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Background: This study aimed to develop a deep-learning model and a risk-score system
using clinical variables to predict intensive care unit (ICU) admission and in-hospital
mortality in COVID-19 patients. Methods: This retrospective study consisted of 5766
persons-under-investigation for COVID-19 between February 7, 2020, and May 4, 2020.
Demographics, chronic comorbidities, vital signs, symptoms, and laboratory tests at
admission were collected. A deep neural network model and a risk-score system were
constructed to predict ICU admission and in-hospital mortality. Prediction performance
used the receiver operating characteristic area under the curve (AUC). Results: The top
ICU predictors were procalcitonin, lactate dehydrogenase, C-reactive protein, ferritin, and
oxygen saturation. The top mortality predictors were age, lactate dehydrogenase,
procalcitonin, cardiac troponin, C-reactive protein, and oxygen saturation. Age and
troponin were unique top predictors for mortality but not ICU admission. The deep-learning
model predicted ICU admission and mortality with an AUC of 0.780 [95% CI:0.760–0.785]
and 0.844 [95% CI:0.839–0.848], respectively. The corresponding risk scores yielded an
AUC of 0.728 [95% CI:0.726–0.729] and 0.848 [95% CI:0.847–0.849],
respectively.Conclusions: Deep learning and the resultant risk score have the potential to
provide frontline physicians with quantitative tools to stratify patients more effectively in
time-sensitive and resource-constrained circumstances.
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43 ABSTRACT 

44 Background: This study aimed to develop a deep-learning model and a risk-score system using clinical 

45 variables to predict intensive care unit (ICU) admission and in-hospital mortality in COVID-19 patients. 

46 Methods: This retrospective study consisted of 5766 persons-under-investigation for COVID-19 between 

47 February 7, 2020, and May 4, 2020. Demographics, chronic comorbidities, vital signs, symptoms, and 

48 laboratory tests at admission were collected. A deep neural network model and a risk-score system were 

49 constructed to predict ICU admission and in-hospital mortality. Prediction performance used the receiver 

50 operating characteristic area under the curve (AUC). 

51 Results: The top ICU predictors were procalcitonin, lactate dehydrogenase, C-reactive protein, ferritin, 

52 and oxygen saturation. The top mortality predictors were age, lactate dehydrogenase, procalcitonin, 

53 cardiac troponin, C-reactive protein, and oxygen saturation. Age and troponin were unique top predictors 

54 for mortality but not ICU admission. The deep-learning model predicted ICU admission and mortality 

55 with an AUC of 0.780 [95% CI:0.760–0.785] and 0.844 [95% CI:0.839–0.848], respectively. The 

56 corresponding risk scores yielded an AUC of 0.728 [95% CI:0.726–0.729] and 0.848 [95% CI:0.847–

57 0.849], respectively.

58 Conclusions: Deep learning and the resultant risk score have the potential to provide frontline physicians 

59 with quantitative tools to stratify patients more effectively in time-sensitive and resource-constrained 

60 circumstances.

61    
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62 INTRODUCTION

63 Since the first reports of severe respiratory illness caused by coronavirus disease 2019 (COVID-

64 19) in Wuhan, China in mid-December 2019 (Huang et al. 2020; Zhu et al. 2020), over 6.2 million 

65 individuals have been infected, resulting in over 370,000 deaths worldwide (May 31, 2020). The actual 

66 numbers are likely to be much higher due to testing shortages and under-reporting (Yelin et al. 2020). 

67 Many patients have mild or asymptomatic infections, while others deteriorate rapidly with multi-organ 

68 failure. There will likely be recurrence and secondary waves of this pandemic (Leung et al. 2020). 

69 A large array of clinical and demographic variables associated with COVID-19 infection have 

70 been identified (see reviews (Brown et al. 2020; Cao et al. 2020; Rodriguez-Morales et al. 2020)). A few 

71 of these have been associated with high likelihood of critical illness or mortality. There are however no 

72 established prognostic models that reliably predict the need for escalated (intensive care unit, ICU) care or 

73 mortality due to COVID-19 infection. Lacking this, effective triage of patients is challenging in a 

74 resource-constrained environment. The problem is further magnified by the poor sensitivity (Kim et al. 

75 2020, in press) and a few day turnaround time (Yelin I 2020) of the most commonly used reverse-

76 transcriptase polymerase chain reaction (RT-PCR) test, during which time patients are assumed COVID-

77 19 positive.  This problem strains the resources of many hospitals and highlights the need for effective 

78 tools to anticipate patients’ progression and properly triage patients. 

79 The goal of this study was to develop a deep-learning algorithm (in contrast to previous methods) 

80 to identify the top, statistically significant predictors amongst the large array of clinical variables at 

81 admission to predict the likelihood of ICU admission and in-hospital mortality in COVID-19 patients. We 

82 further developed a simplified risk-score model to predict the likelihood of ICU admission and in-hospital 

83 mortality. 

