being programmed to do so. Neural networks, which are
defined as a computational learning system to characterize and sort out information like
the human brain, have progressed the field of AI. An ML system can make a computed
assumption based on the best odds and is even ready to learn from prior errors, making
the system ‘‘intelligent’’ (Adedokun, 2019).

There are three forms of ML: supervised, unsupervised, and reinforcement learning
(Galbusera, Casaroli & Bassani, 2019). Supervised learning deals with problems of guideline
learning in which the training data includes label samples. The underlying mathematical
model will learn its parameters and use the labeled samples to predict and classify the test
samples. Unsupervised learning is a form of ML that does not require examples with class
labels. Reinforcement learning includes feedback from the environment. Thus, it is not
exactly unsupervised. This approach does not possess any label samples for training and
consequently cannot be treated as supervised learning either. ML works by studying the
processing regulations from model examples instead of depending on manual changes to
parameters or processing steps that had been fixed earlier (Franklin, 2005; Bishop, 2006;
Domingos, 2012). ML is better than traditional image processing programs due to its ability
to solve complex multi-dimensional data evaluation tasks, such as distinguishing between
complex morphologies with only a few parameters (Boland & Murphy, 2002; Conrad et al.,
2004; Neumann et al., 2010). ML has a long history and is part of many sub-fields, among
which deep learning is the primary focus of this study.
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Deep learning
Deep learning is a subset and prevalent field of ML that learns from data via computational
modeling of the learning process. It utilizes algorithms to process information, comprehend
human speech, and perceive objects visually (Adedokun, 2019). Though AI has faced
multiple problems over the years with facial recognition, speech recognition, and computer
vision, deep learning has provided solutions to all these issues (Lecun, Bengio & Hinton,
2015). Artificial neural networks (ANNs) provide the foundation for developing deep
learning. An ANN is a common ML technique that simulates the learning mechanism of
a biological organism. Inspired by the ability of the human brain to achieve non-linear,
parallel, and complex computations, ANNs have been proven to be universal function
approximators when given sufficient neurons within the hidden layer of their networks
(Kyaw, Oo & Zaw, 2019).

Deep learning models ordinarily utilize various hierarchical structures to connect all
layers, where the data output from the lower layers will be the input for the higher layers.
This characteristic enables deep learning models to change low-level data features into
high-level abstract features (Du et al., 2017), making the deep learning models better at
feature representation than other shallow ML models, such as support vector machines
(SVM) (Cortes & Vapnik, 1995) and boosting (Freund & Schapire, 1997). Figure 2 shows
the relationship between AI, ML, ANNs, and DL.

According to Du et al., deep learning has reduced the dependency on users for operation,
as this system approach depends on data, in contrast to conventional ML methods that
rely on the experience of the user. Along with the progress seen in computer technology,
computer performance, and the proliferation of data on the internet, deep learning has
developed rapidly and has become an important technique for ML. CNNs are one of the
architectural types for deep neural networks and come from a family of multi-layer neural
networks principally constructed for two-dimensional data processing, such as images and
videos (Arel, Rose & Karnowski, 2010).

Convolutional neural networks
CNNs are one variant of neural networks that are employed primarily in image
classification, aggregation based on image similarity, and object recognition. The model for
CNNs was inspired and enhanced by the memory processing of the primate visual cortex
(Fu et al., 2016). Originally, CNNs were extensively applied in object recognition tasks.
However, they have now been widely used for object detection and recognition, action
recognition, visual labeling, and more (Jialue Fan et al., 2010; Donahue et al., 2013; Farabet
et al., 2013; Jaderberg, Vedaldi & Zisserman, 2014).

