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Adaptive behavior emerges through a dynamic interaction between cognitive agents and
changing environmental demands. The investigation of information processing underlying
adaptive behavior relies on controlled experimental settings in which individuals are asked
to accomplish demanding tasks whereby a hidden regularity or an abstract rule has to be
learned dynamically. Although performance in such tasks is considered as a proxy for
measuring high-level cognitive processes, the standard approach consists in summarizing
observed response patterns by simple heuristic scoring measures. With this work, we
propose and validate a new computational Bayesian model accounting for individual
performance in the Wisconsin Card Sorting Test (WCST), a renowned clinical tool to
measure set-shifting and deficient inhibitory processes on the basis of environmental
feedback. We formalize the interaction between the task's structure, the received
feedback, and the agent’s behavior by building a model of the information processing
mechanisms used to infer the hidden rules of the task environment. Furthermore, we
embed the new model within the mathematical framework of the Bayesian Brain Theory
(BBT), according to which beliefs about hidden environmental states are dynamically
updated following the logic of Bayesian inference. Our computational model maps distinct
cognitive processes into separable, neurobiologically plausible, information-theoretic
constructs underlying observed response patterns. We assess model identification and
expressiveness in accounting for meaningful human performance through extensive
simulation studies. We then validate the model on real behavioral data in order to highlight
the utility of the proposed model in recovering cognitive dynamics at an individual level.
We highlight the potentials of our model in decomposing adaptive behavior in the WCST
into several information-theoretic metrics revealing the trial-by-trial unfolding of
information processing by focusing on two exemplary individuals whose behavior is
examined in depth. Finally, we focus on the theoretical implications of our computational
model by discussing the mapping between BBT constructs and functional neuroanatomical
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correlates of task performance. We further discuss the empirical benefit of recovering the
assumed dynamics of information processing for both clinical and research practices, such
as neurological assessment and model-based neuroscience.
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ABSTRACT11

Adaptive behavior emerges through a dynamic interaction between cognitive agents and changing

environmental demands. The investigation of information processing underlying adaptive behavior relies

on controlled experimental settings in which individuals are asked to accomplish demanding tasks

whereby a hidden regularity or an abstract rule has to be learned dynamically. Although performance in

such tasks is considered as a proxy for measuring high-level cognitive processes, the standard approach

consists in summarizing observed response patterns by simple heuristic scoring measures. With this work,

we propose and validate a new computational Bayesian model accounting for individual performance in

the Wisconsin Card Sorting Test (WCST), a renowned clinical tool to measure set-shifting and deficient

inhibitory processes on the basis of environmental feedback. We formalize the interaction between the

task’s structure, the received feedback, and the agent’s behavior by building a model of the information

processing mechanisms used to infer the hidden rules of the task environment. Furthermore, we embed

the new model within the mathematical framework of the Bayesian Brain Theory (BBT), according to

which beliefs about hidden environmental states are dynamically updated following the logic of Bayesian

inference. Our computational model maps distinct cognitive processes into separable, neurobiologically

plausible, information-theoretic constructs underlying observed response patterns. We assess model

identification and expressiveness in accounting for meaningful human performance through extensive

simulation studies. We then validate the model on real behavioral data in order to highlight the utility of the

proposed model in recovering cognitive dynamics at an individual level. We highlight the potentials of our

model in decomposing adaptive behavior in the WCST into several information-theoretic metrics revealing

the trial-by-trial unfolding of information processing by focusing on two exemplary individuals whose

behavior is examined in depth. Finally, we focus on the theoretical implications of our computational

model by discussing the mapping between BBT constructs and functional neuroanatomical correlates

of task performance. We further discuss the empirical benefit of recovering the assumed dynamics of

information processing for both clinical and research practices, such as neurological assessment and

model-based neuroscience.
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INTRODUCTION37

Computational models of cognition provide a way to formally describe and empirically account for mech-38

anistic, process-based theories of adaptive cognitive functioning (Sun (2009); Cooper et al. (1996); Lee39

and Wagenmakers (2014)). A foundational theoretical framework for describing functional characteristics40

of neurocognitive systems has recently emerged under the hood of Bayesian brain theories (Knill and41

