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ABSTRACT
Introduction. Despite careful patient selection for subthalamic nucleus deep brain
stimulation (STN DBS), some Parkinson’s disease patients show limited improvement
of motor disability. Innovative predictive analysing methods hold potential to develop
a tool for clinicians that reliably predicts individual postoperative motor response, by
only regarding clinical preoperative variables. The main aim of preoperative prediction
would be to improve preoperative patient counselling, expectation management, and
postoperative patient satisfaction.
Methods. We developed a machine learning logistic regression predictionmodel which
generates probabilities for experiencing weak motor response one year after surgery.
Themodel analyses preoperative variables and is trained on 89 patients using a five-fold
cross-validation. Imaging and neurophysiology data are left out intentionally to ensure
usability in the preoperative clinical practice.Weak responders (n= 30) were defined as
patients who fail to show clinically relevant improvement onUnified ParkinsonDisease
Rating Scale II, III or IV.
Results. Themodel predictsweak responderswith an average area under the curve of the
receiver operating characteristic of 0.79 (standard deviation: 0.08), a true positive rate
of 0.80 and a false positive rate of 0.24, and a diagnostic accuracy of 78%. The reported
influences of individual preoperative variables are useful for clinical interpretation of
the model, but cannot been interpreted separately regardless of the other variables in
the model.
Conclusion. The model’s diagnostic accuracy confirms the utility of machine learning
based motor response prediction based on clinical preoperative variables. After
reproduction and validation in a larger and prospective cohort, this prediction model
holds potential to support clinicians during preoperative patient counseling.
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INTRODUCTION
Subthalamic nucleus deep brain stimulation (STN DBS) is a widely accepted therapy
for Parkinson’s disease (PD) patients in which dopaminergic replacement therapy is
unsatisfactory (Deuschl et al., 2006; Limousin et al., 1995;Odekerken et al., 2013; Schuepbach
et al., 2013). In the majority of these patients, DBS can reduce motor symptoms or their
fluctuations and thereby improve quality of life (Williams et al., 2010). Despite careful
patient selection, some patients still show limited or no improvement of motor fluctuations
and quality of life (Williams et al., 2010). Since the introduction of STN DBS, clinicians
aimed to determine reliable predictors (Pinter et al., 1999).

Preoperative levodopa responsiveness of motor symptoms, severity of motor symptoms,
and younger age are repeatedly reported as positive predictive factors for postoperative
(Movement Disorders Society –) Unified Parkinson’s Disease Rating Scale ((MDS-
)UPDRS) motor improvement (Kleiner-Fisman et al., 2006). Contrarily, preoperative
levodopa responsiveness is also reported to not predict STN DBS outcome (Schuepbach et
al., 2019; Zaidel et al., 2010). Preoperative severe quality of life (QoL) impairment, more
time spent in off-condition of dopaminergic medication, levodopa responsiveness, and
low BMI are reported as positive predictive factors on postoperative QoL (Abboud et
al., 2017; Daniels et al., 2011; Frizon et al., 2018; Schuepbach et al., 2019). Reports on the
predictive value of disease duration, daily levodopa dosage, postural and gait impairment,
and non-motor symptoms all show conflicting results (Dafsari et al., 2018; Frizon et
al., 2018; Kleiner-Fisman et al., 2006; Liu et al., 2018). Comparison of reported motor
outcome is hampered due to variance in assessment scales and assessments during varying
dopaminergic states (Goetz et al., 2008).

These non-conclusive results maintain the need for a simple tool which neurologists can
use in clinical practice to predict motor outcome after STN DBS for individual patients.
To realize a usable and representative tool for the preoperative setting, our approach is
limited to preoperative clinical variables. Preoperative prediction will always lack surgical
information such as lead placement. This lack of information is inherent to any approach
that aims to contribute to a better preoperative counselling.

Machine learning methods are increasingly used in medical practice to unravel patterns
to improve understanding of clinical data (Meyer et al., 2018). Predictive machine learning
models can be distinguished from traditional statistics by generating outcome predictions
for new, individual patients, instead of correlations betweenpre- andpostoperative variables
on a group level. To ensure practical usability, clinical relevance, and interpretable results,
the development and implementation of these models requires statistical, programming,
and clinical expertise (Kubben, Dumontier & Dekker, 2019). To add value to PD care,
predictive analysis should improve challenging clinical decision making instead of
reproduce valid clinical decisions (Ballarini et al., 2019; Cerasa, 2016). Here, we report
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the development and proof-of-concept of a prediction model that generates probabilities
for weak and strong motor response one year after STN DBS for individual PD patients
based on preoperative clinical variables.

