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Background: Lung cancer is the leading cause of cancer-related deaths worldwide. Lung
adenocarcinoma (LUAD) is one of the main subtypes of lung cancer. Hundreds of metabolic
genes are altered consistently in LUAD; however, their prognostic role remains to be
explored. This study aimed to establish a molecular signature that can predict the
prognosis in patients with LUAD based on metabolic gene expression. Methods: The
transcriptome expression profiles and corresponding clinical information of LUAD were
obtained from the Cancer Genome Atlas and Gene Expression Omnibus databases. The
differentially expressed genes (DEGs) between LUAD and paired non-tumor samples were
identified by the Wilcoxon rank sum test. Univariate Cox regression analysis and the lasso
Cox regression model were used to construct the best-prognosis molecular signature. A
nomogram was established comprising the prognostic model for predicting overall
survival. To validate the prognostic ability of the molecular signature and the nomogram,
the Kaplan-Meier survival analysis, Cox proportional hazards model, and receiver operating
characteristic analysis were used. Results: The six-gene molecular signature (PFKP, PKM,
TPI1, LDHA, PTGES, and TYMS) from the DEGs was constructed to predict the prognosis.
The molecular signature demonstrated a robust independent prognostic ability in the
training and validation sets. The nomogram including the prognostic model had a greater
predictive accuracy than previous systems. Furthermore, a gene set enrichment analysis
revealed several significantly enriched metabolic pathways, which suggests a correlation
of the molecular signature with metabolic systems and may help explain the underlying
mechanisms. Conclusions: Our study identified a novel six-gene metabolic signature for
LUAD prognosis prediction. The molecular signature could reflect the dysregulated
metabolic microenvironment, provide potential biomarkers for predicting prognosis, and
indicate potential novel metabolic molecular-targeted therapies.
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37 Abstract

38 Background: Lung cancer is the leading cause of cancer-related deaths worldwide. Lung 

39 adenocarcinoma (LUAD) is one of the main subtypes of lung cancer. Hundreds of metabolic 

40 genes are altered consistently in LUAD; however, their prognostic role remains to be explored. 

41 This study aimed to establish a molecular signature that can predict the prognosis in patients with 

42 LUAD based on metabolic gene expression.

43 Methods: The transcriptome expression profiles and corresponding clinical information of 

44 LUAD were obtained from the Cancer Genome Atlas and Gene Expression Omnibus databases. 

45 The differentially expressed genes (DEGs) between LUAD and paired non-tumor samples were 

46 identified by the Wilcoxon rank sum test. Univariate Cox regression analysis and the lasso Cox 

47 regression model were used to construct the best-prognosis molecular signature. A nomogram 

48 was established comprising the prognostic model for predicting overall survival. To validate the 

49 prognostic ability of the molecular signature and the nomogram, the Kaplan-Meier survival 

50 analysis, Cox proportional hazards model, and receiver operating characteristic analysis were 

51 used.

52 Results: The six-gene molecular signature (PFKP, PKM, TPI1, LDHA, PTGES, and TYMS) 

53 from the DEGs was constructed to predict the prognosis. The molecular signature demonstrated a 

54 robust independent prognostic ability in the training and validation sets. The nomogram 

55 including the prognostic model had a greater predictive accuracy than previous systems. 

56 Furthermore, a gene set enrichment analysis revealed several significantly enriched metabolic 

57 pathways, which suggests a correlation of the molecular signature with metabolic systems and 

58 may help explain the underlying mechanisms.

59 Conclusions: Our study identified a novel six-gene metabolic signature for LUAD prognosis 

60 prediction. The molecular signature could reflect the dysregulated metabolic microenvironment, 

61 provide potential biomarkers for predicting prognosis, and indicate potential novel metabolic 

62 molecular-targeted therapies.

63

64 Introduction

65 Lung cancer is the leading cause of cancer-related deaths worldwide, accounting for nearly 20% 

66 of all cancer deaths (Bray et al., 2018). Lung adenocarcinoma (LUAD) is one of the main 

67 subtypes of lung cancer (Travis, 2020), accounting for more than 40% of lung cancer cases 

68 (Hutchinson et al., 2019), and its relative frequency is increasing (Twardella et al., 2018). 

69 Despite great improvements in the treatment of LUAD, the prognosis in patients with LUAD 

70 remains poor owing to the lack of early detection and effective individual therapies (Dolly et al., 

71 2017). Therefore, exploring prognostic biomarkers is a critical need to help predict prognosis in 

72 LUAD and to design individual therapies. Until now, most prognostic models were based on 

73 clinical characteristics (e.g., age, sex, TNM stage, vascular tumor invasion, and organization 

74 classification) or a single molecular biomarker, such as carcinoembryonic antigen and epidermal 

75 growth factor receptor. However, these prognostic models have limited power for predicting 

76 prognosis because of the complicated molecular mechanisms of LUAD development and 
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77 progression. Therefore, it is important to explore the mechanism of LUAD pathology in more 

78 depth using bioinformatics to construct prognostic models that predict the patient’ prognosis 

79 more accurately.

80 Metabolic reprogramming is one of the hallmarks of cancer (Faubert et al., 2020), which takes 

81 place from the onset and throughout the development of cancer (Chang, Fang & Gu, 2020). It 

82 plays an important role in the progression, metastasis, depressed immunity, and therapy 

83 resistance of cancer (Lane et al., 2019). Metabolic reprogramming has been widely accepted as 

84 the basis for the discovery of novel tumor biomarkers. Satriano et al. (2019) observed that 

85 metabolic rearrangement played an important role in predicting the prognosis in patients with 

86 primary liver cancers. Chen et al. (2019) revealed that reprogrammed tumor glucose metabolism 

87 could promote cancer stemness and result in poor prognosis in breast cancer patients. There are 

88 hundreds of metabolic genes that consistently have an altered expression in LUAD 

89 (Asavasupreechar et al., 2019; Vanhove et al., 2019); however, their roles and mechanisms of 

90 action remain unclear. This study investigated the role of abnormal metabolism in predicting the 

91 prognosis in patients with LUAD. 