Recently, CNNs have consistently performed well in generic visual recognition tasks
(Krizhevsky, Sutskever & Hinton, 2017), which has revived a broader interest in CNN-based
classification models (Razavian et al., 2014). CNNs obtain hierarchical and high-level
feature representations by dealing with various levels of input images and are now involved
in many computer vision applications, such as auto-driving, robotics, drones, medical
diagnostics, and treatments for vision problems. Neocognitron, a self-organizing neural
network model for a mechanism of pattern recognition that was built in 1980, has been
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Figure 2 Relationship between artificial intelligence, machine learning, artificial neural networks and
deep learning. Artificial Intelligence is the largest scope that contains the subset of Machine Learning. Un-
der Machine Learning is the Artificial Neural Network, and Deep Learning is the subset of Artificial Neu-
ral Network.

Full-size DOI: 10.7717/peerj.10346/fig-2

regarded as the precursor to CNNs (Fukushima, 1980). In 1998, LeCun created LeNet, an
ANN with multiple layers that became a major contributor to the development of CNNs
(LeCun et al., 1998). LeNet was constructed to classify handwritten digits and recognize
visual patterns from input images with no pre-processing steps. However, this model failed
to perform well in dealing with complex problems due to insufficient training data and
computing capacity.

In 2012, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) competition
was held, where Krizhevsky and his colleagues produced a CNN model that successfully
reduced the annotation errors in large-scale image classification (Russakovsky et al.,
2015). This model was AlexNet, an in-depth CNN architecture consisting of five layers
of convolution followed by three fully connected layers, which brought substantial
improvements to image classification tasks. Ever since, AlexNet has been regarded as
one of the most prominent developments in the field of computer vision and has been used
by many researchers to test variations in the design of CNNs. For example, after AlexNet,
several architectures, such as GoogleNet (Szegedy et al., 2015), VGGNet (Simonyan &
Zisserman, 2014), ZFNet (Zeiler & Fergus, 2014), and ResNet (He et al., 2015), have been
developed and have demonstrated boosted performance.
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Figure 3 Convolutional neural network architecture. The convolutional neural network architecture is
composed of convolution layers, pooling layers, connected layers and softmax layer.

Full-size DOI: 10.7717/peerj.10346/fig-3

CNNs learn image features from basic data. As illustrated in Fig. 3, the CNN architecture
is composed of convolution layers, pooling layers, connected layers, and softmax layers. It
is still a hierarchical network like the ANN, but the structure and shape of the layers have
changed. The CNN framework can be divided into two parts: the feature extraction part
(the convolution layers and pooling layers) and the classification part (the fully connected
layers). First, an image is passed through a series of convolution layers, then through the
pooling layers for feature extraction, and finally through the fully connected layers for
classification. The role of the convolution layers is to create a feature map in different sizes,
which are then reduced by the pooling layers before being transferred to the upcoming
layers. The preliminary layers will identify the simple structures in the image, such as
the edges, blobs, and lines, whereas the neurons in the deeper layers will detect the more
complex structures (Anwar et al., 2018). The fully connected layers produce the required
class prediction as an output via probability distribution over the number of j class. A
function called ‘‘softmax’’ may be used to predict the output by its probability, P, for each
j class in a sample vector x:

P
(
y = j|x

)
=

ex
Twj∑K

k=1e
xTwk

,

where w is a weighting vector.
To ensure the CNN performs at a high level, the network must go through a training

phase to learn the best possible weights of the images. The CNNgives a better representation
of the images as the error signal attained by the loss function is propagated back to improve
the feature extraction part. One of the most commonly used optimization algorithms in
the training phase for deep learning is the stochastic gradient descent (SGD). The SGD
iteratively updates the parameters, such as the weights in the network, by minimizing the
cross-entropy loss function, J (θ), as shown in the following formula:

