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ABSTRACT
Marine organisms are important to global food security as they are the largest source
of animal proteins feeding mankind. Genomics-assisted aquaculture can increase yield
while preserving the environment to ensure sufficient and sustainable production for
global food security. However, only few high-quality genome sequences of marine
organisms, especially shellfish, are available to the public partly because of the difficulty
in the sequence assembly due to the complex nature of their genomes. A key step
for a successful genome sequencing is the preparation of high-quality high molecular
weight (HMW) genomic DNA. This study evaluated the effectiveness of five DNA
extraction protocols (CTAB, Genomic-tip, Mollusc DNA, TIANamp Marine Animals
DNA, and Sbeadex livestock kits) in obtaining shrimp HMW DNA for a long-read
sequencing platform. DNA samples were assessed for quality and quantity using a
Qubit fluorometer, NanoDrop spectrophotometer and pulsed-field gel electrophoresis.
Among the five extraction methods examined without further optimization, the
Genomic-tip kit yielded genomic DNA with the highest quality. However, further
modifications of these established protocols might yield even better DNA quality and
quantity. To further investigate whether the obtained genomic DNA could be used
in a long-read sequencing application, DNA samples from the top three extraction
methods (CTAB method, Genomic-tip and Mollusc DNA kits) were used for Pacific
Biosciences (PacBio) library construction and sequencing. Genomic DNA obtained
fromGenomic-tip andMollusc DNA kits allowed successful library construction, while
the DNA obtained from the CTAB method did not. Genomic DNA isolated using
the Genomic-tip kit yielded a higher number of long reads (N50 of 14.57 Kb) than
those obtained fromMollusc DNA kits (N50 of 9.74 Kb). Thus, this study identified an
effective extraction method for high-quality HMW genomic DNA of shrimp that can
be applied to other marine organisms for a long-read sequencing platform.
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INTRODUCTION
Seafood is the largest source of animal protein (FAO, 2016), making aquaculture the
world’s fastest growing food-production (Anderson et al., 2017). The industry strives
to increase production capacity while reducing cost by utilizing modern technologies.
Genome sequence can serve as an important tool for the identification of key pathways
to guide potential functions (Collins et al., 2003; Ramanan et al., 2012). Genome sequence
has enabled the identification of single nucleotide polymorphisms (SNPs) and genetic
markers for desirable traits (Zwane et al., 2019) such as productivity, disease resistance
and reproductive maturation (Guppy et al., 2018). For instance, specific SNPs for growth
performance and immunity traits have been identified and utilized for breeding programs
assisted by genomic selection in Blanco Orejinegro cattle (Martínez et al., 2010; Martínez
et al., 2016), chicken (Li et al., 2013; Xie et al., 2012) and pig (Geraci et al., 2019; Yang et al.,
2019). Genomics has indeed contributed to the exponential growth of terrestrial animal
production, yet it has not been fully exploited in aquaculture industry due to several
challenges in obtaining whole genome sequences of marine organisms.

With continuing progress of sequencing technology, whole genome assemblies of few
marine organisms are now available such as Atlantic salmon (Salmo salar) (Davidson et
al., 2010), Atlantic cod (Gadus morhua) (Star et al., 2011), Pacific oyster (Crassostrea gigas)
(Zhang et al., 2012), Pacific white shrimp (Litopenaeus vannamei) (Zhang et al., 2019),
Black tiger shrimp (Penaeus monodon) (Uengwetwanit et al., 2020) and Rainbow trout
(Oncorhynchus mykiss) (Berthelot et al., 2014). Although whole genome sequencing and de
novo assembly have become a routine method for functional genomics studies, genome
sequencing of non-model organisms with a large proportion of long repetitive sequences
such as marine invertebrates remains challenging. Recently, the long-read sequencing
platforms present an alternative approach to overcome those challenges with the following
advantages: (i) longer read length to facilitate de novo assembly and enable direct detection
of haplotypes and even whole chromosome phasing; (ii) higher consensus accuracy to
enable rare variant detection; (iii) low cost per run; and (iv) provide the epigenetics
information (Metzker, 2010; Schadt, Turner & Kasarskis, 2010).