92 With the development of genome sequencing and bioinformatics, new data have emerged. 

93 Prognosis-related gene signatures that were constructed using these new tools have made great 

94 contributions to tumor prognosis prediction. This study aimed to use bioinformatic methods to 

95 establish a prognostic metabolic-gene molecular model that can predict prognosis in patients 

96 with LUAD. This model could potentially guide personalized therapy for such patients.

97

98 Materials & Methods

99 Data expression datasets

100 The transcriptome expression profiles and corresponding clinical information for LUAD were 

101 downloaded from the Cancer Genome Atlas (TCGA; http://portal.gdc.cancer.gov/) and Gene 

102 Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) databases. From the TCGA, 

103 gene expression data were of the HTSeq-FPKM type, obtained from 497 LUAD and 54 non-

104 tumor samples. From the GEO, the GSE68465 dataset included 443 LUAD and 19 non-tumor 

105 samples, using the GPL96 platform (Affymetrix Human Genome U133A Array). The metabolic 

106 genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were extracted from 

107 Gene Set Enrichment Analysis (GSEA) (http://software.broadinstitute.org/gsea/index.jsp/), and 

108 the overlapping metabolism-related genes were identified from TCGA and GSE68465 

109 (Possemato et al., 2011; Zhu et al., 2020). 

110

111 Construction and validation of the prognostic metabolic gene signature

112 The clinical cases from the TCGA database were used to assess the prognostic associations of 

113 the metabolic genes with clinical outcomes. The differentially expressed genes (DEGs) between 

114 LUAD and paired non-tumor samples were obtained by the Wilcoxon rank sum test using the R 

115 package called “limma”, and the adjusted P-value < 0.05 and absolute log2 fold change (FC) >1 

116 were considered as the selection criterion. Univariate Cox regression analysis was used to 
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117 identify prognosis-related metabolic genes, and adjusted P-values < 0.001 were considered 

118 statistically significant. The lasso penalty for Cox proportional hazards model (1,000 iterations) 

119 was used to construct the prognostic gene-expression signature utilizing an R package called 

120 “glmnet.” The prognostic gene-expression signature was designed using a risk scoring method 

121 with the following formula:

122 𝑹𝒊𝒔𝒌 𝒔𝒄𝒐𝒓𝒆 =

𝒏∑𝒊 (𝒙𝒊 ∗ 𝜷𝒊)
123 where xi indicates the expression of gene i and βi indicates the coefficient of gene i generated 

124 from the Cox multivariate regression.

125 The R package “survminer” was used to explore the cutoff point of the risk score, which divided 

126 patients into high- and low-risk groups. The R package “survival” was used to draw the Kaplan-

127 Meier survival curves to demonstrate the overall survival (OS) in the high- and low-risk groups. 

128 The R package “survival ROC” was used to evaluate the prognostic value of the gene-expression 

129 signature.

130

131 Independence of the prognostic gene signature from other clinical characteristics

132 To determine whether the predictive power of the prognostic gene-expression signature could be 

133 independent from other clinicopathological variables in patients with LUAD (including age, sex, 

134 TNM stage, T stage, N stage, and M stage), univariate and multivariate Cox regression analyses 

135 were performed. The hazard ratio (HR), 95% confidence intervals (Cis), and P-values were 

136 calculated.

137

138 Construction and validation of a predictive nomogram

139 The nomogram was constructed using all the independent prognostic factors of the Cox 

140 regression analyses using R package “rms.” Validation of the nomogram was assessed by 

141 discrimination and calibration using the concordance index (C-index) by Harrell et al. (1996) 

142 (bootstraps with 1,000 resamples) and the calibration plot, respectively.

143

144 External validation of the prognostic metabolic gene signature 

145 To verify the prognostic metabolic-gene molecular signature in the GEO dataset, the risk score 

146 of patients was calculated directly with the gene-expression signature constructed from the 

147 TCGA dataset for further analysis. The receiver operating characteristic (ROC) and Kaplan-

148 Meier analyses were performed identically with the gene signature in the TCGA dataset. The 

149 mRNA expression levels of the signature genes were analyzed further using online databases 

150 (the Oncomine database [http://www.oncomine.org/] and TIMER database 

151 [http://cistrome.shinyapps.io/timer/]). The protein expression levels associated with the signature 

152 genes were validated using the Human Protein Atlas database (http://www.proteinatlas.org/). The 

153 known genetic alterations of the signature genes were investigated using cBioPortal for Cancer 

154 Genomics (http://www.cbioportal.org/).

155
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156 Gene Set Enrichment Analysis

157 Enrichment analysis of the KEGG pathways of the signature genes was performed using GSEA 

158 on the TCGA dataset. The nominal (NOM) P-value < 0.05 and the False Discovery Rate (FDR) 

159 q-value < 0.25 indicated statistical significance.

160

161 Statistical analysis

162 All analyses were performed using R software v3.6.3 (R Foundation for Statistical Computing, 

163 Vienna, Austria). Two-tailed P-values < 0.05 were considered statistically significant.

164

165 Results

166 Clinical characteristics

167 The TCGA dataset included 486 patients with LUAD (Table S1). The GEO dataset included 443 

168 patients with LUAD (Table S1). Patients with a survival time of less than 30 days were omitted. 