J (θ)= 1
j
∑j

i=1H (xj,yj),

where x is the desired output class, y is the actual output class, and H is the cross entropy
between x and y.
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Convolutional neural networks in medical analysis
Medical imaging is a fundamental part of the diagnosis and treatment of illnesses in
clinical practices since it produces visual data of the human body. To date, AI is the
best-performing technology in healthcare for the analysis of medical images and big data
(Datta, Barua & Das, 2020). The impact of AI in this field is significant, especially because
it assists clinicians in the analysis and interpretation of medical images, has great accuracy,
enhances workflow, and reduces medical errors; in addition, it assists patients through the
use of algorithms in devices such as smartwatches (Fingas, 2018; Victory, 2018), recording
the patient data and making it available for processing and tracking (Topol, 2019). Many
recent studies have used AI technologies and their components, particularly ML and DL,
to improve healthcare systems (Dzobo et al., 2020;Milstein & Topol, 2020), support disease
and abnormality detection through medical imaging (Berzin & Topol, 2020; Nagendran
et al., 2020; Thomford et al., 2020), analyze and handle big data (Keyes et al., 2020), and
facilitate organ damage detection (Agur, Daniel & Ginosar, 2002).

In addition, digital image processing assists in segmentation, classification, and
irregularity detection in the analysis of medical images produced by various clinical imaging
modalities (Anwar et al., 2018). Medical imaging extracts significant data for diagnosis and
research purposes, such as the location and divisions of anatomical abnormalities (Schlegl
et al., 2015) and different body structures (Rahman, Desai & Bhattacharya, 2008; Zaki et
al., 2011). This system also helps clinicians to make diagnoses and prescribe treatments
efficiently. Huge datasets of images are generated annually by clinical departments and
are assessed by clinical experts, and these images include epidemiological information
and markers that are relevant during diagnosis and treatment (Schlegl et al., 2015). Due to
the growing number of medical images with clinical information, a system is required to
handle the big data analysis.

The development of computer vision demonstrates how deep learning methods can be
used to manage big data medical image analysis, as evidenced by a recent study where deep
learning was applied to medical image analysis groups across the world (Greenspan, Van
Ginneken & Summers, 2016). CNN is the most suitable model of deep learning for medical
imaging, as it excels in learning useful representations of images and data (LeCun et al.,
1998).

An extensive review showed that CNN networks can provide promising results and can
be successful at medical image analysis. The accuracy and performance of the CNNdepends
on the number of images, the number of classes, and the model of CNN chosen to analyze
the images (Hussain, Anwar & Majid, 2018). Various studies have proven the success of
CNNs in medical image segmentation (Hussain, Anwar & Majid, 2018), computer-aided
diagnosis (Pratt et al., 2016; Ma et al., 2017; Sun et al., 2017; Berzin & Topol, 2020), and
disease detection and classification (Sirinukunwattana et al., 2016; Anthimopoulos et al.,
2016; Van Tulder & De Bruijne, 2016; Yan et al., 2016). As a result, Anwar et al. (2018)
concluded that CNNs perform better in medical analysis than other methods such as
Linear regression and SVM.
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Convolutional neural networks in cytobiology
Microscopes are undeniably important to the medical field and can detect abnormal cells.
Detecting cultured cells through a microscope is crucial in cytology, but is tedious when
done by a human expert, as this process is time-consuming and error-prone. However,
deep learning is capable of tackling this limitation, as it can analyze huge volumes of data
efficiently.

According to Kusumoto & Yuasa (2019), molecular biology is another significant field
where deep learning has potential, as each cell has uniquemorphological features. However,
few research studies have applied CNNs to cell identification. In silico labeling is a deep
neural network introduced by Christiansen et al. (2018) that can predict the location and
texture of cell nuclei, the state and type of a cell, and the type of subcellular structure using
images from bright field microscopy without the use of immunolabeling techniques. For
example, every hematopoietic cell from a specific lineage will have unique morphological
and cellular properties as a result of its differentiation from the primary stem cells. Thus,
deep learning systems use these unique properties to efficiently identify each type of
differentiated hematopoietic cell from a microscopy image (Buggenthin et al., 2017).