MATERIAL AND METHODS
Study population
We considered patients who underwent STN DBS for PD in our academic neurosurgical
centre between 2004 and March 2018. The surgical procedure is described in the
Supplemental Material. We included 127 patients who completed one-year postoperative
follow up during this period. We excluded patients who had missing UPDRS-III scores
in their preoperative on-medication condition, or postoperative on-medication, on-
stimulation condition.

The Medical Ethical Committee of Maastricht UMC+ approved this study (2018-0739).
Informed consent was not obtained since the retrospective data was collected coded.

Pre- and postoperative variables
All available preoperative demographic data, disease specific data (disease onset, disease
duration, levodopa equivalent daily dosage (LEDD)) (Esselink et al., 2004), clinical
performance scores ((MDS)-UPDRS, and Hoehn & Yahr (H&Y) scores), as well as
relevant neuropsychological scores assessing executive functioning, in particular verbal
fluency (semantic and lexical) and response inhibition (based on the interference
score of the Stroop Colour Word Test) were incorporated. We left out imaging and
neurophysiology data, to ensure the user-friendliness and accessibility in clinical practice
during preoperative counselling. No analyses are required which ask software, hardware,
or analysing knowledge.

All included preoperative clinical and neuropsychological scores were assessed in the
on-medication condition and the available (MDS-)UPDRS III and H&Y scores in the
off-medication condition were also included. Preoperative motor levodopa-responsiveness
was calculated by subtracting UPDRS III scores in the off-medication condition with
UPDRS III scores in the on-medication condition. Postoperative collected variables consist
of UPDRS I, II, III and IV andH&Y scores in on-medication and on-stimulation conditions,
UPDRS III in on-stimulation and off-medication conditions, and the performance on the
verbal fluency and Stroop tests in on-stimulation and on-medication conditions. Both
MDS-UPDRS and UPDRS scores were collected due to the variation in surgery dates
among the population. To create uniform UPDRS scores, all MDS-UPDRS scores were
recalculated to UPDRS scores (Goetz et al., 2008). Pre- and postoperative differences
for UPDRS scores I until IV, H&Y scores, LEDD, and neuropsychological scores were
calculated. Furthermore, we registered applied DBS voltage, frequency, and pulse width
at one-year follow up. To compare DBS-settings, we computed the mean total electrical
energy delivered (TEED) (Koss et al., 2005).

Prediction model
The machine learning prediction model uses multivariate logistic regression analyses.
This logistic regression model distinguishes itself from (univariate) correlative regression
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Figure 1 Overview of prediction approach.Workflow of the prediction model as a preoperative coun-
selling tool. The preoperative individual patient variables are inserted in the prediction model, which is
trained on the retrospective database (‘Training Data’). The model calculates the probability to become a
weak responder between 0 and 1, in this example 0.7. The clinician can use this probability to inform the
patient during preoperative counselling.

Full-size DOI: 10.7717/peerj.10317/fig-1

models by generating outcome probabilities for individual patients (Fig. 1). We focused
on motor response as outcome and differentiated between ‘strong responders’ and ‘weak
responders’. To capture a wide spectrum of motor responders, improvement on UPDRS
II, III and IV was evaluated. A strong responder is defined as a patient who showed a
minimal clinically important difference (MCID) on UPDRS II, III, or IV in on-medication
and on-stimulation condition one-year postoperative vs. preoperative on-medication
condition (see Fig. 2). MCID was defined as more than 3, 5, and 3 points improvement
for UPDRS II, III and IV respectively, based on a literature review (see Supplemental
Material). Patients who improved more than the MCID on UPDRS II or IV, but showed a
deterioration on UPDRS III of more than the MCID of 5 points (Horvath et al., 2015), and
the yearly natural disease progression of 2 points (Holden et al., 2018), together 7 points,
were defined as weak responders (Holden et al., 2018; Horvath et al., 2015).