169 For the study, 454 and 439 patients remained in the TCGA and GEO datasets, respectively. The 

170 detailed clinical characteristics of all patients are listed in Table 1.

171

172 Building and validation of the prognostic metabolic gene signature 

173 To clarify our study design, a flow chart of the analysis procedure is presented in Fig. 1. A list of 

174 994 genes in the KEGG pathway was identified from GSEA (Table S2), and 633 overlapping 

175 metabolism-related genes were abstracted from TCGA and GSE68465 (Table S3). The 96 DEGs 

176 (72 up-regulated genes and 24 download genes) between LUAD and paired non-tumor samples 

177 were identified from the further analysis (Fig. 2; Table S4). Seven significant genes associated 

178 with OS were identified using univariate analysis (Table S4). Furthermore, six genes were 

179 selected to build the prognostic model using a lasso-penalized Cox analysis (Table 2). The six 

180 genes were phosphofructokinase platelet (PFKP), pyruvate kinase muscle (PKM), 

181 triosephosphate isomerase 1 (TPI1), lactate dehydrogenase A (LDHA), prostaglandin E synthase 

182 (PTGES), and thymidylate synthase (TYMS). Risk score = (0.00005× PFKP mRNA level) + 

183 (0.00173× PKM mRNA level) + (0.00038× TPI1 mRNA level) + (0.00379× LDHA mRNA 

184 level) + (0.00292 × PTGES mRNA level) + (0.02490× TYMS mRNA level). 

185 The 445 patients with LUAD were divided into the high-risk or low-risk group based on the 

186 median risk score of 0.861 in the TCGA dataset. Patients in the high-risk group had significantly 

187 poorer OS than those in the low-risk group (P < 0.001; Fig. 3A). The distribution of the risk 

188 score and survival status of the patients is presented in Fig. 3C, which showed a higher mortality 

189 in the high-risk group than in the low-risk group. The expression of the six prognostic genes is 

190 shown in the heatmap. All the six genes had a significant positive correlation with the high-risk 

191 group (Fig. 3E). The area under the curve (AUC) of the time-dependent ROC curve was used to 

192 identify the prognostic ability of the six-gene molecular signature. The AUCs of the six-gene 

193 signature model were 0.693, 0.655, and 0.565 for the 1-, 3-, and 5-year OS, respectively, 

194 suggesting that the prediction model had a good performance in predicting the OS in patients 

195 with LUAD (Fig. 3G).
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196 The prognostic model was validated in the GSE68465 dataset. The 439 patients with LUAD 

197 were divided into the high-risk or low-risk group based on the median risk score of 0.861. 

198 Patients in the high-risk group had a poor OS compared with those in the low-risk group (P < 

199 0.001; Fig. 3B). The distribution of the risk score and survival status showed a higher mortality 

200 in the high-risk group than in the low-risk group (Fig. 3D). The expression heatmap of the six 

201 prognostic genes showed that all the six genes had a significant positive correlation with the 

202 high-risk group (Fig. 3F). The AUCs of the six-gene signature model were 0.728, 0.654, and 

203 0.618 for the 1-, 3-, and 5-year OS, respectively (Fig. 3H). Taken together, these results 

204 suggested that the prognostic model had a high sensitivity and specificity in predicting the OS in 

205 patients with LUAD.

206

207 The prognostic gene signature was independent from other clinicopathological factors

208 Univariate and multivariate Cox regression analyses were conducted to assess the independent 

209 predictive value of the six-gene prognostic signature. In the TCGA dataset, univariate Cox 

210 regression analysis demonstrated that the prognostic model (HR: 2.845, P < 0.001), TNM stage 

211 (HR: 1.666, P < 0.001), T stage (HR: 1.605, P < 0.001), and N stage (HR: 1.806, P < 0.001) had 

212 a prognostic value for OS (Fig. 4A). Multivariate Cox regression analysis demonstrated that the 

213 only prognostic model (HR: 2.448, P < 0.001) and TNM stage (HR: 1.950, P < 0.01) were 

214 independent prognostic factors for OS (Fig. 4A). In the GSE68465 dataset, the prognostic model, 

215 T stage, N stage, and age had a prognostic value in the univariate and multivariate Cox 

216 regression analyses (Fig. 4B). Gender was the only independent prognostic factor for OS in the 

217 univariate Cox regression analysis (Fig. 4B).

218 In addition, the time-dependent ROC curve was used to identify the predictive ability of the 

219 prognostic model compared with the other clinicopathological characteristics. In the TCGA 

220 dataset, the AUCs of the prognostic model were 0.693, 0.655, and 0.565 for the 1-, 3-, and 5-year 

221 OS, respectively, which were higher than most of the other clinicopathological characteristics 

222 including age (0.498, 0.511, 0.485), gender (0.579, 0.485, 0.451), T stage (0.673, 0.613, 0.608), 

223 N stage (0.685, 0.666, 0.628), and M stage (0.508, 0.527, 0.530) (Fig. 5A). Furthermore, in the 

224 GSE68465 dataset, the AUCs of the prognostic model were 0.728, 0.654, and 0.618 for the 1-, 3-

225 , and 5-year OS, respectively, which were higher than most of the other clinicopathological 

226 characteristics including age (0.593, 0.568, 0.581), gender (0.539, 0.549, 0.547), grade (0.580, 

227 0.571, 0.548), T stage (0.647, 0.606, 0.606), and N stage (0.690, 0.680, 0.655) (Fig. 5B). The 

228 prognostic model had a larger AUC value compared with other clinicopathological 

229 characteristics. These results indicated that the model was an excellent prognostic model for 

230 LAUD patients, especially for the 1- and 3-year OS. 

231 These results suggested that our prognostic model could be an independent predictor of 

232 prognosis in patients with LAUD.