With an ability to span repetitive sequences, long-read sequencing technology presents
a promising alternative to obtain genome assemblies for marine species (Amarasinghe et
al., 2020; Pollard et al., 2018). High-quality genomic DNA is the key to allow the utilization
of the long-read sequencing technology. However, obtaining such high-quality genomic
DNA from crustaceans faces several challenges because crustacean DNA is easily degraded
due to endonuclease enzyme (Rahman, Schmidt & Hughes, 2017) and the purity can be
jeopardized by high amounts of polysaccharides and polyphenolic proteins, which can
inhibit subsequent molecular applications (Panova et al., 2016).
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Despite many DNA extraction methods available, the efficiency of methods depends
on specimen and preservation (Abdel-Latif & Osman, 2017; Psifidi et al., 2015). DNA
extraction methods in marine organisms have been evaluated for PCR application
(Chakraborty, Saha & Ananthram, 2020; Jasrotia & Langer, 2019; Nadia & Sadok, 2017;
Pereira et al., 2011) but not for long-read sequencing.

This study therefore aimed to evaluate DNA extraction methods that yielded high
quality genomic DNA, enabling full exploitation of the long-read sequencing technology.
We employed the black tiger shrimp (Penaeus monodon) as a model marine organism as
it is one of the most widely cultured shrimp species in the world, accounting for 52% of
total global farm production (FAO, 2016).

MATERIALS & METHODS
Shrimp collection
Four-month-old black tiger shrimps (n= 4) were obtained from a local farm in Prachuap
Khiri Khan, Thailand. Muscle tissue from each shrimp was collected and immediately
frozen in liquid nitrogen and stored at −80 ◦C prior to DNA extraction.

Genomic DNA extraction methods
Five DNA extraction methods namely (I) CTAB method, (II) Genomic-tip 100/G kit
(Qiagen, Germany), (III) E.Z.N.A.

R©
Mollusc DNA kit (Omega bio-tek, USA), (IV)

TIANampMarine Animals DNA kit (Tinagen, China) and (V) Sbeadex livestock kit (LGC,
Germany) were evaluated for genomic DNA preparation (4 biological replicates/extraction
method).

Frozen shrimp muscle was transferred to mortar containing liquid nitrogen and
pulverized. All tissue samples were immediately processed according to the instruction of
each method as follows:

Cetyltrimethyl ammonium bromide (CTAB) method
CTABmethodused in this study followed a previously described protocol (Winnepenninckx,
Backeljau & De Wachte, 1993). Dried powder of frozen shrimp tissue (100.02 ± 0.04
mg) was mixed with 800 µL of an extraction buffer (2% (w/v) CTAB, 1% (w/v)
polyvinylpyrpolidone, 1.4 M NaCl, 20 mM EDTA, pH 8.0; 100 mM Tris–HCl, pH
8.0) by gently inverting the tube before 20% SDS (20 µL) was added and incubated at
65 ◦C for 10 min. RNA was removed by incubating with 10 µL of 10 mg/mL RNase
A (final concentration of 0.12 mg/mL) at 37 ◦C for 30 min. Subsequently, 50 µL of
β-mercaptoethanol and 500 µL of chloroform were added and mixed by inverting. The
mixture was centrifuged at 10,000 g for 5 min at 10 ◦C. The upper aqueous phase was
transferred and extracted with 500 µL of chloroform:isoamyl alcohol (24:1) by inverting
and centrifugation as before. The chloroform:isoamyl alcohol extraction step was repeated
twice before DNA was precipitated with 2 volumes of 100% ethanol. The sample was
centrifuged at 12,000 g for 10 min at 10 ◦C and the supernatant was discarded. The DNA
pellet was washed with one mL of 70% ethanol, centrifuged at 12,000 g for 5 min at 10 ◦C,
air-dried and resuspended in 50 µL of TE buffer (10 mM Tris–HCl, pH 8.0; 1 mM EDTA,
pH 8.0).
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Genomic-tip kit
DNA was extracted according to the manufacturer’s protocol. Briefly, 100.04 ± 0.02 mg
of shrimp muscle was mixed with 10 mL of buffer G2 containing 20 µL of 100 mg/mL
RNase A (final concentration of 0.2 mg/mL) and 500 µL of 20 mg/mL Proteinase K (final
concentration of 1 mg/mL) and incubated at 50 ◦C for 4 h or until the lysate was clear.
Qiagen Genomic-tip 100/G column was equilibrated with five mL of buffer QBT and
emptied by gravity flow. The lysate sample was then added into the column and allowed
the column to empty by gravity flow. The column was washed twice with 7.5 mL of buffer
QC before eluting genomic DNA twice with fivemL of 50 ◦C buffer QF. The eluted genomic
DNA was precipitated with four mL of isopropanol, centrifuged at 5,000 g for 15 min at
4 ◦C. The DNA pellet was washed with five mL of cold 70% ethanol by centrifugation at
5,000 g for 10 min at 4 ◦C. The DNA pellet was air-dried for 10 min and then resuspended
with 100 µL of TE buffer.