Pouget (2004); Friston (2010)). Bayesian brain theories owe their name to their core assumption that42

neural computations resemble the principles of Bayesian statistical inference.43

In a Bayesian theoretical framework, cognitive agents interact with an uncertain and changeable44

sensory environment. This requires a cognitive system to infer sensory contingencies based on an internal45

generative model of the environment. Such a generative model represents subjective hypotheses, or46
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beliefs, about the causal structure of events in the environment (Friston (2005); Knill and Pouget (2004))47

and forms a basis for adaptive behavior. It is assumed that internal beliefs are constantly updated and48

refined to match the current state of the world as new observations become available. The core idea49

behind the Bayesian brain hypothesis is that computational mechanisms underlying such an internal belief50

updating follow the logic of Bayesian probability theory. In this respect, information about the external51

world provided by sensory inputs is represented as a conditional probability distribution over a set of52

environmental states. Consequently, the brain relies on this probabilistic representation of the world to53

infer the most likely environmental causes (states) which generate those inputs, and such a process follows54

the computational principles of Bayesian inference (Friston and Kiebel (2009); Friston (2010); Buckley55

et al. (2017)).56

To clarify this concept, consider a simple example of a perceptual task in which a cognitive agent57

is required to judge whether an item depicted on a flat plane is concave or convex. Its judgment is58

based solely on the basis of a set of observed perceptual features, such as, shape, orientation, texture59

and brightness. Here, the concave-to-convex gradient entails the set of environmental states which must60

be inferred. The internal generative model of the agent codifies beliefs about how different degrees of61

convexity might give rise to certain configurations of perceptual inputs. From a Bayesian perspective,62

the problem is solved by inverting the generative model of the environment in order to turn assumptions63

about how environmental states generate sensory inputs into beliefs about the most likely states (e.g.,64

degree of convexity) given the available sensory information.65

Potentially, there are no limitations regarding the complexity of environmental settings (e.g., items66

and rules in experimental tasks) and cognitive processes to be described in light of the Bayesian brain67

framework. Indeed, the latter has proven to be a consistent computational modeling paradigm for the68

investigation of a variety of neurocognitive mechanisms, such as motor control (?), oculomotor dynamics69

(?), object recognition (?), attention (?), perceptual inference (?Knill and Pouget (2004)), multisensory70

integration (?), as well as for providing a foundational theoretical account of general neural systems’71

functioning (?Friston (2005, 2003)) and complex clinical scenarios such as Schizophrenia (?), and Autistic72

Spectrum Disorder (??). For this reason, such a modeling approach might provide a comprehensive and73

unified framework under which several cognitive impairments can be measured and understood in the74

light of a general process-based theory of neural functioning.75

In this work, we address the challenging problem of modeling adaptive behavior in a dynamic76

environment. The empirical assessment of adaptive functioning often relies on dynamic reinforcement77

learning scenarios which require participants to adapt their behavior during the unfolding of a (possibly)78

demanding task. Typically, these tasks are designed with the aim to figure out how adaptive behavior79

unfolds through multiple trials as participants observe certain environmental contingencies, take actions,80

and receive feedback based on their actions. From a Bayesian theoretical perspective, optimal performance81

in such adaptive experimental paradigms require that agents infer the probabilistic model underlying the82

hidden environmental states. Since these models usually change as the task progresses, agents, in turn,83

need to adapt their inferred model, in order to take optimal actions.84

Here, we propose and validate a computational Bayesian model which accounts for the dynamic85

behavior of cognitive agents in the Wisconsin Card Sorting Test (WCST; Berg (1948); Heaton (1981)),86

which is perhaps the most widely adopted neuropsychological setting employed to investigate adaptive87

functioning, due to its specificity in accounting for executive components underlying observed behavior,88

such as set-shifting, cognitive flexibility and impulsive response modulation (Bishara et al. (2010); Alvarez89

and Emory (2006)). For this reason, we consider the WCST as a fundamental paradigm for investigating90

adaptive behavior from a Bayesian perspective.91

The environment of the WCST consists of a target and a set of stimulus cards with geometric figures92

which vary according to three perceptual features. The WCST requires participants to infer the correct93

classification principle by trial and error using the examiner’s feedback. The feedback is thought to carry94

a positive or negative information signaling the agent whether the immediate action was appropriate or95

not. Modeling adaptive behavior in the WCST from a Bayesian perspective is straightforward, since96

observable actions emerge from the interaction between the internal probabilistic model of the agent and97

a set of discrete environmental states.98

Performance in WCST is usually measured via a rough summary metric such as the number of99

correct/incorrect responses or pre-defined psychological scoring criteria (see for instance Heaton (1981)).100