CNNs are effective in identifying human iPSCs with Top-1 and Top-2 error rates
of 9.2% and 0.84%, respectively (Yuan-Hsiang Chang et al., 2017)). In a research study
conducted by Niioka et al. (2018), a CNN was used in the identification of C2C12 cells
from phase-contrast images, where the myoblasts were differentiated into myotubes
(Niioka et al., 2018). The CNN extracted the changes in the morphological features and
classified them with 91.3% accuracy. CNN-based semantic segmentation can also classify
images at the pixel level by assigning each pixel in an image to a particular object category.
In addition, CNNs can allow the detection of object boundaries and object categorization
within the defined boundary area. Thus, semantic segmentation is widely practiced in
subject areas such as cell biology and the medical sciences (Kusumoto & Yuasa, 2019).
Semantic segmentation can not only recognize the location of a cell, but also points out
the category of the cell as well. Cells can also be sorted without molecular labels through
a method called ‘‘ghost cytometry,’’ whereby the morphological features are converted to
wave information utilizing a barcode system that categorizes and sorts the cells (Ota et al.,
2018).

Convolutional neural networks in pluripotent stem cell studies
Pluripotent stem cells are very well known in the fields of regenerative medicine, disease
modeling, and drug testing for their ability to become specific to all organism cell types
(Waisman et al., 2019). ESCs and iPSCs are two forms of pluripotent stem cells (PSCs).
The former derives from the early stage of an embryo, and the latter is obtained through
a genetic reprogramming procedure in which terminally differentiated somatic cells are
reversed back to the pluripotent state (Fan et al., 2017). Crucial morphological changes
take place during PSCs differentiation. For example, highly dense PSCs colonies may
produce a loosely organized cell structure. These morphological transformations can be
rather obvious to the naked eye. However, they are subjective. Therefore, they are not a
suitable measurement of cell differentiation.
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In iPSC-derived cells, the cellular physiology can be observed specifically, making iPSCs
useful for drug screening, disease analysis, and regenerative medicine. In addition, mature
endothelial cells that have been differentiated through iPSCs (Zhang et al., 2017) can be
used for disease modeling and organ formation. The cellular pathologies of Moyamoya
disease, aortic valve calcification, and pulmonary arterial hypertension can also be improved
by using iPSC-derived endothelial cells (iPSC-ECs) (Theodoris et al., 2015;Hamauchi et al.,
2016; Gu et al., 2017).

Cellular reprogramming procedures have a significant relationship to morphological
changes (Butler & Wallingford, 2017). Therefore, colony determination is one key problem
limiting the quality and consistency of iPSCs and contributes to the isolation and
purification of these colonies. A well-trained cell culture expert would be able to mitigate
this issue, but would need the time and budget to do so. In addition, human recognition
errors could contribute to misconceptions. In order to maintain a homogeneous culture
of undifferentiated cells and downstream expansion, the quality of the iPSC colony
identification must be controlled. A lack of the necessary downstream differentiation
into functional cells is possible if the colony identification is not consistent. Therefore,
an automated quantitative methodology with stable or constant colony maturation
identification is needed to effectively aid biologists during the iPSCs production stages
(Fan et al., 2017).

Application of CNNs in pluripotent stem cells studies was reported in a study conducted
by Kavitha et al. (2017). In this study, a vector-based convolutional neural network (V-
CNN) was developed using the extracted features of the iPSC colony for distinguishing
colony characteristics and was compared to SVM classifier using morphological, textural
and combined features. The performance of the V-CNN model was examined using
five-fold cross validation and it was found the precision, recall and F-measure values were
much higher than the SVM by 87–93%. The V-CNN model also showed higher accuracy
values for determining the quality of colonies based on morphological (95.5%), textural
(91.0%) and combined features (93.2%) as compared to the SVM classifier (87.6, 83.3 and
83.4% respectively). Likewise, the accuracy of the feature sets was higher than 90% for the
V-CNN model as compared to SVM that just yielded around 75–77%. This proved the
V-CNN model performs better than the SVM classifier for iPSCs colony classification.