E.Z.N.A R© Mollusc DNA kit
DNA was extracted following the manufacturer’s protocol. Briefly, 50.03 ± 0.03 mg
of muscle tissue was mixed with 350 µL of ML buffer. Proteinase K solution (25 µL
of 20 mg/mL, final concentration of 1.4 mg/mL) was added to the mixture to digest
protein contamination by incubating at 37 ◦C for 16 h before mixing with one volume of
chloroform:isoamyl alcohol (24:1). The reaction was centrifuged at 15,000 g for 10 min at
25 ◦C. The upper layer of the supernatant was transferred to one volume of BL buffer before
10µL of 10mg/mL RNase A were added, incubated at 70 ◦C for 10min and cooled-down to
room temperature. One volume of 100% ethanol was added and mixed. The HiBind DNA
Mini Column was prepared by adding 100 µL of 3M NaOH and centrifuged at 15,000 g for
1 min at 25 ◦C before 700 µL of sample was transferred to the column. The column was
centrifuged and the filtrate was discarded. These steps were repeated until the remaining
samples were applied to the column. The column was transferred into a collection tube
before adding HBC Buffer (500 µL). The mixture was centrifuged at 13,000 g for 1 min at
25 ◦C and the filtrate was discarded. The column was washed twice with DNAWash Buffer
(700 µL), followed by centrifugation at 13,000 g for 2 min at 25 ◦C to dry the membrane.
DNA was eluted with the Elution Buffer (50 µL) that had been heated to 70 ◦C, incubated
at room temperature for 5 min and centrifuged at 13,000 g for 2 min at 25 ◦C.

TIANamp Marine Animals DNA kit
DNA was extracted following the manufacturer’s protocol. Briefly, 30.02 ± 0.03 mg of
muscle tissue was mixed with 200 µL of Buffer GA by vortexing. RNA was removed by
adding 4 µL of 100 mg/mL RNase A (final concentration of 2 mg/mL) at room temperature
for 5 min. Proteinase K (20 µL of 20 mg/mL, final concentration of 2 mg/mL) was added
and incubated at 56 ◦C for 3 h. The mixture was added with 200 µL of Buffer GB and
incubated at 70 ◦C for 10 min before 200 µL of 100% ethanol was added. The mixture
was transferred into Spin Column CB3 and centrifuged at 13,000 g for 30 s. The column
was washed twice with 500 µL of Buffer GD and one time with 600 µL of Buffer PW by
centrifugation at 13,000 g for 30 s. The empty column was centrifuged at 13,000 g for 2
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min to dry the membrane before DNA was eluted by 50 µL of Buffer TE and centrifuged
at 13,000 g for 2 min.