84

85 METHODS

86 Study population

87 This retrospective study was approved by Institutional Review Board with exemption of informed 

88 consent and HIPAA waiver (Stony Brook University Hospital, IRB-2020-00207). Stony Brook University 

89 Hospital, the only academic hospital serving Suffolk county, about 40 miles east of New York City, was 

90 one of the hardest hit counties in the country at the time of this writing. The COVID-19 Persons Under 

91 Investigation (PUI) registry consisted of 5766 patients from February 7th, 2020 to May 4th, 2020. Only 

92 patients who were diagnosed by positive tests of real-time polymerase chain reaction (RT-PCR) for 

93 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were included in the study. 

94 Demographic information, chronic comorbidities, imaging findings, vital signs, symptoms, and laboratory 

95 tests at admission were collected. Imaging findings were extracted from patient chart review, which 
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96 included information provided by radiology report as part of standard of care. The primary outcome was 

97 ICU admission versus general floor admission, and the secondary outcome was in-hospital mortality 

98 versus discharge. Mortality outside of hospital after discharge was not obtained.

99 Figure 1 shows the flowchart of patient selection. Of the 2594 confirmed COVID-19 positive 

100 cases, all 1108 hospitalized COVID-19 positive patients were used in our analysis. Seventy-seven (77) 

101 patients were admitted to the ICU directly and an additional 194 patients were subsequently upgraded to 

102 an ICU from a general floor. Among these 271 ICU patients, 108 were discharged alive, 77 expired 

103 during the hospitalization and the other 86 are still in the hospital at the time of this analysis. Comparison 

104 was made to 837 general admissions who did not receive ICU care, among whom 772 patients were 

105 discharged alive and 65 expired during the hospitalization (none remained in the hospital).  

106

107 Data preprocessing

108 Two patients were excluded from machine learning analysis for missing categorical variables. 

109 Brain natriuretic peptide (BNP) was missing from >15% of patients, thus they were excluded from 

110 machine learning analysis. For the rest of the laboratory variables, missing data (in <5% of patients) was 

111 imputed with predictive mean modeling using the Multivariate Imputation by Chained Equations in R 

112 (statistical analysis software, version 4.0) (van Buuren & Groothuis-Oudshoorn 2011).  

113

114 Deep neural network prediction model

115 Ranking of clinical variables of categorical or numerical values were made using the Boruta, a 

116 statistical software (Kursa & Rudnicki 2010). Boruta ranks feature importance using the Random Forest 

117 method. In this decision tree-based method, the quantitative measure of importance is the Gini feature of 

118 importance, which counts the times that a feature is used to split a node of a decision tree, statistically 

119 weighted by the number of instances the node splits. In the DNN model, the top predictors were those that 

120 demonstrated statistical significance using built-in statistical methods within the Boruta algorithm. 

121 A correlation coefficient >0.5 from collinearity analysis was used to exclude correlated variables 

122 from machine learning analysis. Note that none of the top features we used in the final analysis 

123 demonstrated strong correlation with other features. Thus, no top features were removed as a result. A 

124 deep neural network (DNN) was constructed to predict ICU admission and mortality using five fully 

125 connected dense layers (Chen et al. 2020). The top clinical predictors were input parameters, determined 

126 by testing subsets of these parameters, and ICU admission and mortality were outcome parameters. The 

127 DNN model used 5 hidden layers with 6, 8, 16, 8, 4 neurons respectively. We explored a few models 

128 using a range of number (3-7) of layers, and the 5-layer model yielded the optimal validation result. ReLu 

129 activation function for the hidden layers, the sigmoid activation function for the output layer, and the 
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130 “he_normal” normalization scheme were applied. In the model training process, we used Adam optimizer, 

131 mean squared error as the cost function, a default learning rate of 0.01, and number of epochs of 100. The 

132 reported results yielded from the average of 5 consecutive runs. The dataset was randomly split into 90% 

133 training data and 10% testing data. ICU admission and mortality results were categorized using a binary 

134 classification. To minimize overfitting, we employed 5-fold cross-validation, ranked and removed less 

135 important features using correlation analysis and based on statistical significance by Boruta. We also 

136 employed regularization and stopped the training process at 100 epochs.

137

138 Risk score model

139 Risk-score systems were constructed using the top independent clinical variables to predict ICU 

140 admission and mortality. For risk score, the mixed Generalized Additive Model was used to plot the 

141 probability of ICU admission and mortality for each clinical variable (Wood 2001).  Different cutoff 

142 points were evaluated where the chosen cutoff points yielded the optimal distribution (not skewed to high 

143 or low scores) of the risk score model. The corresponding numerical values of each top feature at 

144 probability of 0.3 for ICU and 0.2 for mortality were found to be the optimal cutoff values for the risk 

145 score model. Each of the top variables was assigned a weight of one point if the clinical measurement was 

146 above the probability cutoff. The risk score ranged from 0 to 5 for ICU admission and 0 to 6 for mortality 

147 (which were chosen based on statistical significance, see Results).

148

149 Statistical analysis and performance evaluation

150 Statistical analysis was performed in SPSS v26 and in R (statistical analysis software 4.0). Group 

151 comparisons of categorical variables in frequencies and percentages used the chi-square test or Fisher 

152 exact test. Group comparison of continuous variables in medians and interquartile ranges (IQR) used the 

153 Mann-Whitney U test. A p value < 0.05 was considered to be statistically significant. For performance 

154 evaluation, data were split 90% for training and 10% for testing. Prediction performance was evaluated by 

155 calculating the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, 

156 accuracy, sensitivity, specificity, precision, recall, negative predictive value (NPV), positive predictive 

157 value (PPV) and F1 score (a harmonic mean of precision and recall). The average ROC analysis was 

158 repeated with five runs. In risk score models, SPSS was used to cross-check statistical significance of the 

159 top features, in which all top features used in the final analysis of risk score model had a p < 0.001.