These metrics are then used to infer the underlying cognitive processes involved in the task. A major101
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shortcoming of this approach is that it simply assumes the cognitive processes to be inferred without102

specifying an explicit process model. Moreover, summary measures do not utilize the full information103

present in the data, such as trial-by-trial fluctuations or various interesting agent-environment interactions.104

For this reason, crude scoring measures are often insufficient to disentangle the dynamics of the relevant105

cognitive (sub)processes involved. Consequently, an entanglement between processes at the metric level106

can prevent us from answering interesting research questions about aspects of adaptive behavior.107

In our view, a sound computational account for adaptive behavior in the WCST needs to provide108

at least a quantitative measure of effective belief updating about the environmental states at each trial.109

This measure should be complemented by a measure of how feedback-related information influences110

behavior. The first measure should account for the integration of meaningful information. In other words,111

it should describe how prior beliefs about the current environmental state change after an observation112

has been made. The second measure should account for signaling the (im)probability of observing a113

certain environmental configuration (e.g., an (un)expected feedback given a response) (Schwartenbeck114

et al. (2016)).115

Indeed, recent studies suggest that the meaningful information content and the pure unexpectedness116

of an observation are processed differently at the neural level. Moreover, such disentanglement appears to117

be of crucial importance to the understanding of how new information influences adaptive behavior (Nour118

et al. (2018); Schwartenbeck et al. (2016); O’Reilly et al. (2013)). Inspired by these results and previous119

computational proposals (Koechlin and Summerfield (2007)), we integrate these different information120

processing aspects into the current model from an information-theoretic perspective.121

Our computational cognitive model draws heavily on the mathematical frameworks of Bayesian122

probability theory and information theory (Sayood (2018)). First, it provides a parsimonious description123

of observed data in the WCST via two neurocognitively meaningful parameters, namely, flexibility and124

information loss (to be motivated and explained in the Model section). Moreover, it captures the main125

response patterns obtainable in the WCST via different parameter configurations. Second, we formulate a126

functional connection between cognitive parameters and underlying information processing mechanisms127

related to belief updating and prediction formation. We formalize and distinguish between Bayesian128

surprise and Shannon surprise as the main mechanisms for adaptive belief updating. Moreover, we129

introduce a third quantity, which we named predictive Entropy and which quantifies an agent’s subjective130

uncertainty about the current internal model. Finally, we propose to measure these quantities on a trial-by-131

trial basis and use them as a proxy for formally representing the dynamic interplay between agents and132

environments.133

The rest of the paper is organized as follows. First, the WCST is described in more detail and a134

mathematical representation of the new Bayesian computational model is provided. Afterwards, we135

explore the model’s characteristics through simulations and perform parameter recovery on simulated136

data using a powerful Bayesian deep neural network method (Radev et al. (2020)). We then apply the137

model to real behavioral data from an already published dataset. Finally, we discuss the results as well as138

the main strengths and limitations of the proposed model.139

THE WISCONSIN CARD SORTING TEST140

In a typical WCST (Heaton (1981); Berg (1948)), participants learn to pay attention and respond to141

relevant stimulus features, while ignoring irrelevant ones, as a function of experimental feedback. In142

particular, Individuals are asked to match a target card with one of four stimulus cards according to a143

proper sorting principle, or sorting rule. Each card depicts geometric figures that vary in terms of three144

features, namely, color (red, green, blue, yellow), shape (triangle, star, cross, circle) and number of objects145

(1, 2, 3 and 4). For each trial, the participant is required to identify the sorting rule which is valid for146

that trial, that is, which of the three feature has to be considered as a criterion to matching the target card147

with the right stimulus card (see Figure 1). Noticed that both features and sorting rules refer to the same148

concept. However, the feature still codifies a property of the card, whilst the sorting rule refers to the149

particular feature which is valid for the current trial.150
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Figure 1. Suppose that the current sorting rule is the feature shape. The target card in the first trial (left

box) contains two blue triangles. A correct response requires that the agent matches the target card with

the stimulus card containing the single triangle (arrow represents the correct choice), regardless of the

features color and number. The same applies for the second trial (right box) in which matching the target

card with the stimulus card containing three yellow crosses is the correct response.