Sbeadex livestock kit
DNA was extracted following the manufacturer’s protocol. Briefly, 50.03 ± 0.03 mg of
muscle was mixed with 120 µL of PVP buffer, 10 µL of 20 mg/mL protease solution (final
concentration of 1.6 mg/mL) and 4.8 µL of debris capture beads and incubated at 55 ◦C
for 2 h. One volume of lysis buffer SB and 5 µL of 20 mg/mL protease solution (final
concentration of 0.8 mg/mL) were added to the mixture and incubated at 55 ◦C for 1
h before centrifugation at 13,000 g at 25 ◦C for 10 min. The upper aqueous phase was
transferred to 180 µL of binding mix and incubated at room temperature for 5 min with
constant shaking. The tube was placed in magnetic rack until solution appeared clear, and
the supernatant was removed. The beads were washed with 400 µL of wash buffer BN1,
wash buffer TN1 and wash buffer TN2, respectively by gently vortexing for 10 min. The
tube was placed in a magnetic rack until solution became clear, and the supernatant was
removed. The DNA was eluted by 50 µL of Elution buffer AMP and incubated at 55 ◦C for
10 min. The tube was placed in a magnetic rack until solution appeared clear, and DNA
solution was collected to a new tube.

DNA purification
Each genomic DNA sample was cleaned up using AMPure PB bead (Pacific Biosciences,
USA) to remove residual genomic DNA isolation reagents prior to the library preparation
by adding 0.45 volume of AMPure PB bead to DNA sample. The mixture was incubated
by gently vortexing for 10 min, and tubes were placed in magnetic rack until solution
appeared clear. The supernatant was removed and washed AMPure PB bead twice with one
mL of freshly prepared 70% ethanol. DNA samples were eluted by adding elution buffer
and incubated by gently vortexing for 5 min. Tubes were placed in the magnetic rack until
solution became clear, and DNA solutions were collected to a new tube.

Assessment of DNA quantity and quality
The extracted DNA by each DNA extraction method was quantified by NanoDrop 8000
spectrophotometer V2.3.2 (Thermo Fisher Science, USA) and Qubit dsDNA BR Assay kit
(Invitrogen, USA) using Qubit 2.0 Fluorometer (Invitrogen, USA). The DNA yields of
shrimp muscle from different extraction methods were statistically tested using one-way
analysis of variance (ANOVA) followed by Duncan’s new multiple range test in IBM
SPSS statistics 23.0. The DNA quality and integrity were visualized by UV light after
electrophoresis in 0.75% of SeaKem

R©
Gold Agarose (Lonza, USA) for pulsed-field gel

electrophoresis at 80 volts for 9 h in 0.5x KBB buffer (51 mM Tris, 28 mM TASP, 0.08 mM
EDTA, pH 8.7) (Sage Science, USA) containing SYBR Safe DNA gel staining (Invitrogen,
USA).

Genomic sequencing analysis
PacBio sequencing was performed at NovogeneAIT (Singapore) following the PacBio’s
protocol (Anthony & Kin, 2015; Pacific Biosciences of California, 2014). High-quality HMW
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DNA obtained was used to generate a 20-kb SMRTbell library. The SMRTbell library
itself was produced by ligating universal hairpin adapters onto double-stranded DNA
fragments. The hairpin dimers formed during this process were removed at the end of
the protocol using a magnetic bead (AMPure PB) purification step. The final step of the
protocol was to remove failed ligation products through the use of exonucleases. After
the exonuclease and AMPure PB purification steps, sequencing primer was annealed
to the SMRTbell templates following by the binding of polymerase to the annealed
templates. According to the effective concentration of library and output requirements, the
sample was sequenced on PacBio Sequel platform. The original sequencing reads (called
polymerase reads) were processed by the software SMRTlink to filter reads with minimum
read quality score of 0.8 and to generate subreads. Each polymerase read was partitioned to
form one or more subreads, which contained sequences from a single pass of polymerase
on a single strand of an insert within a SMRTbellTM template and no adapter sequences.
The subreads were used for further analysis.