233

234 Building and validating a predictive nomogram
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235 A nomogram was built to predict the survival probability in patients with LAUD in the TCGA 

236 dataset. The nomogram was constructed using four prognostic factors (the TNM stage, T stage, 

237 N stage, and prognostic model; Fig. 6A). The C-index was calculated to evaluate the predictive 

238 ability of the nomogram for OS. The C-index for the nomogram was 0.754 (95% CI: 0.561–

239 0.947). Calibration plots indicated that the nomogram had a good accuracy in predicting the 1- 

240 and 3-year OS (Fig. 6B).

241 To predict the survival probability more accurately, the combined prognostic model was built 

242 based on the nomogram. The combined prognostic model consisted of the TNM stage, T stage, N 

243 stage, and prognostic model. A time-dependent ROC curve was used to identify the predictive 

244 ability of the combined prognostic model. The AUCs of the combined prognostic models were 

245 0.782, 0.717, and 0.688 for the 1-, 3-, and 5-year OS, respectively, which were higher than other 

246 clinical models including the TNM stage model (0.732, 0.687, 0.681), T stage model (0.671, 

247 0.612, 0.613), N stage model (0.686, 0.661, 0.648), and the prognostic model (0.692, 0.634, 

248 0.576). The combined model had the largest AUC value compared with other factors, which 

249 indicated that the combined model had a good predictive accuracy for survival. These results 

250 suggested that the predictive ability of the combined model built with the nomograms is better 

251 than other models, especially for predicting 1- and 3-year survival (Fig. 6C). 

252

253 Gene Set Enrichment Analysis

254 To recognize signaling pathways that are differentially activated in LUAD, a GSEA was used, 

255 and a total of 49 significantly enriched KEGG pathways were found in the high-risk group and 

256 low-risk group (Table S5) of the TCGA dataset (FDR q-val < 0.25, NOM p-val < 0.05). Among 

257 them, many enriched pathways were related to metabolism and some highly dysregulated 

258 pathways including cell cycle, p53 signaling pathway, and basal transcription factors were also 

259 contained in these results (Table S5). We chose the top five significantly enriched metabolism-

260 signaling pathways depending on the normalized enrichment score from the high-risk group or 

261 low-risk group. We found that the top five most significantly enriched metabolism-related 

262 pathways of the high-risk group were the cysteine and methionine, fructose and mannose, 

263 glyoxylate and dicarboxylate, purine, and pyrimidine pathways (Fig. 7A). The top five most 

264 significantly enriched metabolism-related pathways of the low-risk group were the alpha 

265 linolenic acid, arachidonic acid, ether lipid, glycerophospholipid, and linoleic acid pathways 

266 (Fig. 7B). Most of the metabolism-related pathways in the high-risk group mainly focused on 

267 amino acid and glycolysis metabolism, while the pathways in the low-risk group mainly focused 

268 on lipid metabolism. The results of the ten representative enriched metabolism-related KEGG 

269 pathways are given in Table 3. Furthermore, all the six metabolic genes of the prognostic model 

270 enriched these metabolism pathways significantly. LDHA enriched the cysteine and methionine 

271 pathway (Table S6); PFKP and TPI1 enriched the fructose and mannose pathway (Table S6); 

272 PKM enriched the purine pathway (Table S6); TYMS enriched the pyrimidine pathway (Table 

273 S6); and PTGES enriched the arachidonic acid pathway (Table S6). The results further 
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274 elucidated the role of metabolism in LUAD and the value of the six-gene signature in predicting 

275 the prognosis of LUAD.

276

277 External validation using online databases

278 To further identify the role of the six metabolic genes in LUAD, we compared the mRNA 

279 expression levels of the six metabolic genes (PFKP, PKM, TPI1, LDHA, PTGES, and TYMS) in 

280 the LAUD tissues with those in the normal lung tissues using data from the Oncomine database 

281 (Fig. 8). Obviously, all the six genes were overexpressed in lung cancer in all the datasets from 

282 the Oncomine database with the threshold of fold change=2, P-value=0.001(Fig. 8A). 

283 Furthermore, the mRNA levels of all the six genes in LUAD were significantly upregulated than 

284 those in normal tissues in the combined LUAD datasets from the Oncomine database (Fig. 8B; 

285 Table 4). To further validate the overexpression of the six genes in LUAD, we analyzed the 

286 expression of the six genes using TIMER databases (Fig. 9). The results revealed that all the 

287 mRNA expression of the six genes in LUAD were significantly higher than in normal tissues. All 

288 the results from the Oncomine and TIMER databases were consistent with our results for the 

289 TCGA and GEO datasets. In addition, the mRNA expression of the six genes was also higher in 

290 esophageal carcinoma, head and neck squamous cell carcinoma, lung squamous cell carcinoma, 

291 and stomach adenocarcinoma from the TIMER databases (Fig. 9). The protein expressions of 

292 these six genes were analyzed using clinical specimens from the Human Protein Profiles (Fig. 