160

161

162 RESULTS

163  

PeerJ reviewing PDF | (2020:07:51182:1:1:CHECK 18 Sep 2020)

Manuscript to be reviewed



164 Clinical variables associated with ICU admission 

165 Table 1 summarizes the demographic characteristics, vital signs, comorbidities, and laboratory 

166 data for the ICU (n=271) and non-ICU (n=837) group. The median age of the ICU group was lower than 

167 that of the general admission group (59 years [IQR:49-71] versus 62 years [IQR:50-76], p=0.027). 

168 Disproportionally more males were admitted to the ICU (67.5%% vs 32.5%, p<0.001). History of cancer 

169 was the only comorbidity that was significantly associated with ICU admission (P=0.016). 

170 All measured vital signs were significantly different between the ICU group and the non-ICU 

171 group. The ICU group had higher heart rate, respiratory rate and temperature, but lower systolic blood 

172 pressure and oxygen saturation (p<0.05). The ICU group had higher alanine aminotransferase (ALT), C-

173 reactive protein (CRP), D-dimer, ferritin, lactate dehydrogenase (LDH), white blood cells (WBC), and 

174 procalcitonin (p<0.05) and lower lymphocyte counts (p<0.05). Cardiac troponin and BNP were not 

175 significantly different between groups (p>0.05).

176 The symptom of dyspnea was significantly associated with ICU admission (p=0.001). Patients 

177 admitted to ICU were more likely to present with abnormal chest x-ray (p<0.001), and more likely to 

178 have bilateral chest x-ray abnormalities on presentation, compared to that of general admission group 

179 (p<0.001).

180

181 Prediction models for ICU admission 

182 Figure 2 shows the ranking of the clinical variables associated with ICU admission. The top 5 

183 statistically significant predictors of ICU admission were procalcitonin, LDH, CRP, ferritin, and SpO2. A 

184 deep neural network predictive model for mortality was constructed using the top clinical variables and 

185 trained using the training dataset and tested on an independent testing dataset. The ROC and confusion 

186 matrix of the testing dataset are shown in Figure 3. The performance of the DNN model yielded an AUC 

187 = 0.780 [95% CI:0.760-0.785], sensitivity = 0.760, specificity = 0.709, and F1 score = 0.551 in predicting 

188 ICU admission for the testing set (Table 2).

189 A risk score system was constructed (training data set) using the top five statistically significant 

190 clinical variables, with 1 point given for each variable meeting the following criteria: 

191 procalcitonin>0.5ng/mL, LDH >487U/L and <12586.7U/L, CRP>14.2mg/dL, ferritin>1250ng/mL and 

192 <13080.5ng/mL, and SpO2<88.8%. Odds ratios of procalcitonin, LDH, CRP, ferritin, and SpO2 for ICU 

193 admission were 3.062, 3.846, 3.001, 2.449, and 3.665, respectively. Figure 4 shows the results for the 

194 testing data set using the risk score system. ICU admission rate increased with increasing risk scores. The 

195 performance of the risk score yielded an AUC of 0.728 [95% CI:0.726-0.729] for predicting ICU 

196 admission for the testing data set. 

197
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198 Clinical variables associated with mortality 

199 Table 3 summarizes the demographic data, vital signs, comorbidities, and laboratory data for the 

200 non-survivors (n=142) and survivors (n=880) group. The median age of the non-survivor group was 

201 higher than that of the survivor group (76 years [IQR:66-84] versus 59 years [IQR:49-72], p<0.001). 

202 There was a disproportionally higher mortality rate in males (65.5% vs 34.5%, p=0.014). Of the 

203 comorbidities, hypertension, coronary artery disease, heart failure, chronic obstructive pulmonary disease, 

204 smoking history, and chronic kidney disease were significantly different between groups (p<0.05).

205 Among vital signs, tachypnea and hypoxemia were significantly different between groups at 

206 presentation (p<0.05). The expired cohort had higher BNP, CRP, D-dimer, ferritin, LDH, WBC, 

207 procalcitonin, and cardiac troponin but lower lymphocytes (p<0.05). ALT was not significantly different 

208 between groups. 

209 Among the symptoms, cough, myalgia, nausea or vomiting, chest discomfort, fatigue, fever, loss 

210 of taste, and headache were significantly different between groups (p<0.05). There was no significant 

211 difference in x-ray findings between groups at presentation.  

212

213 Prediction models for mortality 

214 The top 6 statistically significant predictors of mortality were age, LDH, procalcitonin, troponin, 

215 CRP, and SpO2 (Figure 5). A deep neural network predictive model for mortality was constructed using 

216 the top clinical variables and trained using the training data set. The ROC and confusion matrix are shown 

217 in Figure 6. The performance of the DNN model yielded an AUC of 0.844 [95% CI:0.839-0.848], 

218 sensitivity = 0.750, specificity = 0.872, and F1 score = 0.616 for the testing dataset (Table 4).