Data Availability
The genomic data is available in the NCBI under the accession number: PRJNA611030.

RESULTS
DNA quantity
DNA yields were measured by Qubit fluorometer and NanoDrop spectrophotometer
(Fig. 1). Among the extraction methods tested, Genomic-tip kit showed the highest
genomic DNA yield, while TIANamp and CTAB methods resulted in the lowest genomic
DNA yield (Fig. 1).

DNA purity and integrity
Purity of extractedDNAwas evaluated based on the ratios between the absorbance values for
A260/280 and A260/230 using a NanoDrop spectrophotometer (Table 1). Recommended
purity of DNA for a long-read sequencing platform is 1.8–2.0 for A260/280 ratio and∼2.0
for A260/230 ratio (Hassan et al., 2015; Lucena-Aguilar et al., 2016; Usman et al., 2014).
Mollusc and Genomic-tip kits were the only two methods that yielded DNA with the
purity that passed the criteria for tissue sample. On the other hand, the CTAB protocol
and TIANamp kit did not yield DNA samples that passed the criteria in any of the samples
tested. DNA extracted using the Sbeadex livestock kit passed the criteria in A260/280, but
not A260/A230 ratio (Table 1).

Integrity of genomic DNA samples was evaluated using pulsed-field gel electrophoresis
of the 100 ng of DNA samples obtained using five DNA extraction methods after the
AMPure PB bead purification step (Fig. S1). However, DNA extracted by Mollusc kit (Fig.
S1C) and Sbeadex livestock kit (Fig. S1E) could not be clearly visualized; therefore, 200
ng of DNA samples from these two methods were used to improve visualization allowing
better comparison of the DNA integrity in Fig. 2. DNA extracted from muscle tissue by
CTAB method and Genomic-tip kit appeared to have the highest molecular weight (Figs.
2A and 2B), while the Mollusc DNA Kit, TIANamp Marine Animals DNA kit and Sbeadex
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Figure 1 Average DNA yield measured with NanoDrop spectrophotometer and Qubit Fluorometer of
shrimpmuscle using different DNA extraction methods after purified by AMPure PB bead. Error bars
indicate standard deviation of the mean from four replicates. The asterisk indicates significantly different
level among the extraction methods: * P < 0.05 and ** P < 0.01.

Full-size DOI: 10.7717/peerj.10340/fig-1

Table 1 Quality of gDNA extracted from shrimpmuscle using different DNA extraction methods after purified with AMPure PB bead repre-
sented by an average± a standard deviation value (SD).

NanoDrop
spectrophotometer

Extraction method

CTAB Genomic-tip
100/G kit

Mollusc DNA
kit

TIANampMarine
Animals DNA kit

Sbeadex
livestock kit

A260/A280 1.40± 0.09 1.84± 0.01 1.98± 0.04 1.63± 0.16 1.81± 0.03
A260/A230 0.40± 0.05 2.45± 0.03 2.01± 0.16 1.74± 0.22 1.85± 0.36

livestock kit yielded DNA with smeary bands, indicating shearing of DNA (Figs. 2C, 2D
and 2E).

Sequencing quality
To evaluate whether the quality of the obtained genomic DNA was sufficiently high for the
long-read sequencing technology, the genomic DNA extracted by the top three extraction
methods (Genomic-tip kit, CTAB method and Mollusc DNA kit) were used to prepare
20Kb libraries and subsequently sequenced using the PacBio (Fig. 3). While the genomic
DNA from Genomic-tip andMollusc DNA kits allowed successful library construction, the
one from CTAB method did not. The sequencing of DNA obtained from Genomic-tip kit
yielded 5.36 Gb/SMRT cell with the longest length of 272.89 Kb, an average length of 10.28
Kb and an N50 length of 14.57 Kb. The number of reads longer than 20 Kb represented
11.44% of the total reads. The sequencing of DNA obtained from Mollusc DNA kit gave
3.07 Gb/ SMRT cell with the maximum read length of 112.41 Kb, an average length of
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Figure 2 Quality assessment of genomic DNA of shrimpmuscle extracted with different DNA extrac-
tion methods. After purified by AMPure PB bead, gDNA (n=4) extracted from (A) CTAB method (100 ng
of gDNA), (B) QIAGEN Genomic-tip 100/G kit (100 ng of gDNA), (C) E.Z.N.A. R©Mollusc DNA Kit (200
ng of gDNA), (D) TIANamp Marine Animals DNA kit (100 ng of gDNA) and (E) Sbeadex livestock kit
(200 ng of gDNA) were loaded on 0.75% pulsed-field gel electrophoresis and run at 80 Volts for 9 h. The
DNA size marker is Quick-Load 1 kb Extend DNA Ladder (New England BioLabs).