The prediction model uses the following available preoperative variables to generate an
outcome probability: gender, age at DBS, PD duration at DBS, age at PD onset, UPDRS I,
II, III and IV in on-medication condition, motor levodopa response, H&Y scale in on- and
off-condition, the Stroop interference score, the verbal fluency scores, and the LEDD.

The logistic regressionmodelwas fitted, i.e., trained, on the relation between preoperative
variables and postoperative outcome categorization (Pedregosa et al., 2011). We evaluated
the trained model with a 5-fold cross-validation. This cross-validation fits, i.e., trains,
the model on 80% of the patients, the ‘training data’. During this ‘training phase’, a
weight, ‘ β’, is assigned to every single preoperative variable, ‘x’. The fitted model was then
evaluated, i.e., tested, on the remaining 20% of patients in the database, the ‘test data’.
During this ‘test phase’, the preoperative variables of every individual patient in the test
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Figure 2 Decision flowchart of outcome categorization.DBS, deep brain stimulation; PD, Parkinson’s
disease; STN, subthalamic; UPDRS, Unified Parkinson Disease Rating Scale.

Full-size DOI: 10.7717/peerj.10317/fig-2

data were inserted in the model separately. The model generates an outcome probability to
become a weak responder for every individual patient. This probability was generated by a
calculation of all ‘x’ values of the inserted patient with the corresponding weights (β) using
the logistic function 1 / (1 + exp(- β * x)). The generated probabilities from the test data are
compared with the actual outcome to test predictive accuracy. The 5-fold cross-validation
repeats these phases 5 times until every patient was used for testing exactly once. The
cross-validation leads to less limitations in sample size regarding number of considered
predictive variables (Wynants et al., 2015). Still, the small number of patients on which the
trained model is tested during every iteration in this 5-fold cross-validation is a limitation
of this approach. Evaluating the average performance over the 5 iterations gives the best
assumption of the predictive performance of the model. We chose logistic regression as
a prediction model instead of a deep learning-based model due to the relatively small
database size and the fact that the weight, or influence, of every preoperative variable can
be interpret easily. This interpretation helps to generate an intuition what the prediction is
based on Rudin (2019).

To use a certain prediction model in clinical practice, a threshold should be chosen to
accept a probability. This means every probability above the threshold is regarded to be true
(weak response in this model), and every probability below the threshold is regarded to be
false (strong response in this model). The accuracy of the model is strongly dependent on
the threshold. A common way to evaluate the overall performance of a prediction model
is to plot the receiver operating characteristic (ROC). The ROC visualizes for different
thresholds between 0 and 1 the corresponding true positive and false positive rates (Fig. 3A).
Performance of prediction models is often expressed as the area under the curve (AUC) of
the ROC (Fig. 3A). In clinical practice, a threshold should be selected before the model can
be used as a prospective application.
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Figure 3 Prediction model performance and importance per predictive variable. (A) Visualization of
the performance of our prediction model. Our prediction model performs with an average area under the
curve (AUC) of the receiver operating curve (ROC, blue line) of 0.78 (standard deviation: 0.08). All the
dots on the ROC represent a threshold between 0 and 1 for accepting a probability to be a weak responder
to be true. Every threshold leads to a different true positive rate and false positive rate. The red circle rep-
resents the threshold corresponding with B. The orange line represents chance level in which true positive
rates equal true negative rates. (B) Confusion Matrix of the example when 0.29 is chosen as a threshold for
accepting the probability to be a weak responder (red circle in A). The true positive rate of 0.80 results in
24 out of 30 true weak responders getting a true weak prediction. The false positive rate of 0.24 results in
14 out of 59 true strong responders getting a false weak prediction. The classification accuracy is 0.78 with
69 out of 89 correct predicted patients. (C) Relative influence of all preoperative predictive variables. The
blue bars represent the normalized Odds Ratios. The heights represent the effect on prediction outcome
of a 1 unit increase in the specific variable, while all other variables stay equal. AUC, area under the curve;
DBS, deep brain stimulation; H&Y, Hoehn & Yahr scale; LEDD, levodopa equivalent daily dosage; Lev-
odopa response, difference between UPDRS III off-medication minus UPDRS III on-medication; off, off-
medication; on, on-medication; ROC, receiver operate characteristic; TEED, total electrical energy deliv-
ered; UPDRS, Unified Parkinson Disease Rating Scale; PD, Parkinson’s disease.