219 A risk score system was constructed (training data set) using the top 6 statistically significant 

220 clinical variables to predict mortality. The thresholds for the risk scores were: age >71 years, LDH 

221 >487U/L, procalcitonin >1.1ng/mL, troponin >0.03ng/mL, CRP >17mg/dL, and SpO2 <88%. Odds ratios 

222 of age, LDH, procalcitonin, troponin, CRP, and SpO2 for mortality were 4.301, 3.418, 6.232, 5.253, 

223 4.240, and 3.750, respectively. Higher mortality rate was associated with higher risk scores for the testing 

224 set (Figure 7). The performance of the risk score yielded an AUC of 0.848 [95% CI:0.847-0.849] in 

225 predicting mortality for the testing set. 

226

227 DISCUSSION

228 Mining a large cohort of COVID-19 patients in the United States, deep-learning and resultant risk 

229 score models identified the top predictors of ICU admission in COVID-19 to be the admission levels of 

230 procalcitonin, LDH, CRP, ferritin, and SpO2; the top predictors of mortality were age, LDH, 

231 procalcitonin, cardiac troponin, CRP, and SpO2. Predictive models were developed using deep neural 
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232 network of the top predictors, yielding an AUC of 0.779 and 0.882 for predicting ICU admission and 

233 mortality, respectively. The corresponding simplified risk scores yielded an AUC of 0.728 and 0.848, 

234 respectively. 

235

236 The association between these biomarkers and poor outcomes in COVID-19 victims is 

237 biologically plausible: procalcitonin is elevated during bacterial infection, but less so during viral 

238 infection, suggesting that bacterial co-infection leads to worse outcome in COVID-19 patients (Assicot et 

239 al. 1993). LDH reflects tissue damage (Huang et al. 2020; Zhu et al. 2020), while CRP is indicative of 

240 inflammation (Gabay & Kushner 1999). Elevated ferritin is associated with acute respiratory distress 

241 syndrome (ARDS) (Connelly et al. 1997) and may be a marker of aberrant iron metabolism that could 

242 render the lungs susceptible to oxidative damage (Mumby et al. 2004). Ferritin may reflect 

243 hyperinflammation associated with a cytokine storm and multi-organ failure (Mehta et al. 2020). Low 

244 SpO2 indicates failure of the lungs to oxygenate blood effectively, leading to tissue hypoxia (Connelly et 

245 al. 1997). Elevated cardiac troponin indicates cardiac injury (Huang et al. 2020). Although these variables 

246 have been previously associated with COVID-19 infection, most previous studies did not rank these 

247 clinical variables, or develop predictive models or risk scores to predict ICU admission or mortality. Not 

248 surprisingly, some of the same biomarkers in our study predicted both the need for ICU admission and 

249 likelihood of mortality. However, age and admission troponin level were uniquely predictive of mortality, 

250 indicating older age and cardiac issues are associated with higher rate of mortality in COVID-19 

251 infection. 

252 It is notable that individual comorbidities did not rank high in predicting ICU admission and 

253 mortality. Specifically, a history of heart failure, COPD, and coronary artery disease only ranked 7th, 11th 

254 and 14th respectively for predicting mortality. Similarly, the patients’ symptoms and vital signs (other than 

255 SpO2) at the time of admission were not found to be the top predictors of poor outcome. Although some 

256 comorbidities have been reported to be associated with critical illness and mortality, most previously 

257 studies did not rank their importance with respect to other laboratory variables. 

258 Our predictive AUC performance for ICU admission was poorer than that for mortality. We 

259 speculate this might be due to variability in triage decision-making to send patients to ICU among 

260 frontline clinicians. For both predictions, precision, PPV and F1 scores were comparatively low, which 

261 was not unexpected due to the imbalanced sample sizes between the two groups as well as small sample 

262 sizes. Further studies are warranted.

263 While a large number of studies have previously identified clinical variables associated with the 

264 severity of COVID-19 infection, only a few studies have attempted to develop a predictive or risk score 

265 model to predict mortality and disease severity. Jiang et al. used supervised learning (not deep learning) 
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266 and found mildly elevated alanine aminotransferase, myalgias, and hemoglobin at presentation to be 

267 predictive of severe ARDS of COVID-19 with 70% to 80% accuracy. This study had small, non-uniform, 

268 heterogeneous clinical variables, obtained from different hospitals (Jiang et al. 2020). Ji et al. used 

269 logistic regression to predict stable versus progressive COVID-19 patients (n=208) based on whether their 

270 conditions worsened during hospitalization (Ji et al. 2020). They reported comorbidities, older age, lower 

271 lymphocyte and higher lactate dehydrogenase at presentation to be independent high-risk factors for 

272 COVID-19 progression but did not develop a risk score. A nomogram of these 4 factors yielded a 

273 concordance index of 0.86. Yan et al. utilized supervised machine learning to predict critical COVID-19 

274 at admission using presence of X-ray abnormality, cancer history, age, neutrophil/lymphocyte ratio, LDH, 

275 dyspnea, bilirubin, unconsciousness and number of comorbidities (Yan et al. 2020, in press). They 

276 reported an AUC of 0.88. Yuan et al. went one step further to predict mortality more than 12 days in 

277 advance with >90% accuracy across all cohorts. Moreover, their Kaplan-Meier score shows that 

278 patients upon admission could clearly be differentiated into low, medium or high risk. They created 

279 a simple risk score system, and validated using multiple independent cohorts (Yuan et al. 2020).