Full-size DOI: 10.7717/peerj.10340/fig-2

4.40 Kb and an N50 length of 9.74 Kb. The reads longer than 20 Kb covered 2.42% of total
reads.

DISCUSSION
Availability of genome sequences for various organisms has revolutionized biology. Recent
advances in the long-read sequencing technology have promised even faster and better
quality of genome sequences. With such power of the recent sequencing technology,
the Earth BioGenome Project has announced to sequence, catalog and characterize the
genomes of Earth’s eukaryotic biodiversity over a period of ten years (Lewin et al., 2018).
While the capacity of the sequencing technology theoretically can make such a grand
challenge possible, numerous organisms are intrinsically difficult to be sequenced.

Marine invertebrates are deemed to be ones of the most challenging species to be
sequenced. This is possibly due to their DNA contents containing high polysaccharide
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Figure 3 Read length distribution using DNA extracted byMollusc DNA kit and Genomic-tip 100/G
kit.Mollusc DNA kit was sequenced for two SMRT cells and Genomic-tip 100/G kit was sequenced for 37
SMRT cells.

Full-size DOI: 10.7717/peerj.10340/fig-3

content, polyphenols and other secondary metabolites which can interfere downstream
DNA library preparations (Panova et al., 2016). Some of the genomes of marine organisms
such as water flea (Daphnia pulex ) (Ye et al., 2017), Atlantic cod (Gadus morhua) (Star et
al., 2016), black tiger shrimp (Penaeus monodon) (Uengwetwanit et al., 2020; Yuan et al.,
2018) and Pacific white shrimp (Litopenaeus vannamei) (Zhang et al., 2019) reportedly
contain high density of repetitive sequences, which hinder high quality genome sequence
assembly. To overcome this challenge, high quality and integrity of the starting DNA must
be used to fully exploit the capacity of the long-read sequencing platform. Thus, this study
embarks on comparing the efficacy of five already established protocols for genomic DNA
extraction of a marine organism using the black tiger shrimp as a model.

Among the five protocols examined, CTAB method is the only one where
solutions/buffers required can be prepared in-house, hence, has the advantage of being an
inexpensive and simple approach for DNA extraction (Table 2). It has been successfully
used to extract DNA from organisms containing a high level of polysaccharide such
as plant samples (Abdel-Latif & Osman, 2017; Doyle & Doyle, 1987; Michiels et al., 2003).
CTAB method also utilizes a reducing agent β-mercaptoethanol in lysate solution, which
prevents oxidative damage of nucleic acid, resulting in HMW DNA in other organisms
(Bitencourt et al., 2007; Herzer, 2001). In this study, although the DNA obtained from
CTAB method remained at high molecular weight as expected, it yielded the lowest purity
of DNA sample based on A260/A280 and A260/A230 ratios (Table 2). The low ratios
obtained suggest ineffective removal of proteins and organic compounds. This is not
surprising because the standard CTAB method does not require proteinase K treatment
but uses phenol/chloroform extraction steps, which introduces organic contaminants and
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Table 2 Performance comparison of DNA extraction methods.