Each response in the WCST is followed by a feedback informing the participant if his/her response is151

correct or incorrect. After some fixed number of consecutive responses, the sorting rule is changed by152

the experimenter without warning, and participants are required to infer the new sorting rule. Clearly,153

the most adaptive response would be to explore the remaining possible rules. However, participants154

sometimes would persist responding according to the old rule and produce what is called a perseverative155

response.156

METHODS157

The Model158

The core idea behind our computational framework is to encode the concept of belief into a generative159

probabilistic model of the environment. Belief updating then corresponds to recursive Bayesian updating160

of the internal model based on current and past interactions between the agent and its environment.161

Optimal or sub-optimal actions are selected according to a well specified or a misspecified internal model162

and, in turn, cause perceptible changes in the environment.163

We assume that the cognitive agent aims to infer the true hidden state of the environment by processing164

and integrating sensory information from the environment. Within the context of the WCST, the hidden165

environmental states might change as a function of both the structure of the task and the (often sub-166

optimal) behavioral dynamics, so the agent constantly needs to rely on environmental feedback and own167

actions to infer the current state. We assume that the agent maintains an internal probability distribution168

over the states at each individual trial of the WCST. The agent then updates this distribution upon making169

new observations. In particular, the hidden environmental states to be inferred are the three features,170

st ∈ {1,2,3}, which refer the three possible sorting rules in the task environment such that 1: color,171

2: shape and 3: number of objects. The posterior probability of the states depends on an observation172

vector xt = (at , ft), which consists of the pair of agent’s response at ∈ {1,2,3,4}, codifying the action of173

choosing deck 1, 2, 3 or 4, and received feedback ft ∈ {0,1}, referring to the fact that a given response174

results in a failure (0) or in a success (1), in a given trial t = 0, ...,T . The discrete response at represents the175

stimulus card indicator being matched with a target card at trial t. We denote a sequence of observations as176

x0:t = (x0,x1, ...,xt) = ((a0, f0),(a1, f1),(a2, f2), ...,(at , ft)) and set x0 =∅ in order to indicate that there177

are no observations at the onset of the task. Thus, trial-by-trial belief updating is recursively computed178

according to Bayes’ rule:179

p(st |x0:t) =
p(xt |st ,x0:t−1)p(st |x0:t−1)

p(xt |x0:t−1)
(1)

Accordingly, the agent’s posterior belief about the task-relevant features st after observing a sequence180

of response-feedback pairs x0:t is proportional to the product of the likelihood of observing a particular181
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response-feedback pair and the agent’s prior belief about the task-relevant feature in the current trial. The182

likelihood of an observation is computed as follows:183

p(xt |st ,x0:t−1) =
ft p(at |st = i)+(1− ft)(1− p(at |st = i))

ft ∑ j p(at |st = j)+(1− ft)∑ j(1− p(at |st = j))
(2)

where j = 1,2,3 and p(at |st = i) indicates the probability of a matching between the target and the184

stimulus card assumed that the current feature is i. Here, we assume the likelihood of a current observation185

to be independent from previous observations without loss of generality, that is:186

p(xt |st ,x0:t−1) = p(xt |st)

The prior belief for a given trial t is computed based on the posterior belief generated in the previous187

trial, p(st−1|x0:t−1), and the agent’s belief about the probability of transitions between the hidden states,188

p(st |st−1). The prior belief can also be considered as a predictive probability over the hidden states.189

The predictive distribution for an upcoming trial t is computed according to the Chapman-Kolmogorov190

equation:191

p(st+1 = k|x0:t) =
3

∑
i=1

p(st+1 = k|st = i,Γ(t))p(st = i|x0:t) (3)

where Γ(t) represents a stability matrix describing transitions between the states (to be explained shortly).192