280 Our approach used a deep-learning algorithm which is novel and has distinct advantages over 

281 logistic regression and supervised learning approach. Deep learning is increasingly being used in 

282 medicine (Deo 2015; Santos et al. 2019; Tschandl et al. 2019). In contrast to conventional analysis 

283 methods, which specify the relationships amongst data elements to outcomes, machine learning employs 

284 computer algorithms to identify relationships amongst different data elements to inform outcomes without 

285 the need to specify such relationships a priori. Deep learning can outperform human experts in 

286 performing many tasks in medicine (Killock 2020). In addition to approximating physician skills, Deep 

287 learning can also detect novel relationships not readily apparent to human perception, especially in large, 

288 complex, and longitudinal datasets. Disadvantages of deep learning methods are that it requires 

289 comparatively large sample size, there is a potential of overfitting, and the complex relations could make 

290 deep learning results difficult to interpret, amongst others. In addition, we devised a simplified practical 

291 risk score adds practical utility to these findings. Although we ranked all variables and explicitly listed 10 

292 or 15 top variables, we built the predictive model and risk score model using only the top 5 variables to 

293 simplify and increase translation potential in the clinical settings. The excellent prediction performances 

294 using a few clinical variables are encouraging.

295

296 This study has several limitations in addition to those mentioned above. This is a retrospective 

297 study carried out in a single hospital. These findings need to be replicated in large and multi-institutional 

298 settings for generalizability. We only analyzed clinical variables at admission. Longitudinal changes of 

299 these clinical variables need to be studied. As in all observational studies, other residual confounders may 
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300 exist that were not accounted for in our analysis. Future prospective studies validating our predictive 

301 models and scores are warranted. 

302

303 CONCLUSION

304 We implemented a deep-learning algorithm and a risk score model to predict the likelihood of ICU 

305 admission and mortality in COVID-19 patients. Our predictive model and risk score model can be easily 

306 retrained with additional data, new local data, as well as additional clinical variables. This approach has 

307 the potential to provide frontline physicians with a simple and objective tool to stratify patients based on 

308 risks so that COVID-19 patients can be triaged more effectively in time-sensitive, stressful and potentially 

309 resource-constrained environments.

310
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400 Figure legends

401

402

403 Figure 1. Patient selection flowchart.

404

405 Figure 2. Ranking of clinical variables for predicting ICU admission by Boruta algorithm. The x-axis is 

406 attribute of level of importance, where a larger number indicates relatively higher importance. The y-axis 

407 are laboratory test variables. The top statistically significant predictors were: procalcitonin, LDH, CRP, 

408 ferritin, SpO2, lymphocytes, respiratory rate, systolic blood pressure, age and ALT. The top 10 variables 

409 were significant.

410

411 Figure 3. ROC and confusion matrix for prediction of ICU admission of the DNN model.

412

413 Figure 4. Risk score stratification for ICU admission. Scores ranged from 0 to 5, with 0 indicating the 

414 lowest risk and 5 being the highest risk of mortality. The numbers in the bar indicate the number of 

415 patients in the ICU (red) and non-ICU (blue) that were correctly predicted in the testing dataset.

416

417 Figure 5. Ranking of clinical variables for predicting mortality by Boruta algorithm. The x-axis is 

418 attribute of level of importance, where a larger number indicates relatively higher importance. The y-axis 

419 are laboratory test variables. The top statistically significant predictors were: age, LDH, procalcitonin, 

420 troponin, CRP, SpO2, history of heart failure, respiratory rate, lymphocytes, ferritin, history of COPD, D-

421 dimer, ALT, history of coronary heart disease, and systolic blood pressure. The top 15 variables were 

422 significant.

423

424 Figure 6. ROC and confusion matrix for prediction of mortality of the DNN model.

425

426 Figure 7. Risk score stratification for mortality. Scores ranged from 0 to 6, with 0 indicating the lowest 

427 risk and 6 being the highest risk of mortality. The numbers in the bar indicate the number of patients in 

428 the ICU (red) and non-ICU (blue) that were correctly predicted in the testing dataset.

429

430
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Figure 1
Patient selection flowchart.

Patient selection flowchart.
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Figure 2
Ranking of clinical variables for predicting ICU admission

Ranking of clinical variables for predicting ICU admission by Boruta algorithm. The x-axis is
attribute of level of importance, where a larger number indicates relatively higher
importance. The y-axis are laboratory test variables. The top statistically significant
predictors were: procalcitonin, LDH, CRP, ferritin, SpO2, lymphocytes, respiratory rate,
systolic blood pressure, age and ALT. The top 10 variables were significant.
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Figure 3
ROC and confusion matrix for prediction of ICU admission

(A) ROC and (B) confusion matrix for prediction of ICU admission of the DNN model.
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Figure 4
Risk score stratification for ICU admission

Risk score stratification for ICU admission. Scores ranged from 0 to 5, with 0 indicating the
lowest risk and 5 being the highest risk of mortality. The numbers in the bar indicate the
number of patients in the ICU (red) and non-ICU (blue) that were correctly predicted in the
testing dataset.