CTAB Genomic-tip Mollusc DNA TIANampMarine
Animals DNA

Sbeadex livestock

Time
-Total assay time 2 h 30 min 7-8 h 17 h (overnight lysis

step)
3 h 4 h

Hands-on time 1 h 30 min 1 h 30 min 1 h 45 min 2 h
Costa Inexpensive (2 US-

D/rnx/100 mg tissue)
Expensive (27.4 US-
D/rnx/100 mg tissue)

Expensive (8.2 US-
D/rnx/50 mg tissue)

Inexpensive (2.5 US-
D/rnx/30 mg tissue)

Expensive (7.2 US-
D/rnx/50 mg tissue)

Yield Low yield (8.81 ng
DNA/mg tissue)

Highest yield (96.38
ng DNA/mg tissue)

Low yield (13.15 ng
DNA/mg tissue)

Lowest yield (8.25 ng
DNA/mg tissue)

Moderate yield (56.42
ng DNA/mg tissue)

Quality
− Integrity HMW observed in

>48.5 kb
HMW observed in
>48.5 kb

Smearing of DNA ob-
served in <20 kb

Smearing of DNA ob-
served in <20 kb

HMW observed in
48.8 kb and smearing
of DNA observed in
<48.5 kb

− Purity Poor Good Good Poor Poor

Notes.
aCost indicated here was converted from the local currency to USD. It may vary in other countries depending on costs from local distributors.

causes yield loss. To further improve this method for better quality of DNA, a treatment
of proteinase K or other purification steps should be considered.

The other four extractionmethods are commercial kits. Genomic-tip kit employs gravity-
flow, anion-exchange tips to minimize DNA shearing from centrifugation, vortexing, and
pipetting steps. This gravity-flow based method gave the highest yield when compared
with other methods (Table 2). This method simultaneously lyses and enzymatically
digests proteins in the sample, allowing immediate denaturation of proteins such as
nucleases, histones, and DNA-binding proteins (Qiagen, 2015). These proteins have been
reported to affect the quality of DNA (Chacon-Cortes & Griffiths, 2014; Tan & Yiap, 2009).
Shrimp muscle consists of numerous fiber proteins, majorly composed of myofibrillar and
sarcoplasmic proteins (Medler & Mykles, 2015). Thus, digesting these fibrous proteins in
shrimp muscle using proteinase K from the beginning may have resulted in the highest
DNA yield among the extraction methods. Other fibrous samples have witnessed the same
high yield benefit from performing proteinase K digestion at the beginning of the protocol
as well (Vaidya et al., 2018). In addition to the high yield, the highest integrity of the DNA
obtained from this kit was also evidenced by the longest read length from the sequencing
result.

Mollusc kit utilizes cationic detergent, combined with polysaccharide property of CTAB
and the selective DNA binding matrix. This DNA extraction kit was used for muscle of
marine metazoans to remove polysaccharide contamination (Lobo et al., 2013). Using this
kit with shrimp tissue gave high purity ofDNA; however, the pulsed-field gel electrophoresis
suggested that the DNA was sheared. The sequencing result also confirmed that the DNA
from the kit was not intact as the average read length was much shorter than those from
Genomic-tip kit. This kit requires the most number of centrifugation steps (7 times)
when compared with other methods (CTAB method, 6 times; Genomic-tip kit, 2 times;
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TIANamp kit, 6 times and Sbeadex livestock kit, 1 time), which might cause the shearing
of DNA (McDonald, 2002; Reigstad, Bartossek & Schleper, 2011; Sage Science, 2020).

For TIANamp kit, the mechanism for DNA extraction is very similar to that of Mollusc
kit without CTAB and chloroform extraction step. The DNA obtained from this kit was
one of the lowest quality and purity among the examined commercial kits. This result was
indeed unexpected as the kit was successfully employed to extract genomic DNA of the
Pacific white shrimp (L. vannamei) enabling a complete draft of genome sequence using a
PacBio sequencing technology (Zhang et al., 2019). Given no details of the protocol from
the paper, it might be possible that some modifications of the DNA extraction protocol
were made to obtain high quality and intact DNA sufficient to give successful sequencing
results.