293 10A and 10B; Table 5). The representative images of the six gene protein levels from the 

294 Human Protein Profiles are shown in Fig. 10A. Compared with the expression level in normal 

295 lung tissue, LDHA (100%, n=7) and TYMS (80%, n=5) showed a significantly higher percentage 

296 of high/medium expression levels in the LAUD tissue (Fig. 10B; Table 5). PKM (50%, n=6), 

297 PFKP (33.33%, n=6), and PTGES (16.67%, n=6) showed a significant moderate percentage of 

298 high/medium expression levels in the LAUD tissue (Fig. 10B; Table 5). However, TPI1 showed 

299 no detected expression both in the LAUD and normal lung tissue (Fig. 10B; Table 5). The 

300 genetic alterations were explored in the cBioPortal database. Amplifications and mutations were 

301 the most common alterations in the six metabolic genes (Fig. 10C). The aberrant genetic 

302 alterations might elucidate the overexpression of these six genes in LUAD.

303 Altogether, the correlation of the aberrant expression of these six genes with LAUD cancer 

304 was further validated using multiple online databases.

305

306 Discussion

307 LUAD is the most common histological subtype of primary lung cancer. The incidence of 

308 LUAD has been increasing rapidly, and mortality has not significantly decreased despite great 

309 improvements in research and treatment. Therefore, exploring the molecular mechanisms of 

310 LUAD progression and constructing a valid and accurate molecule-based tool for evaluating the 

311 prognosis in patients is urgently needed. This could help design more efficient therapeutic 

312 strategies for LUAD. Metabolic reprogramming in cancers could lead to their development and 

313 progression (Nwosu et al., 2017; Liu et al., 2020). Characterization of the changes in metabolic 
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314 gene expression in LUAD would allow development of novel prognostic biomarkers. However, a 

315 single biomarker is not a robust measure for predicting patient prognosis. Thus, constructing a 

316 robust multiple-biomarker signature for predicting the prognosis in cancer patients is necessary. 

317 We identified and designed a novel six-gene prognostic molecular signature based on the 

318 TCGA database and validated its efficiency in the GSE68465 dataset. The results indicated that 

319 the molecular signature was significantly associated with OS in patients with LUAD in the 

320 training and validation sets. These results indicate that the molecular signature has a robust 

321 prognostic value, especially for predicting short-term survival in patients with LUAD. These 

322 results also demonstrated that the prognostic signature was independent of other 

323 clinicopathological characteristics, which further supports the prognostic value of this signature. 

324 To increase the accuracy of the prediction of prognosis, we constructed a nomogram built with 

325 the combination of genetic and clinically related variables of patients with LUAD. The 

326 nomogram included the prognostic model, TNM, T stage, and N stage. Its predictive accuracy 

327 was verified using calibration plots, the C-index, and the AUC, which indicated that the 

328 nomogram had a greater predictive value than the previous systems. The Gene Set Enrichment 

329 Analysis showed that many significantly enriched pathways were metabolism-related pathways. 

330 The different risk groups possessed different metabolic pathway features. The metabolism-

331 related pathways in the high-risk group were mainly associated with amino acid and glycolysis 

332 metabolism, while the pathways in the low-risk group were mainly associated with lipid 

333 metabolism. These results revealed that the different risk groups possessed the different 

334 metabolic features, which might provide the underlying metabolic mechanisms of promoting the 

335 prognosis of LUAD. All these results further suggest a strong association between the molecular 

336 signature and metabolic systems and might reflect the dysregulated metabolic microenvironment 

337 of cancers.

338 Most of the six genes in our prognostic signature are suggested to be related to cancer 

339 development. PFKP is a major isoform of cancer-specific phosphofructokinase-1, an enzyme 

340 that catalyzes the phosphorylation of fructose-6-phosphate to form fructose-1,6-bisphosphate. 

341 Recently, PFKP was noted to have an aberrant upregulation in many cancers, such as breast 

342 cancer, prostate cancer, and glioblastoma. The dynamic upregulation of PFKP promotes 

343 metabolic reprogramming and cancer cell survival (Bjerre et at., 2019; Kim et al., 2017). As a 

344 key regulator enzyme in glycolysis, PFKP enriched the fructose and mannose metabolism 

345 pathway. Recent studies showed that PFKP is highly expressed in lung cancer and promotes lung 

346 cancer development via fructose and mannose metabolism (Shen et al., 2020; Wang, et al., 

347 2015). PKM is a rate-limiting enzyme in the final step of glycolysis, that is considered as one of 

348 the metabolic hallmarks of cancer (Prakasam et al., 2017). The abnormal expression of PKM 

349 promoted cancer growth, invasion, and metastasis by governing aerobic glycolysis (Prakasam et 

350 al., 2017; Zahra et al., 2020) and induced cancer treatment resistance (Calabretta et al., 2016). 

351 Furthermore, PKM is overexpressed in non-small cell lung cancer (NSCLC) and involved in the 

352 development and prognosis of NSCLC (Luo et al., 2018). TPI1 is a crucial enzyme in 

353 carbohydrate metabolism, catalyzing the interconversion of dihydroxyacetone phosphate and d-
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354 glyceraldehyde-3-phosphate during glycolysis and gluconeogenesis. TPI1 is abnormally 

355 expressed in different kinds of cancers, such as breast cancer, gastric cancer, and lymphoma and 

356 is associated with a poor prognosis in patients with neuroblastoma and pancreatic cancer through 

357 dysregulating glycometabolism (Ludvigsen et al., 2018; Applebaum et al., 2016; Follia et al., 

358 2019). LDHA is an enzyme that catalyzes the interconversion of pyruvate and lactate. LDHA was 

359 enriched in cysteine and methionine metabolism, and its aberrant metabolism regulation 

360 promoted many pathological processes in tumors, such as cell proliferation, survival, invasion, 