Thus, the agent combines information from the updated belief (posterior distribution) and the belief193

about the transition properties of the environmental states to predict the most probable future state. The194

predictive distribution represents the internal model of the cognitive agent according to which actions are195

generated.196

The stability matrix Γ(t) encodes the agent’s belief about the probability of states being stable or197

likely to change in the next trial. In other words, the stability matrix reflects the cognitive agent’s internal198

representation of the dynamic probabilistic model of the task environment. It is computed on each trial199

based on the response-feedback pair, xt , and a matching signal, mt , which are observed.200

The matching signal mt is a vector informing the cognitive agent which features are currently relevant201

(meaningful), such that m
(i)
t = 1 when a positive feedback is associated with a response implying feature202

st = i, and m
(i)
t = 0 otherwise. Note, that the matching signal is not a free parameter of the model, but is203

completely determined by the task contingencies. The matching signal vector allows the agent to compute204

the state activation level ω
(i)
t ∈ [0,1] for the hidden state st = i, which provides an internal measure of the205

(accumulated) evidence for each hidden state at trial t. Thus, the activation levels of the hidden states are206

represented by a vector ω t . The stability matrix is a square and asymmetric matrix related to hidden state207

activation levels such that:208

Γ(t) =











ω
(1)
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where the entries Γii(t) in the main diagonal represent the elements of the activation vector ω t , and the209

non-diagonal elements are computed so as to ensure that rows sum to 1. The state activation vector is210

computed in each trial as follows:211
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This equation reflects the idea that state activations are simultaneously affected by the observed feedback,212

ft , and the matching signal vector, mt . However, the matching signal vector conveys different information213

based on the current feedback. Matching a target card with a stimulus card makes a feature (or a subset of214

features) informative for a specific state. The vector mt contributes to increase the activation level of a215

state if the feature is informative for that state when a positive feedback is received, as well as to decrease216

the activation level when a negative feedback is received.217

The parameter λ ∈ [0,1] modulates the efficiency to disengage attention to a given state-activation218

configuration when a negative feedback is processed. We therefore term this parameter flexibility. We219

also assume that information from the matching signal vector can degrade by slowing down the rate220

of evidence accumulation for the hidden states. This means that the matching signal vector can be221

re-scaled based on the current state activation level. The parameter δ ∈ [0,1] is introduced to achieve this222

re-scaling. When δ = 0, there is no re-scaling and updating of the state activation levels relies on the entire223

information conveyed by mt . On the other extreme, when δ = 1, several trials have to be accomplished224

before converging to a given configuration of the state activation levels. Equivalently, higher values of δ225

affect the entropy of the distribution over hidden states by decreasing the probability of sampling of the226

correct feature. We therefore refer to δ as information loss.227

The free parameters λ and δ are central to our computational model, since they regulate the rate at228

which the internal model converges to the true task environmental model. Eq. (5) can be expressed in229

compact notation as follows:230

ω t = ftω
δ
t−1mt +λ

[

(1− ft)ω
δ
t−1(1−mt)

]

ω t−1 (6)

Note that the information loss parameter δ affects the amount of information that a cognitive agent acquires231

from environmental contingencies, irrespective of the type of feedback received. Global information loss232

thus affects the rate at which the divergence between the agent’s internal model and the true model is233

minimized. Figure 2 illustrates these ideas.234

The probabilistic representation of adaptive behaviour provided by our Bayesian agent model allows us235

to quantify latent cognitive dynamics by means of meaningful information-theoretic measures. Information236

theory has proven to be an effective and natural mathematical language to account for functional integration237

of structured cognitive processes and to relate them to brain activity (Koechlin and Summerfield (2007);238

Friston et al. (2017); Collell and Fauquet (2015); Strange et al. (2005); Friston (2003)). In particular, we239

are interested in three key measures, namely, Bayesian surprise, Bt , Shannon surprise, It , and entropy,240

Ht . The subscript t indicates that we can compute each quantity on a trial-by-trial basis. Each quantity is241

amenable to a specific interpretation in terms of separate neurocognitive processes. Bayesian surprise Bt242

quantifies the magnitude of the update from prior belief to posterior belief. Shannon surprise It quantifies243

the improbability of an observation given an agent’s prior expectation. Finally, entropy Ht measures244

the degree of epistemic uncertainty regarding the true environmental states. Such measures are thought245

to account for the ability of the agent to manage uncertainty as emerging as a function of competing246

behavioral affordances (Hirsh et al. (2012)). We expect an adaptive system to attenuate uncertainty over247

environmental states (current features) by reducing the entropy of its internal probabilistic model.248