PeerJ reviewing PDF | (2020:07:51182:1:1:CHECK 18 Sep 2020)

Manuscript to be reviewed



Figure 5
Ranking of clinical variables for predicting mortality.

Ranking of clinical variables for predicting mortality by Boruta algorithm. The x-axis is
attribute of level of importance, where a larger number indicates relatively higher
importance. The y-axis are laboratory test variables. The top statistically significant
predictors were: age, LDH, procalcitonin, troponin, CRP, SpO2, history of heart failure,
respiratory rate, lymphocytes, ferritin, history of COPD, D-dimer, ALT, history of coronary
heart disease, and systolic blood pressure. The top 15 variables were significant.

PeerJ reviewing PDF | (2020:07:51182:1:1:CHECK 18 Sep 2020)

Manuscript to be reviewed



PeerJ reviewing PDF | (2020:07:51182:1:1:CHECK 18 Sep 2020)

Manuscript to be reviewed



Figure 6
ROC and confusion matrix for prediction of mortality

(A) ROC and (B) confusion matrix for prediction of mortality of the DNN model.
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Figure 7
Risk score stratification for mortality

Risk score stratification for mortality. Scores ranged from 0 to 6, with 0 indicating the lowest
risk and 6 being the highest risk of mortality. The numbers in the bar indicate the number of
patients in the ICU (red) and non-ICU (blue) that were correctly predicted in the testing
dataset.
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Table 1(on next page)

Demographic characteristics, comorbidities, symptoms, imaging findings, vital signs,
and laboratory findings of ICU versus non-ICU patients.

Demographic characteristics, comorbidities, symptoms, imaging findings, vital signs, and
laboratory findings of ICU versus non-ICU patients. Group comparison of categorical variables

in frequencies and percentages used c2 test or Fisher exact tests. Group comparison of
continuous variables in medians and interquartile ranges (IQR) used the Mann-Whitney U
test.
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1 Table 1. Demographic characteristics, comorbidities, symptoms, imaging findings, vital signs, and 

2 laboratory findings of ICU versus non-ICU patients. Group comparison of categorical variables in 

3 frequencies and percentages used 2 test or Fisher exact tests. Group comparison of continuous variables 

4 in medians and interquartile ranges (IQR) used the Mann-Whitney U test.

Patients, No. (%)

ICU

(n=271)

Non-ICU

(n=837)

p value

Demographics

Age, median (range), y 59 (49, 71) 62 (50,76) 0.027

Sex <0.001

     Male 183 (67.5%) 452 (54.0%)

     Female 88 (32.5%) 385 (46.0%)

Ethnicity 0.153

     Hispanic/Latino 78 (28.8%) 223 (26.6%)

     Non-Hispanic/Latino 148 (54.6%) 507 (60.6%)

     Unknown 45 (16.6%) 107 (12.8%)

Race 0.003

Caucasian 123 (45.4%) 453 (54.1%)

African American 13 (4.8%) 61 (7.3%)

Asian 20 (7.4%) 26 (3.1%)

American Indian/Alaska Native 2 (0.7%) 2 (0.2%)

Native Hawaiian or other Pacific 

Islander

0 1 (0.1%)

More than One Race 0 5 (0.6%)

Unknown/Not Reported 113 (41.7%) 289 (34.5%)

Comorbidities

    Smoking history 61 (22.6%) 214 (25.6%) 0.332

    Diabetes 80 (29.5%) 220 (26.3%) 0.308

    Hypertension 126 (46.5%) 412 (49.3%) 0.442

    Asthma 23 (8.5%) 43 (5.1%) 0.054

    COPD 39 (14.4%) 126 (15.1%) 0.845

    Coronary artery disease 17 (6.3%) 76 (9.1%) 0.166

    Heart failure 18 (6.6%) 62 (7.4%) 0.787

    Cancer 15 (5.5%) 88 (10.5%) 0.016

    Immunosuppression 20 (7.4%) 64 (7.7%) 1.000

    Chronic kidney disease 20 (7.4%) 81 (9.7%) 0.276

Symptoms

    Fever 191 (70.5%) 547 (65.4%) 0.138

    Cough 191 (70.5%) 564 (67.4%) 0.368

    Shortness of breath 210 (77.5%) 557 (66.5%) 0.001

    Fatigue 56 (20.7%) 201 (24.0%) 0.282

    Sputum 25 (9.2%) 50 (6.0%) 0.071

    Myalgia 61 (22.5%) 192 (22.9%) 0.934

    Diarrhea 60 (22.1%) 201 (24.0%) 0.565

    Nausea or vomiting 48 (17.7%) 176 (21.0%) 0.258
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    Sore throat 21 (7.7%) 61 (7.3%) 0.790