361 metastasis, and immunity (Dorneburg et al., 2018). Overexpressed LDHA is associated with poor 

362 prognosis in many tumors, including NSCLC, breast cancer, gallbladder carcinoma, and 

363 gastrointestinal cancer (Mizuno et al., 2020; Guddeti et al., 2019). PTGES is a key enzyme in the 

364 arachidonic acid metabolism pathway. An abnormally high expression of PTGES is correlated 

365 with proliferation, invasion, and metastasis in many cancer cells (Kim et al., 2016; Delgado-

366 Goñi et al., 2020). The dysregulated PTGES promoted tumor migration and metastasis of lung 

367 cancer cells and played an important role in lung cancer progression (Wang et al., 2019). TYMS 

368 is a rate-limiting enzyme, which plays an important role in regulating the pyrimidine metabolism 

369 signaling pathway (Yeh et al., 2017). TYMS is overexpressed frequently in different kinds of 

370 cancers, such as NSCLC, pancreatic, colorectal, and breast cancers, and it has resulted in a poor 

371 cancer prognosis and chemotherapy resistance via dysregulating pyrimidine metabolism 

372 (Troncarelli Flores et al., 2019; Wu et al., 2019). In our study, we constructed a six-gene 

373 signature for a prognostic model based on the TCGA database. This novel six-gene signature had 

374 a higher survival prediction, and the predictive ability of this signature was further validated by 

375 the GSE68465 dataset and multiple online databases. To our knowledge, the six-gene signature 

376 for prognosis prediction in LUAD has not been reported yet. Compared with the traditional 

377 prognostic models such as clinical characteristics (e.g., TNM stage, vascular tumor invasion, and 

378 organization classification) or a single molecular biomarker, a multi-gene signature can predict 

379 the prognosis more accurately and provide a clearer molecular mechanism for personalized 

380 LUAD therapy. 

381 There are limitations in our study. First, our nomogram was not validated further in the GEO 

382 database because the GSE68465 lacked detailed TNM stage data. Thus, the nomogram should be 

383 externally validated using larger datasets from multicenter clinical trials and perspective studies. 

384 Second, functional experiments should be further performed to explore the molecular 

385 mechanisms predicted by the metabolic gene expression. 

386

387 Conclusions

388 We concluded from our research results that the six-gene metabolic prognostic signature could 

389 accurately predict the prognosis in patients with LUAD. The molecular signature may provide 

390 potential biomarkers for metabolic therapy and prognosis prediction of LUAD.

391

392

393
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Figure 1
Overall flowchart of steps used in the construction of the prognostic metabolic gene
signature.

The TCGA dataset was utilized to construct the prognostic metabolic gene signature. The
TCGA clinical information, GSE68465 dataset and online databases from international
platforms were further utilized to validate the prognostic model. TCGA, The Cancer Genome
Atlas; OS, overall survival; ROC, the receiver operating characteristic.
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Figure 2
Heatmap and Volcano plot of metabolism-related DEGs.

(A) The heatmap of metabolism-related DEGs. The red color represented high expression
genes, the green color represented low expression genes, and the black color represented
the expression genes with no significant difference (FDR < 0.05, absolute log FC > 1). (B)
Volcano plot of metabolism-related DEGs. The red, green and black dots represented the
high expression genes, low expression genes, and the expression genes with no significant
difference (FDR < 0.05, absolute log FC > 1). DEGs, differentially expressed genes; FDR, false
discovery rate.
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Figure 3
Identification of the prognostic model in lung adenocarcinoma.

(A, B) Kaplan-Meier curves of overall survival of the high-risk and low-risk groups stratified by
the six-gene signature- based risk score in the TCGA or GEO dataset. (C, D) Risk score
distribution, survival status distribution in the TCGA or GEO dataset. (E, F) The expression
heatmap of the six prognostic genes in the TCGA or GEO dataset. (G, H) Time-dependent
ROC curves of the six-gene signature in the TCGA or GEO dataset. TCGA, The Cancer
Genome Atlas; GEO, Gene Expression Omnibus; ROC, receiver operating characteristic.
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Figure 4
Cox regression analysis of the associations between the prognostic model and
clinicopathological characteristics with overall survival in LAUD.

Univariate and multivariate Cox regression analyses in the TCGA dataset (A) and GEO
dataset (B). LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas; GEO, Gene
Expression Omnibus.
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Figure 5
The time-dependent receiver operating characteristic (ROC) analysis for the prognostic
model and clinicopathological characteristics in LAUD.

(A) The time-dependent ROC curves of risk score, age, gender, TNM stage, T stage, N stage,
and M stage in the TCGA dataset. (B) The time-dependent ROC curves of risk score, age,
gender, grade, T stage, and N stage in the GEO dataset. LUAD, lung adenocarcinoma.
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Figure 6
Construction and validation of a nomogram for survival prediction in LUAD from the
TCGA dataset.

(A) The nomogram was built in the TCGA dataset. (B) Calibration plots revealed the
nomogram-predicted survival probabilities. (C) The time-dependent ROC analysis evaluated
the accuracy of the nomogram. TCGA, The Cancer Genome Atlas; ROC, receiver operating
characteristic; LUAD, lung adenocarcinoma.
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Figure 7
The representative enriched metabolism-related KEGG pathways in the TCGA dataset by
GSEA.

(A) The top five significantly representative enriched metabolism-related KEGG pathways in
the high-risk group. (B) The top five significantly representative enriched metabolism-related
KEGG pathways in the low-risk group. Related parameters for the ten representative enriched
metabolism-related KEGG pathways are given in Table 3. GSEA, Gene Set Enrichment
Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; TCGA, The Cancer Genome
Atlas.
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Figure 8
mRNA expression levels of the six prognostic genes from online databases.