Full-size DOI: 10.7717/peerj.10317/fig-3

To understand which variables are important in the prediction model, we can explore
the importance of every separate preoperative variable. Variable importance is expressed
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as ‘weights’. To make these weights interpretable, they are converted to Odds Ratios by
calculating exp(β), and normalized afterwards. These normalized Odds Ratios are called
‘relative influences’, and they denote the change in probability to be a weak responder
when the respective variable increases 1 unit, and all other variables stay equal (Fig. 3A).

Comparative descriptive analysis between preoperative and postoperative variables and
between weak and strong responders are performed with Mann–Whitney-U-tests.

To facilitate prediction models, we imputed missing data-points in preoperative
variables. (For further explanation on the Random Forest imputations applied on
preoperative variables, please see Supplementary Material). To prevent imputations of
variables that are the target of prediction, we did not impute postoperative variables.
Analysis is performed in Python Jupyter Notebook 3 (Jupyter Team, https://jupyter.org,
revision fe7c2909) using packages pandas (version 1.0.4), Numpy (version 1.16.4), scikit-
learn (version 0.21.2), and Scipy (version 1.3.0). We report our findings according to the
TRIPOD Checklist for Prediction Model Development (Collins et al., 2015).

RESULTS
Preoperative and postoperative variables
We included 89 patients with a well-documented one year follow up after STN DBS, 37
patients were excluded due to missing data points in UPDRS III score in preoperative
on-medication condition, or postoperative on-medication and on-stimulation condition.
We report descriptive statistics containing the original data (no imputed preoperative data).
The total group showed statistically significant postoperative improvements in UPDRS
III scores, both compared with preoperative on- and off-medication conditions, and in
UPDRS IV scores. We observed a significant decrease in LEDD (Table 1). Further, there
was a significant deterioration in neuropsychological scores on a group level.

59 out of 89 patients were categorized as strong responders, 30 patients were categorized
as weak responders (Fig. 2). Postoperative clinical records until one-year follow-up were
evaluated and surgical factors explaining weak response were ruled out for all weak
responders. The groups had significant differences on all postoperative UPDRS scores and
differences, except for the UPDRS III during on-stimulation and off-medication state (see
Table 2). We observed no significant or relevant differences between the groups regarding
neuropsychological scores, LEDD, or TEED.

Performance of the prediction model
The prediction model has a good general performance with an average AUC of the ROC
of 0.79 (standard deviation: 0.08) (Fig. 3A).

When 0.29 is chosen as a threshold for accepting probabilities to become a weak
responder, this leads to a true positive rate of 0.80 and a false positive rate of 0.24 (Figs. 3A–
3B). This corresponds to a positive predictive value of 0.63 and a negative predictive value
of 0.88. Selecting 0.29 as the threshold for probability acceptance leads to a classification
accuracy of 78%, since 69 out of 89 patients are predicted correctly.

The relative influence values represent the influence, or weight, of each preoperative
variable in the prediction model (Fig. 3C). Older age at PD onset has the strongest relative
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Table 1 Preoperative and postoperative variables of total population.

Baseline characteristicsa

Female sex 37 (42%)
Age 61 (8)
Disease duration 10.7 (5.1)
Preoperative UPDRS III levodopa response −18.6 (13.1)
Preoperative UPDRS III % levodopa response −45.0 (38.0)

Preoperativea 1 year follow upa

UPDRS Ib 1.3 (1.3) 3.0 (3.1)
UPDRS IIb 9.8 (6.6) 9.6 (5.5)
UPDRS IIIb 21.9 (12.5) 16.4 (9.9)e

UPDRS IIIc 39.1 (13.1) 16.4 (9.9)e

UPDRS IVb 5.5 (4.0) 2.8 (2.4)e

H&Y 1b 2 (2%)d 4 (3%)
H&Y 1.5b 2 (2%) 1 (1%)
H&Y 2b 13 (15%) 21 (30%)
H&Y 2.5b 34 (40%) 24 (34%)
H&Y 3b 25 (29%) 19 (27%)
H&Y 4b 9 (11%) 2 (3%)
H&Y 5b – –
Fluency total categoriesb 39.7 (9.4) 33.6 (9.8)e

Fluency total lettersb 35.5 (10.8) 33.6 (11.9)e

Stroop interferenceb 56.1 (35.1) 76.7 (63.1)e

LEDD (milligrams) 1187 (619) 656 (510)e

TEED – 134 (130)