    Rhinorrhea 14 (5.2%) 36 (4.3%) 0.613

    Loss of smell 11 (4.1%) 34 (4.1%) 1.000

    Loss of taste 12 (4.4%) 42 (5.0%) 0.871

    Headache 80 (9.6%) 28 (10.3%) 0.724

    Chest discomfort or chest pain 43 (15.9%) 133 (15.9%) 1.000

Imaging studies

  Abnormal chest x-ray results 227 (92.1%) 694 (83.6%) <0.001

  Chest x-ray findings <0.001

    Unilateral 26 (10.7%) 140 (20.7%)

    Bilateral 218 (89.3%) 536 (79.3%)

Vital signs, median (IQR)

  Heart Rate, bpm 100 (87, 115) 98 (83, 110) 0.003

  Respiratory rate, rate/min 23 (18, 30) 20 (18, 24) <0.001

  SpO2 % 93 (87, 96) 94 (92, 97) <0.001

  Systolic blood pressure, mmHg 122 (108, 137) 127 (114, 144) 0.003

  Temperature, °C 37.4 (36.9, 38.3) 37.3 (36.9, 38.0) 0.021

Laboratory findings at admission, median (IQR)

  Alanine aminotransferase, U/L 37 (22, 59) 29 (17, 51) <0.001

  Brain natriuretic peptide, pg/mL 276 (81, 1123) 212 (53, 1143) 0.177

  C-reactive protein, mg/dL 12.8 (6.9, 22.1) 7.2 (3.2, 13.3) <0.001

  D-dimer, ng/mL 401 (257, 831) 353 (217, 657) 0.012

  Ferritin, ng/mL 1132 (582, 1867) 613 (289, 1234) <0.001

  Lactate dehydrogenase, U/L 436 (332, 593) 332 (257, 433) <0.001

  WBC, x103/ml 8.1 (6.1, 11.6) 7.3 (5.5, 9.4) 0.001

  Lymphocytes% 10.6 (6.1, 15.4) 13.1 (8.4, 19.5) <0.001

  Procalcitonin, ng/mL 0.29 (0.16, 0.77) 0.15 (0.09, 0.28) <0.001

  Troponin, ng/mL 0.01 (0.01, 0.01) 0.01 (0.01, 0.01) 0.596

5 Abbreviation: COPD, chronic obstructive pulmonary disease. IQR, interquartile range. SpO2, oxygen 

6 saturation. 

7

8 SI conversion factors: To convert alanine aminotransferase and lactate dehydrogenase to microkatal per 

9 liter, multiply by 0.0167; C-reactive protein to milligram per liter, multiply by 10; D-dimer to nanomole 

10 per liter, multiply by 0.0054; leukocytes to ×109 per liter, multiply by 0.001.

11
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Table 2(on next page)

Performance indices for predicting ICU admission of the testing dataset

Performance indices for predicting ICU admission of the testing dataset. Abbreviations: area
under the curve (AUC), accuracy, sensitivity, specificity, precision, recall, negative predictive
value (NPV), positive predictive value (PPV) and F1 score (a harmonic mean of precision and
recall).
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1 Table 2. Performance indices for predicting ICU admission of the testing dataset. Abbreviations: area 

2 under the curve (AUC), accuracy, sensitivity, specificity, precision, recall, negative predictive value 

3 (NPV), positive predictive value (PPV) and F1 score (a harmonic mean of precision and recall).

AUC Accuracy Sensitivity Specificity Precision NPV PPV F1

Training 0.751 0.703 0.707 0.701 0.437 0.879 0.437 0.540

Testing 0.728 0.721 0.760 0.709 0.432 0.910 0.432 0.551

4

5

6

7

8
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Table 3(on next page)

Demographic characteristics, comorbidities, symptoms, imaging findings, vital signs,
and laboratory findings of death versus non-death (discharged).

Demographic characteristics, comorbidities, symptoms, imaging findings, vital signs, and
laboratory findings of death versus non-death (discharged). Group comparison of categorical

variables in frequencies and percentages used c2 or Fisher exact tests. Group comparison of
continuous variables in medians and interquartile ranges (IQR) used the Mann-Whitney U
test.
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1 Table 3. Demographic characteristics, comorbidities, symptoms, imaging findings, vital signs, and 

2 laboratory findings of death versus non-death (discharged). Group comparison of categorical variables in 

3 frequencies and percentages used 2 or Fisher exact tests. Group comparison of continuous variables in 

4 medians and interquartile ranges (IQR) used the Mann-Whitney U test.

Patients, No. (%)

Death

(n=142)

Non-death

(n=880)

p value

Demographics

Age, median (range), y 76 (66,84) 59 (49,72) <0.001

Sex 0.022

   Male 93 (65.5%) 484 (55.0%)

   Female 49 (34.5%) 396 (45.0%)

Ethnicity 0.001

   Hispanic/Latino 23 (16.2%) 251 (28.5%)

   Non-Hispanic/Latino 105 (73.9%) 504 (57.3%)

   Unknown 14 (9.9%) 125 (14.2%)

Race 0.023

Caucasian 91 (64.1%) 450 (51.1%)

African American 6 (4.2%) 61 (6.9%)

Asian 9 (6.3%) 33 (3.8%)

American Indian/Alaska Native 1 (0.7%) 2 (0.2%)

Native Hawaiian or other Pacific 

Islander

0 1 (0.1%)