Then, Fan et al. (2017) reported on a time-lapse-based imaging study using bright-field
microscopes that measured the morphological changes of the mesenchymal-to-epithelial
transition during the cellular reprogramming that precedes iPSCs colony formation.
However, the use of iPSCs in further applicationsmay be limited due to the quality of iPSCs,
which can only be checked by colony determination. Currently, colony determination is
done by experienced cell culture experts and is time-consuming, expensive, error-prone,
and inconsistent, which can lead to error and misjudgment. Therefore, an automated
system for consistent colony determination is needed to help biology experts studying the
iPSCs formation process. To this end, an ML model for the classification, segmentation,
and statistical analysis of colony selection has been established. This model can spot
changes in the cellular texture of reprogrammed human somatic cells as early as 7 days
after the 20–24-day process. Furthermore, a scientific model was created to statistically
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anticipate the best iPSC selection point after quantitatively resolving the reprogramming
process and iPSC colony formation. These experiments in detection and prediction were
verified biologically and evaluated with validation datasets. The findings of this study
concluded that the colonies detected by the algorithm had non-significant differences in
their biological features when compared to the colonies that were processed manually
using typical molecular methods.

To identify endothelial cells produced from iPSCs, Kusumoto et al. (2018) utilized CNNs
based on an automated methodology for this process without immunostaining or lineage
tracing. In the study, 200 images were acquired from one of four independent tests. Of
these, 640 were utilized for training, and 160 were utilized for validation. This study
trained the networks to identify endothelial cells produced from iPSCs in phase-contrast
images based only on the morphological features of the cells. This study was validated by
contrasting the immunofluorescence staining of the CD31 marker for the endothelial cells.
The efficiency of the method parameters was improved to make the prediction error-free.
This improvement was done iteratively and automatically. The results of this study prove
that the prediction accuracy of a CNN is directly dependent on the depth of the network and
the pixel size of the images to be analyzed. The study also shows via K-fold cross-validation
that CNNs can be improved to identify endothelial cells based on their morphological
features alone.

In an investigation by Waisman et al. (2019), light microscopic images of pluripotent
stem cells were used to train a CNN to distinguish pluripotent stem cells from early
differentiating cells. Images of the epiblast-like cells that were the result of mouse ESCs
differentiating after induction were taken at different time intervals. It was found that
the CNN model could be trained to recognize the ESCs from differentiating cells within
24–48 h with an outstanding accuracy higher than 99%. This trained CNN was found
to detect differentiating cells only minutes after the cells were stimulated to differentiate.
The CNN also performed well at mesoderm differentiation in human iPSCs. So far, this
approach is the best cell assay for verifying differentiation in such a short timeframe,
due to its accuracy (which is close to 100%) and low cost. The performance of the CNN
in accurately identifying cellular morphology in microscopic images will definitely have
substantial effects on the ways cell assays are conducted in the future. Table 2 summarizes
the overall applications of CNNs in pluripotent stem cells studies since 2017.

Future applications of artificial intelligence technology in
hematopoietic stem cell analysis
It has been shown that AI technologies via CNNs offer a better platform for the study of
iPSCs, particularly for the analysis of colonies. Thus, the applications of CNNs are likely
to expand in the near future to other types of stem cell analysis. HSCs could also benefit
from these advances in CNNs. In addition to iPSCs, HSCs are among the most established
and widely utilized stem cell sources for medical and research applications. HSCs are
vital to the maintenance of the hematopoietic system (Butko, Pouget & Traver, 2016).
They are a valuable resource for stem cell–based therapy and have been used in various
hematological research studies, ranging from toxicological, developmental biology, and
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Table 2 Applications of convolutional neural network on pluripotent stem cells studies since 2017.