(A) mRNA expression levels of the six genes in the Oncomine database
(http://www.oncomine.org/). The threshold is shown at the bottom (P value < 0.001 and fold
change > 2 were utilized for screening). The figure in the colored cell represents the number
of datasets complying with the threshold. The red cells indicate that the genes were
overexpressed in the cancer, while the blue cells indicate that the genes were overexpressed
in the normal tissues. (B) Comparisons of the mRNA expression levels of the six genes
between LUAD and normal tissues in the combined LUAD datasets from the Oncomine
database. PFKP, phosphofructokinase platelet; PKM, pyruvate kinase muscle; TPI1,
triosephosphate isomerase 1; LDHA, lactate dehydrogenase A; PTGES, prostaglandin E
synthase; TYMS, thymidylate synthase; LUAD, lung adenocarcinoma.
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Figure 9
mRNA expression levels of the six prognostic genes extracted from online database.

The mRNA expression levels of the six genes in different tumour types from the TIMER
database ( http://cistrome.shinyapps.io/timer/ ) (*P < 0.05, **P < 0.01, ***P < 0.001). PFKP,
phosphofructokinase platelet; PKM, pyruvate kinase muscle; TPI1, triosephosphate isomerase
1; LDHA, lactate dehydrogenase A; PTGES, prostaglandin E synthase; TYMS, thymidylate
synthase.
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Figure 10
Protein expression levels and genetic alterations of the corresponding six prognostic
genes obtained from online databases.

(A) The representative immunohistochemistry images of the protein expression of the six
genes in the normal lung tissues and LUAD tissues from the Human Protein Atlas database.
(http://www.proteinatlas.org/) (B) The percentage of protein expression levels in the normal
lung tissues and LUAD tissues analysed based on the Human Protein Atlas database. Anti-
PFKP antibody is HPA018257; anti-PKM antibody is CAB019421; anti-TPI1 antibody is
HPA053568; anti-LDHA antibody is CAB069404; anti-PTGES is HPA045064; anti-TYMS
antibody is CAB002784. (C) Genetic alterations of the six genes in 230 LUAD patients /
samples (TCGA, Firehose Legacy). Data were obtained from the cBioportal for Cancer
Genomics ( http://www.cbioportal.org/ ). PFKP, phosphofructokinase platelet; PKM, pyruvate
kinase muscle; TPI1, triosephosphate isomerase 1; LDHA, lactate dehydrogenase A; PTGES,
prostaglandin E synthase; TYMS, thymidylate synthase; TCGA, The Cancer Genome Atlas;
LUAD, lung adenocarcinoma.
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Table 1(on next page)

Clinical characteristics of the included datasets
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1

Characteristics TCGA (n, %) 

(n=454)

GSE68465 (n, %)

(n=439)

Age

＜60 133 (29.3%)  128 (29.2%)

≥60  321 (70.7%)  311 (70.8%)

NA 0 (0.0%) 0 (0.0%)

Gender

Female 248 (54.6%) 218 (49.7%)

Male 206 (45.4%) 221 (50.3%)

NA 0 (0.0%) 0 (0.0%)

Grade

G1 0 (0.0%) 60 (13.7%)

G2 0 (0.0%) 206 (46.9%)

G3 0 (0.0%) 166 (37.8%)

NA 454 (100%) 7 (1.6%)

TNM stage

Ⅰ 243 (53.5%)

Ⅱ 105 (23.1%)

Ⅲ 74 (16.3%)

Ⅳ 24 (5.3%)

NA 8 (1.8%) 439（100%）

T stage

T1 156 (34.4%) 150 (34.2%)

T2 240 (52.9%) 248 (56.5%)

T3 37 (8.1%) 28 (6.4%)

T4 18 (4.0%) 11 (2.5%)

Tx 3 (0.7%) 2 (0.5%)

N stage

N0 291 (64.1%) 297 (67.7%)

N1 86 (18.9%) 87 (19.8%)

N2 64 (14.1%) 52 (11.8%)

N3 2 (0.4%) 0 (0.0%)

Nx 11 (2.4%) 3 (0.7%)

M stage

M0 305 (67.2%) 439 (100%)

M1 23 (5.1%) 0 (0.0%)

Mx 126 (27.8%) 0 (0.0%)

Survival status

Alive 300 (66.1%) 206 (46.9%)

Dead 154 (33.9%) 233 (53.1%)
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2 Note:

3    TCGA, The Cancer Genome Atlas.
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Table 2(on next page)

Prognostic values for the six-gene metabolic signature in 454 LUAD patients.
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Gene Coef HR HR.95L HR.95H P value

PFKP 0.000050 1.009949 1.004184 1.015747 0.0007

PKM 0.001734 1.005149 1.002545 1.007759 0.000104

TPI1 0.000384 1.003352 1.001479 1.005229 0.000448

LDHA 0.003792 1.005663 1.003774 1.007556 0.00000000396

PTGES 0.002922 1.008392 1.003408 1.0134 0.000946

TYMS 0.024904 1.033141 1.01572 1.050861 0.000172

1 Note:

2    LUAD, lung adenocarcinoma; HR, hazard ratio; CI, confidence interval.
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Table 3(on next page)