More than One Race 0 5 (0.6%)

Unknown/Not Reported 35 (24.6%) 328 (37.3%)

Comorbidities

  Smoking history 52 (36.6%) 204 (23.2%) 0.001

  Diabetes 48 (33.8%) 229 (26.1%) 0.067

  Hypertension 92 (64.8%) 402 (45.8%) <0.001

  Asthma 6 (4.2%) 51 (5.8%) 0.557

  COPD 23 (16.2%) 66 (7.5%) 0.002

  Coronary artery disease 39 (27.5%) 115 (13.1%) <0.001

  Heart failure 29 (20.4%) 47 (5.4%) <0.001

  Cancer 19 (13.4%) 78 (8.9%) 0.092

  Immunosuppression 8 (5.6%) 65 (7.4%) 0.598

  Chronic kidney disease 20 (14.1%) 75 (8.5%) 0.043

Symptoms

  Fever 81 (57.0%) 599 (68.1%) 0.012

  Cough 73 (51.4%) 628 (71.4%) <0.001

  Shortness of breath 102 (71.8%) 594 (67.5%) 0.333

  Fatigue 19 (13.4%) 216 (24.5%) 0.003

  Sputum 10 (7.0%) 58 (6.6%) 0.856

  Myalgia 15 (10.6%) 220 (25.0%) <0.001

  Diarrhea 27 (19.0%) 211 (24.0%) 0.239

  Nausea or vomiting 10 (7.0%) 192 (21.8%) <0.001
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  Sore throat 7 (4.9%) 69 (7.8%) 0.300

  Rhinorrhea 4 (2.8%) 41 (4.7%) 0.386

  Loss of smell 2 (1.4%) 38 (4.3%) 0.106

  Loss of taste 2 (1.4%) 48 (5.5%) 0.035

  Headache 7 (4.9%) 90 (10.2%) 0.045

  Chest discomfort or chest pain 10 (7.0%) 151 (17.2%) 0.001

Imaging studies

  Abnormal chest x-ray results 123 (87.2%) 720 (84.6%) 0.524

  Chest x-ray findings 0.214

    Unilateral 18 (14.6%) 142 (19.7%)

    Bilateral 105 (85.4%) 577 (80.3%)

Vital signs, median (IQR)

  Heart Rate, bpm 96 (81, 115) 99 (85, 110) 0.496

  Respiratory rate, rate/min 24 (20, 32) 20 (18, 24) <0.001

  SpO2 % 93 (88, 96) 94 (92, 96) <0.001

  Systolic blood pressure, mmHg 127 (105, 142) 125 (113, 143) 0.568

  Temperature, °C 37.1 (36.7, 37.6) 37.3 (36.9, 38.1) <0.001

Laboratory findings at admission, median (IQR)

  Alanine aminotransferase, U/L 30.0 (17.0, 54.0) 30.0 (18.0, 52.0) 0.666

  Brain natriuretic peptide, pg/mL 1652 (452, 4556) 164 (47, 772) <0.001

  C-reactive protein, mg/dL 13.4 (6.9, 21.8) 7.5 (3.2, 13.4) <0.001

  D-dimer, ng/mL 635 (365, 1753) 333 (213, 606) <0.001

  Ferritin, ng/mL 981 (442, 1657) 640 (308, 1333) <0.001

  Lactate dehydrogenase, U/L 436 (330, 638) 333 (257, 434) <0.001

  WBC, x103/ml 8.7 (6.4, 12.3) 7.3 (5.5, 9.5) 0.001

  Lymphocytes% 8.9 (5.3, 13.6) 13.3 (8.7, 19.4) <0.001

  Procalcitonin, ng/mL 0.34 (0.18, 1.26) 0.15 (0.090, 0.28) <0.001

  Troponin, ng/mL 0.02 (0.01, 0.07) 0.01 (0.01, 0.01) <0.001

5 Abbreviation: COPD, chronic obstructive pulmonary disease. IQR, interquartile range. SpO2, oxygen 

6 saturation. 

7

8 SI conversion factors: To convert alanine aminotransferase and lactate dehydrogenase to microkatal per 

9 liter, multiply by 0.0167; C-reactive protein to milligram per liter, multiply by 10; D-dimer to nanomole 

10 per liter, multiply by 0.0054; leukocytes to ×109 per liter, multiply by 0.001.

11
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Table 4(on next page)

Performance indices for predicting mortality

Performance indices for predicting mortality of the testing dataset. Abbreviations: area under
the curve (AUC), accuracy, sensitivity, specificity, precision, recall, negative predictive value
(NPV), positive predictive value (PPV) and F1 score (a harmonic mean of precision and recall).
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1 Table 4. Performance indices for predicting mortality of the testing dataset. Abbreviations: area under the 

2 curve (AUC), accuracy, sensitivity, specificity, precision, recall, negative predictive value (NPV), 

3 positive predictive value (PPV) and F1 score (a harmonic mean of precision and recall).

AUC Accuracy Sensitivity Specificity Precision NPV PPV F1

Training 0.852 0.892 0.706 0.922 0.589 0.952 0.589 0.642

Testing 0.844 0.853 0.750 0.872 0.522 0.949 0.522 0.616

4

5

6

7
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