Reference Title Objective Methodology Findings

Kavitha et al (2017) Deep vector-based convolutional
neural network approach for au-
tomatic recognition of colonies
of induced pluripotent stem cells

A V-CNN model is developed to distinguish
colony characteristics based on extracted features
of the iPSC colony

• A transfer function from the feature vectors to
the virtual image was generated at the front of the
CNN in order for classification of feature vectors
of healthy and unhealthy colonies

• Precision, recall, and F-measure values of the V-
CNN model were higher than the SVM classifier
with a range of 87–93%

• The performance of V-CNN model in distin-
guishing colonies was compared with the com-
petitive SVM classifier based on morphological,
textural, and combined features

• For the quality of colonies, the V-CNN model
showed higher accuracy values based on morpho-
logical (95.5%), textural (91.0%), and combined
(93.2%) features than those estimated with the
SVM classifier (86.7, 83.3, and 83.4%, respec-
tively)

• Five-fold cross-validation was used to investi-
gate the performance of the V-CNN model

• The accuracy of the feature sets using five-fold
cross-validation was higher than 90% for the
V-CNN model as compared to SVM that just
yielded around 75–77%

Fan et al (2017) AMachine Learning Assisted,
Label-free, Non-invasive Ap-
proach for Somatic Reprogram-
ming in Induced Pluripotent
Stem Cell Colony Formation De-
tection and Prediction

A computer vision system to recognize and assist
the classification of induced pluripotent mouse
embryonic stem cells colonies from microscopic
images

• CNN is used as classifier to recognize colonies • This algorithm shows no significant differences
(Pearson coefficient r > 0.9) in detection and
prediction of colonies in terms of biological fea-
tures compared to manually processed colonies

• Colonies are located and their boundaries are
detected by a semi-supervised segmentation
method

• Evaluation was completed by standard im-
munofluorescence staining, quantitative poly-
merase chain reaction (QPCR), and RNA-Seq for
verification of pluripotency

• Growth phase and maturation time window
of colony formation was estimated with trained
Hidden Markov Model (HMM) during the re-
programming procedure

• This system can predict the best selection time
window for iPSC colonies to prevent random
differentiation caused by overgrowth using data
from colonies traced via time-lapse

(continued on next page)
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Table 2 (continued)
Reference Title Objective Methodology Findings

Kusumoto et al (2018) The application of CNN to stem
cell biology

Recognition of iPSC-derived endothelial cells
based on morphological features using CNN

• Images were collected at day 6 of differentiation • The results proved that identification of iPSC-
derived endothelial cells can be made based on
morphology alone

• 200 images were attained from each of four in-
dependent experiments and of these, 640 images
were allocated for training and 160 were used for
validation

• Under K-fold validation, three experiments that
rendered 600 images were used for training phase
and 200 images from one experiment were allo-
cated for validation, in every possible combina-
tion

• CNN based LeNet and AlexNet model used

• F1 scores determined the performance, which
indicated the aggregate of recall and precision,
and on accuracy (portion of true predictions)

Waisman et al (2019) Deep Learning Neural Networks
Highly Predict Very Early Onset
of Pluripotent Stem Cell Differ-
entiation

Use CNNs to precisely forecast the beginning
of PSC differentiation in transmitted light mi-
croscopy images

•Mouse ESCs were cultured in distinct condi-
tions to maintain the ground state of pluripo-
tency

• CNNmodel could be trained to recognize the
ESCs from differentiating cells within 24–48 h
with an outstanding accuracy higher than 99%.

• Images were taken randomly through EVOS
microscope at consecutive hours post differenti-
ation

• This trained CNN was found to detect differ-
entiating cells only minutes after the cells were
stimulated to differentiate

• Light microscopic images of pluripotent stem
cells were used to train a CNN to distinguish
pluripotent stem cells from early differentiating
cells

• So far, this approach is the best cell assay for
verifying differentiation in such a short time-
frame, due to its accuracy (which is close to
100%) and low cost

• CNN based ResNet and DenseNet model used • The performance of the CNN in accurately
identifying cellular morphology in microscopic
images will definitely have substantial effects on
the ways cell assays are conducted in the future.