Unlike the other commercial kits examined in this study, Sbeadex livestock kit utilizes
paramagnetic microparticles whose surface binds DNA through an anion-exchange
mechanism. TheDNAobtained from this bead-based kit was of high purity inmost samples
but the integrity was compromised as observed in the pulsed-field gel electrophoresis. Due
to the absence of RNaseA treatment step in this protocol, the DNA integrity might be
jeopardized. Indeed, RNaseA treatment was reportedly necessary for isolation of high
quality genomic DNA (Healey et al., 2014; Lienhard & Schäffer, 2019; Rana et al., 2019).

It is important to note that this study employed the established protocol for eachmethod
without further modifications. Indeed, each method can be further modified to give better
extraction efficacy, resulting in better quality and yield. For example, reducing incubation
time of proteinase K, which can cause DNA degradation (Athanasio et al., 2016), might
result in better integrity of DNA. Optimizing animal tissues for each method can also
improve digestion of the tissue to release more DNA yield (Jasrotia & Langer, 2019). The
inclusion of RNaseA treatment can alleviate the issue of DNA degradation (Healey et al.,
2014).

To further demonstrate the suitability for long-read sequencing of the genomic DNA
obtained in this study, theDNA extracted by the top threemethods (Genomic-tip kit, CTAB
method, and Mollusc DNA kit) were subsequently sequenced by the PacBio technology.
Genomic-tip and Mollusc DNA kits were only two methods that allowed successful library
construction. This indicates that both high-molecular weight and purity of genomic DNA
were equally important to successful long-read sequencing. Purity is essential to generate
sequencing library, whereas the high-molecular weight of genomic DNA is critical for
construction of large insert library. Despite highly intact DNA, CTAB method is not
efficient at removing contaminants. Therefore, the protocol might need to be optimized
for particular organism to compensate purity and quality (Arseneau, Steeves & Laflamme,
2017; Chakraborty, Saha & Ananthram, 2020).

As a matter of fact, the Mollusc kit employed in this study was a CTAB-based method
that has been optimized for mollusk. However, when used with shrimp sample, it only
showed improvement of purity but not integrity. Degradation of DNAmight be due to long
exposure of proteinase K (Athanasio et al., 2016). Mollusc kit used overnight proteinase K
and RNaseA digestion, whereas CTAB method required a short incubation with RNaseA
(<30 min) and Genomic-tip kit used 4 h incubation of proteinase K and RNaseA. Long
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incubation periods for proteinase K digestion in Mollusc kits resulted in fragmented DNA
as it could be observed that 2.42% of reads were remained in read length ≥ 20 Kb in
comparison to 11.44% of read length≥ 20 Kb remaining in Genomic-tip kit. Beside longer
sequencing reads (14.57 Kb of N50), Genomic-tip kit generated higher sequencing yield
(5.36 Gb/ SMRT cell). Genomic-tip kit purifies DNA based on gravity-flow and anion-
exchange tip, which are less prone to shearing DNA compared to vortexing, pipetting and
long exposure of enzyme digestion. As demonstrated in the present study, Genomic-tip
kit is a suitable method for long-read sequencing. Although Genomic-tip kit is relatively
time-consuming and expensive, the high-quality and yield of sequencing reads outweigh
these disadvantages (Table 2). However, for laboratories with limited resources and access,
further modifications of less expensive methods such as CTAB exaction protocol might be
considered.

CONCLUSIONS
The quality of starting DNA for a long-read sequencing platform such as PacBio is a key
determinant of the successful result. In this study, the efficiency of extracting high-quality
HMW DNA was evaluated for five established DNA extraction methods without any
modifications. It is noteworthy that further modifications of the established protocols
might yield even better DNA quality and quantity. The gravity-flow based method was
found to yield the highest quality genomic DNA and hence suitable for downstream whole
genome sequencing application using the long-read sequencing platform. This protocol
could be further used for extracting high quality genomic DNA for long-read sequencing
of other marine organisms, allowing full exploitation of the sequencing platform.
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