Notes.
H&Y, Hoehn & Yahr scale; LEDD, levodopa equivalent daily dosage; off-/on-med, off-/on-medication; off-/on-stim, off-
/on-stimulation; TEED, total electrical energy delivered; UPDRS, Unified Parkinson Disease Rating Scale.

aValues are given as mean and standard deviation of the mean.
bPreoperative: on-medication, postoperative: on-medication and on-stimulation.
cPreoperative: off-medication, postoperative: off-medication and on-stimulation.
dPercentage of Hoehn and Yahr scales are relative based on the number of available data (pre: n= 85, post: n= 71)
eSignificant difference with p-value< 0.05, calculated with Mann Whitney-U test.

influence for becoming a weak responder. High preoperative UPDRS III and IV scores in
the on-medication condition are the strongest predictors for becoming a strong responder
(Fig. 3C). Additionally, a high preoperative UPDRS II score, high scores on the categorical
fluency and Stroop interference test, and higher H&Y score in the on-condition were
moderate predictors for becoming a strong responder.

DISCUSSION
Proof of concept of machine learning prediction in preoperative DBS
outcome counselling
The presented machine learning model differentiated between individual weak and
strong motor responders one-year after STN DBS for PD with a good overall predictive
performance, the AUCof the ROCwas 0.78, and the classification accuracywas 0.78% (Figs.
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Table 2 Comparison of postoperative variables in groups with strong responders and weak respon-
ders.

1 year follow up variables Strong responders, n= 59a Weak responders, n= 30a

UPDRS Ib 2.2 (2.2) 4.5 (4.0)f

UPDRS I changec 0.4 (1.9) 1.5 (1.7)f

UPDRS IIb 8.4 (4.7) 12.3 (6.1)f

UPDRS II changec −2.8 (6.3) 5.6 (5.9)f

UPDRS III, on-medb 13.9 (7.5) 21.5 (11.9)f

UPDRS III changec −11.9 (11.6) 7.3 (8.5)f

UPDRS III, off-medd 20.9 (13.1) 25.7 (6.7)
UPDRS III changee −29.0 (13.8) −12.4 (14.4)f

UPDRS IVb 2.4 (2.2) 3.5 (2.6)f

UPDRS IV changec −4.1 (3.6) 0.1 (4.2)f

Fluency total categoriesb 33.8 (10.4) 33.4 (8.5)
Fluency total lettersb 31.2 (11.5) 31.8 (12.8)
Stroop interferenceb 75.6 (66.4) 79.0 (55.7)
LEDD 622 (511) 717 (501)
LEDD change −509 (472) −577 (529)
LEDD change (%) −40.7 (37.5) −42.2 (35.2)
TEED 145 (151) 112 (69)

Notes.
LEDD, levodopa equivalent daily dosage; off-/on-med, off-/on-medication; off-/on-stim, off-/on-stimulation; TEED, total
electrical energy delivered; UPDRS, Unified Parkinson Disease Rating Scale.

aMean (standard deviation)
bOn-stimulation, on-medication at one-year follow up
cDifference between on-medication and on-stimulation vs. preoperative on-medication
dOn-stimulation and off-medication at one-year follow up
eDifference between on-stimulation and off-medication vs. preoperative off-medication
fSignificant difference with p-value< 0.05, calculated with Mann Whitney-U test

3A–3B). These results contribute to a proof-of-concept of machine learning prediction of
individual postoperative motor outcome, solely based on preoperative clinical variables.
We want to stress that these results are the first step towards the clinical utilization of smart
supportive computational models in the delicate, multifactorial decision-making process of
DBS therapy counselling. To increase the likelihood of creating a beneficial clinical impact
for the patient, a model should be interpretable for clinicians, generalizable to the aimed
patient population, and the effect of a utilization on the quality of clinical care should be
investigated (Kelly et al., 2019).