The results of the ten representative enriched metabolism-related KEGG pathways
analysed by GSEA.
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Pathway Size ES NES NOM 

p-val

FDR 

q-val

High risk

KEGG_CYSTEINE_AND_METHIONINE_ METABOLISM 34 0.62 1.98 0.00 0.006

KEGG_FRUCTOSE_AND_MANNOSE_ METABOLISM 33 0.60 1.95 0.002 0.007

KEGG_GLYOXYLATE_AND_DICARBOXYLATE_ 

METABOLISM

16 0.74 1.89 0.002 0.013

KEGG_PURINE_METABOLISM 157 0.51 2.02 0.000 0.005

KEGG_PYRIMIDINE_METABOLOSM 98 0.68 2.36 0.000 0.000

Low risk

KEGG_ALPHA_LINOLENIC_ACID_METABOLISM 19 -0.60 -1.82 0.002 0.113

KEGG_ARACHIDONIC_ACID_METABOLISM 58 -0.53 -1.86 0.000 0.101

KEGG_ETHER_LIPID_ METABOLISM 33 -0.51 -1.73 0.011 0.129

KEGG_GLYCEROPHOSPHOLIPID_METABOLISM 77 -0.48 -1.91 0.002 0.127

KEGG_LINOLEIC_ACID_ METABOLISM 29 -0.55 -1.77 0.008 0.138

1 Note:

2 KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; ES, enrichment score; 

3 NOM p-val, nominal p-value; FDR q-val, false discovery rate q-value; NES, normalized enrichment score.
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Table 4(on next page)

Comparison of mRNA expression levels of the six genes between LUAD and normal
tissues from the Oncomine database.
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Gene Analysis Type of lung cancer vs. 

normal

t-Test Fold 

change

P value References

PFKP LUAD (n=40) vs. Normal (n=6) 7.146 3.469 7.56E-8 Garber et al., 2001

LUAD (n=58) vs. Normal (n=49) 11.177 2.685 4.35E-19 Landi et al., 2008

LUAD (n=45) vs. Normal (n=65) 7.946 2.536 3.39E-11 Hou et al., 2010

LUAD (n=58) vs. Normal (n=58) 10.910 2.883 1.64E-17 Selamat et al., 2012

LUAD (n=20) vs. Normal (n=19) 5.277 3.149 9.37E-6 Stearman et al., 2005

Comparison of PFKP expression across 5 

Analysis between LUAD and Normal

- - 1.64E-17 -

PKM LUAD (n=58) vs. Normal (n=58) 12.037 2.551 3.56E-20 Selamat et al., 2012

TPI1 LUAD (n=40) vs. Normal (n=6) 4.929 2.283 4.03E-4 Garber et al., 2001

LDHA LUAD (n=9) vs. Normal (n=3) 4.502 4.037 6.29E-4 Yamagata et al. 2003

LUAD (n=58) vs. Normal (n=58) 11.533 2.179 1.59E-19 Selamat et al., 2012

Comparison of LDHA expression across 

2 Analysis between LUAD and Normal

- - 3.15E-4 -

PTGES LUAD (n=20) vs. Normal (n=19) 9.332 5.883 1.54E-11 Stearman et al., 2005

LUAD (n=40) vs. Normal (n=6) 6.690 4.969 1.12E-6 Garber et al., 2001

LUAD (n=58) vs. Normal (n=58) 10.267 2.179 5.58E-16 Selamat et al., 2012

LUAD (n=45) vs. Normal (n=65) 6.513 2.170 6.22E-9 Hou et al., 2010

Comparison of PTGES expression across 

4 Analysis between LUAD and Normal

- - 5.62E-7 -

TYMS LUAD (n=45) vs. Normal (n=65) 9.322 3.929 6.92E-15 Hou et al., 2010

LUAD (n=27) vs. Normal (n=30) 7.395 3.016 2.40E-9 Su et al., 2007

LUAD (n=58) vs. Normal (n=49) 11.169 2.797 9.86E-20 Landi et al., 2008

LUAD (n=20) vs. Normal (n=19) 6.509 2.118 2.18E-7 Stearman et al., 2005

LUAD (n=86) vs. Normal (n=10) 4.191 2.158 3.05E-4 Beer et al., 2002

LUAD (n=58) vs. Normal (n=58) 8.565 2.040 3.35E-13 Selamat et al., 2012

Comparison of TYMS expression across 

6 Analysis between LUAD and Normal

- - 1.09E-7 -

1 Note:

2    Owing to only one dataset meeting the screening criteria, the comparison of PKM or TPI1 expression in LUAD and normal has not been built based on 

3 the combined LUAD datasets. P value < 0.001 and fold change > 2 were utilized for screening. LUAD, lung adenocarcinoma.

4

PeerJ reviewing PDF | (2020:07:51200:1:0:NEW 10 Oct 2020)

Manuscript to be reviewed



Table 5(on next page)

Protein expression levels of the six prognostic genes in the normal lung tissues and
LUAD tissues obtained from the Human Protein Atlas database.
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Gene name Tissue type Patients in high/medium 

staining n (%)

Patients in low/not detected 

staining n (%)

Normal 0 (0%) 3 (100%)PFKP

Tumor 2 (33.33%) 4 (66.67%)

Normal 0 (0%) 3 (100%)PKM

Tumor 3 (50%) 3 (50%)

Normal 0 (0%) 3 (100%)TPI1

Tumor 0 (0%) 3 (100%)

Normal 0 (0%) 3 (100%)LDHA

Tumor 7 (100%) 0 (0%)

Normal 0 (0%) 3 (100%)PTGES

Tumor 1 (16.67%) 5 (83.33%)

Normal 0 (0%) 3 (100%)TYMS

Tumor 4 (80%) 1 (20%)

1 Note:

2 LUAD, lung adenocarcinoma.
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