• 2134 images were selected for training and 400
for validation (200 in each group). Independent
prediction after training phase was done with 100
images (50 per group)

Notes.
CNN, convolutional neural network; iPSC, induced pluripotent stem cells; ESC, embryonic stem cell; SVM, support vector machine; V-CNN, vector-based convolutional neural network.
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drug testing applications (Ng & Alexander, 2017). Therefore, it is crucial to study and verify
the properties of HSCs using HSC-based functional assays. One of the fundamental HSC-
based functional assays for HSCs is the colony-forming unit (CFU) assay. The CFU assay is
a widely used assay to measure the proliferation and differentiation abilities of individual
hematopoietic stem and progenitor cells (HSPCs) within a sample. The measurements
are carried out by observing the colonies produced by each input progenitor cell for
each respective myeloid, lymphoid, or erythroid lineage. About 7–14 days of cultures
are required to allow the colonies to grow to a size that allows for accurate counting and
identification (Chow et al., 2018). However, accurately identifying the different colony types
in these cultures is challenging, often difficult to achieve, time-consuming, and error-prone,
particularly for those who are inexperienced or are using atypical cell sources or samples.
Thus, staff training is often an essential part of counting and classifying the colonies in a
CFU assay. One way to simplify the analysis of CFU assays and to overcome the limitations
of manual analysis is to perform colony counting and classification automatically without
compromising the information on lineage-specific progenitor cell growth.

As discussed earlier in this review, AI has shown a promising ability to extract features
and learning patterns from complex data and images. However, no study has reported
on the use of AI to perform automatic colony counting or to classify HSC-derived CFUs
based on simple images taken in a transmission light microscope. Thus, we believe that
AI technologies, particularly via CNNs, can be utilized to process images for automatic
cell pattern recognition and morphological analyses of CFU colonies cultivated from
hematopoietic progenitors of various lineages comprised of myeloid, lymphoid, and
erythroid lineages. As illustrated in Fig. 4, these progenitors are morphologically different
and require skilled and trained staff to be analyzed accurately (Chow et al., 2015). Due to
the significant limitations associated with manual analysis, attempts to more extensively
use hematopoietic CFU assays in clinical and research settings will be hampered. Thus,
automated systems using AI could be a potential solution to overcome these hurdles and
impact the future of stem cell studies in science and medicine.

CONCLUSIONS
There is compelling evidence for the remarkable potential of AI in the fields of medical and
health sciences. AI is expected to accelerate progress in biomedical research and to have
diagnostic, pharmaceutical, and therapeutic applications in multiple healthcare sectors.
Recently, convolutional neural networks (CNNs), a subfield of AI, have been applied to
analyze medical images due to their outstanding abilities in image classification, detection,
and segmentation. For stem cell studies, CNNs have revolutionized the morphological
analysis of stem cells. In particular, CNNs can identify induced pluripotent stem cells
(iPSCs) with high accuracy using microscopic images that replace the conventional
detection methods using molecular labeling techniques. This breakthrough significantly
advances the application of iPSCs in stem cell–based therapy and research. Because CNNs
are able to distinguish cells with high accuracy based on morphologic and textural changes,
we believe that CNNs will create a future field where AI is used for the analysis of other
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Figure 4 Microscopic images of lineage-committed hematopoietic progenitors using Colony Form-
ing Unit assay as taken using a smartphone (Samsung Galaxy J6).Myeloid progenitors comprise of: (A)
colony forming unit (CFU) for granulocyte-macrophage (CFU-GM), (B) granulocyte (CFU-G) and (C)
macrophage (CFU-M). Erythroid progenitors comprise of; (D) CFU for erythroid (CFU-E) and (E) burst-
forming unit erythroid (BFU-E). (F) Lymphoid progenitor for pre-B lymphoid.

Full-size DOI: 10.7717/peerj.10346/fig-4

stem cells, including hematopoietic stem cells (HSCs). In addition, CNNs can be used
for automatic cell pattern recognition and morphological analysis to distinguish colonies
from various hematopoietic progenitors in myeloid, lymphoid, and erythroid lineages.
Furthermore, cloud-based technologies can be utilized in the analysis of HSC colonies
from different hematopoietic lineages by capturing microscopic images on smartphones.
In conclusion, AI-based technologies are likely to have a significant impact on accurate
cellular morphology recognition and stem cell studies in the near future.
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