Interpretation of the predictive performance and the clinical
utilization
A predictive machine learning model for clinical support generates individual outcome
probabilities range from 0 to 1, rather than binary classes. The presented confusion matrix
is an example of a clinical utilization where probabilities to become a weak responder higher
than 0.29 were accepted (see Figs. 3A–3B). The selection of this threshold will eventually
determine the model’s clinical behaviour, usefulness, and its potential clinical impact on
patient care. The value of this threshold leads to a different balance between false positive
and false negative predictions (Fig. 3B), and should be validated on an external cohort. The
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presented threshold is chosen to realize a good accuracy (78%) and to fit to the intended
clinical utilization of this model. Since the majority of STN DBS candidates will experience
a strong response, it is important that the clinician can trust a strong response prediction
(negative predictive rate (0.88)). Also, the model should create awareness about the chance
of becoming a weak responder in case of increased risk. This requires a good true positive
rate, here 0.80.

Further, the confusion matrix shows that most incorrect predictions are actual strong
responders who get a weak responder prediction. The final decision will be accurately
guided by the experience of the DBS team and will overrule the majority of these predictive
inaccuracies. Therefore, the actual clinical usefulness and impact should be investigated
in a prospective clinical study. Moreover, these numbers and considerations emphasize
that a clinical decision support tool in a precarious setting as preoperative counselling
for DBS therapy should have a warning role, instead of a directive role. The goal should
be to support the clinician with validated numerical expectations, and ensure her or his
awareness in case of a patient with a higher than average chance on suboptimal therapeutic
effect.

The clinical value of predicting STN DBS motor response in the
preoperative phase
Establishing an accurate prediction tool for motor outcome after STN DBS facilitates the
clinician to improve patient counselling, expectation management, postoperative patient
satisfaction, and potentially even patient selection (Lin et al., 2019). Due to the complexity
and heterogeneity of individual STN DBS candidates, outcome prediction needs to be
accompanied by a clinical expert’s appraisal. Moreover, the accuracy of a prediction model
solely regarding clinical preoperative factors will always be limited due to the influence of
surgical factors. Nevertheless, we intentionally chose to leave pre-, intra- and postoperative
imaging and neurophysiology variables out of our model. This way, we ensure the model’s
accessibility and usability in clinical practice. We aim to provide the clinician during
preoperative counselling with numerical support regarding the most probable motor
outcome for an individual patient.

Further it is important to underline this model’s target patient population and clinical
utilization. The model is designed for, and tested on, PD patients who were included for
STN DBS implementation. This means the model should be applied to patients which are
highly likely to be included for STN DBS implementation in the current care practices.
In this population, the model is aimed to inform the clinician, and indirectly the patient,
about a potential increased risk on a suboptimal motor response. This means the model is
not developed to identify optimal STN DBS candidates from a general PD population.

The additive value of machine learning methods for clinical decision
support tools
The applied predictive multivariate logistic regression model was chosen to overcome
limitations inherent to conventional (univariate) logistic regression models (Daniels et
al., 2011; Frizon et al., 2018; Schuepbach et al., 2019). Traditional predictive or correlative
analysesmainly result in a correlation betweenone preoperative variable and a postoperative

Habets et al. (2020), PeerJ, DOI 10.7717/peerj.10317 10/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.10317


outcome, while controlling for several confounding preoperative variables. The absence
of confounders and predictive variable selection in machine learning models, makes them
less limited by sample size than traditional correlative analyses (Wynants et al., 2015).
The presented prediction model distinguishes itself by evaluating all available variables
simultaneously. The applied cross-validation decreases the restriction due to sample size
and leads to less a-priori selection-bias. Nevertheless, the advantages of machine learning
predictive models come with specific analysing risks. For example, an external validation is
required to evaluate under- or overfitting of the model, and validation of the threshold for
accepting probabilities. Further, we stress the importance of using interpretable predictive
machine learning models. In contrast to more complicated models such as deep neural
networks, interpretable machine learning models remain explainable. This is essential in
evaluating clinical validity and creating clinical confidence in a supportive decision tool
which are both important in realizing actual clinical impact (Rudin, 2019).

Interpretation of the preoperative predictive variables in this model
This overview of interpretable weight of each predictive variable is an advantage of the
applied logistic regression in the prediction model (Fig. 3C). This advantage enables
clinicians to verify whether the ratio behind the predictions is clinically valid or whether
predictions are based on unexpected variables.

The reported large influence of higher age at PD onset on becoming a weak responder
is in agreement with a finding of a meta-analysis that report younger age to be a positive
predictor for a favourable outcome. Contrarily, the same meta-analysis reports longer PD
duration as a predictor for favourable outcome (Kleiner-Fisman et al., 2006).

Preoperative UPDRS III and IV scores in the on-medication condition have the largest
relative influence values for becoming a strong responder in this model. High preoperative
motor severity increasing the chance to become a strong responders is in line with the
findings of ameta-analysis, althoughmost included studies describe preoperative severity in
the off-medication condition (Kleiner-Fisman et al., 2006). Evidence on the predictive value
of symptom severity in on-medication condition is limited. The finding that H&Y scores
do not majorly influence outcome probabilities is in line with previous literature. This
literature describes that disease severity positively influences the chance on strong motor
response, while axial and balance problems negatively influence this chance (Kleiner-Fisman
et al., 2006). Since H&Y severity is based on both these factors, an inconclusive effect is
expected.

Furthermore, there is literature on predictive or correlative variables and QoL outcome
after STNDBS.We cannot compare these findings one-on-one with our findings. However,
our holistic outcome classification aims to cover multiple aspects which influence QoL.
High preoperative UPDRS III scores, and high UPDRS III levodopa response, are identified
as important predictors of good QoL outcome, and motor outcome (Daniels et al., 2011;
Frizon et al., 2018; Kleiner-Fisman et al., 2006). Conversely, recent studies have failed to
replicate this positive predictive value of UPDRS III severity, or UPDRS III levodopa
response on QoL outcome, or motor outcome (Abboud et al., 2017; Schuepbach et al., 2019;
Zaidel et al., 2010). Our findings are in line with some of these findings, since the absolute
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UPDRS III score showed a relevant influence, while the UPDRS III difference between
on- vs. off-medication condition did not have a relevant influence. Regarding the reported
influence of levodopa responsiveness, one should consider that LEDD is expressed in
milligrams, which means that the relative influence of a unit increase (1 milligram) is not
a clinically relevant increase.

A high score on categorical Fluency is a small contributor to becoming a strong responder
(Fig. 3C). A high categorical Fluency score corresponds to better neuropsychological
functioning. The contribution of the Stroop interference score is very small. Thus, there is
no large influence of neuropsychological tests in our prediction model.

Our lack ofQoL scores prevented replication of previous findingswhich suggested that an
impaired preoperative QoL-functionality predicts a large postoperative QoL improvement
(Liu et al., 2018; Schuepbach et al., 2019). Likewise, the absence of a proper non-motor
symptom scale hampered potential reproduction of the recently described importance of
non-motor symptoms (Dafsari et al., 2018).

The reported influences of the preoperative variables on the outcome probability are
mainly consistent with the literature, and are partly contradicting literature. We stress
that the reported influences of this model cannot be seen outside the scope of this model.
They are only reported to gain insight in the underlying weights which determine the
probabilities.

They cannot be interpreted on their own within individual patients when other variables
in the model are disregarded.

Limitations
Our study is limited by its retrospective character. Missing preoperative data points were
overcome by imputations. Outcome values were not imputed to prevent training of the
model based on imputed self-generated data. Even though the imputation method was
sound, the imputed values will never reach true values and will influence outcomes.
Second, the internal consensus on the applied categorization for motor outcome is
based on scientific grounds, but can always be disputed. The holistic approach including
UPDRS II, III and IV, aims to cover aspects of daily life activities, motor symptoms, and
adverse effects of treatment. Future work should include QoL metrics and investigate the
correlation between (QoL) and the presented classification. We argue our approach in
the Supplementary Material. Lastly, the accuracy of a preoperative prediction model will
always be limited and contain variance due to the lack of surgical variables.

CONCLUSION
The presented prediction model identified strong vs. weak responders one-year after STN
DBS for PD with a good classification accuracy. The potential distribution of predictive
inaccuracies was in line with the aimed clinical utilization. These findings contribute to the
proof-of-concept of machine learning prediction of individual motor outcome after STN
DBS based on preoperative clinical variables.

The reported preoperative variables cannot be interpreted separately outside the scope
of this prediction model, but endorse the clinical reliability of the applied method.
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These results and considerations support the potential and the timely relevance of
predictive clinical support tools for DBS outcome, and advocate further reproduction and
validation in a representative, multicenter cohort. The optimal clinical utilization should be
refined and the clinical additional value and impact should be clarified before a predictive
clinical support tool can be applied during individual preoperative DBS counseling.
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