Bayesian surprise can be computed as the Kullback–Leibler (KL) divergence between prior and249

posterior beliefs about the environmental states. Thus, Bayesian surprise accounts for the divergence250

between the predictive model for the current trial and the updated predictive model for the upcoming trial.251

It is computed as follows:252

Bt =KL[p(st+1|x0:t)||p(st |x0:t−1)]

=
3

∑
i=1

[

p(st+1 = i|x0:t) log

(

p(st+1 = i|x0:t)

p(st = i|x0:t−1)

)]

(7)

The Shannon surprise of a current observation given a previous one is computed as the conditional253
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Figure 2. Suppose the correct sorting rule is the feature shape. The figure shows the rate of convergence

of the predictive distributions to the true task environmental model. The predictive distributions at trial

t +1 depends on the sorting action at (first row) and the received feedback ft (second row). Two

examples of updating a predictive distribution are shown: one in which information loss is high (δ = 0.7,

third row), and one in which information loss is low (δ = 0.3, fifth row). High information loss slows

down the convergence of the internal model to the true environmental model. The gray bar plots represent

the predictive probability distribution over the rules from which an action is sampled at each trial. Dotted

bars represent the updated predictive distribution after the feedback observation. For each scenario,

trial-by-trial information-theoretic measures are shown.
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Expression Name Description

st ∈ {1,2,3} Sorting rule Card feature relevant for the sorting criterion in trial t.

at ∈ {1,2,3,4} Choice action Action of choosing one of the four stimulus cards in trial

t.

ft ∈ {0,1} Feedback Indicates whether the action of matching a stimulus to a

target card is correct or not in trial t.

xt = (at , ft) Observation Pair of action and feedback which constitutes the agent’s

observation in trial t.

Γ(t) Stability matrix Matrix encoding the agent’s beliefs about state transi-

tions from trial t to the next trial t +1.

λ ∈ [0,1] Flexibility Parameter encoding the efficiency to disengage attention

from a currently attended hidden state when signaled by

the environment.

δ ∈ [0,1] Information loss Parameter encoding how efficiently the agent’s internal

model converges to the true environmental model based

on experience.

m
(i)
t ∈ {0,1} Matching signal Signal indicating whether feature i is relevant in trial t

based on the feedback received.

ω
(i)
t ∈ [0,1] State activation level Agent’s internal measure of the accrued evidence for the

hidden environmental state i in trial t.

Bt ∈ R
+ Bayesian surprise Kullback-Leibler divergence between prior and posterior

beliefs about hidden environmental states in trial t.

It ∈ R
+ Shannon surprise Information-theoretic surprise encoding the improbabil-

ity or unexpectedness of an observation in trial t.

Ht ∈ R
+ Entropy Degree of epistemic uncertainty in the internal model of

the environment in trial t.

Table 1. Descriptive summary of all quantities involved in our model representation.

information content of the observation:254

It =− log p(xt |x0:t−1)

=− log
3

∑
i=1

[p(xt |st = i)p(st = i|x0:t−1)]
(8)

Finally, the entropy is computed over the predictive distribution in order to account for the uncertainty in255

the internal model of the agent in trial t as follows:256

Ht = E [− log p(st |x0:t−1)]

=−
3

∑
i=1

p(st = i|x0:t−1) log p(st = i|x0:t−1)
(9)

Once the flexibility (λ ) and information loss (δ ) parameters are estimated from data, the information-257

theoretic quantities can be easily computed and visualized for each trial of the WCST (see Figure 2).258

This allows to rephrase standard neurocognitive constructs in terms of measurable information-theoretic259

quantities. Moreover, the dynamics of these quantities, as well as their interactions, can be used for260

formulating and testing hypotheses about the neurcognitive underpinnings of adaptive behavior in a261

principled way, as discussed later in the paper. A summary of all quantities relevant for our computational262

model is provided in Table 1.263
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Simulations264

In this section we evaluate the expressiveness of the model by assessing its ability to reproduce meaningful265

behavioral patterns as a function of its two free parameters. We study how the generative model behaves266

when performing the WCST in a 2-factorial simulated Monte Carlo design where flexibility (λ ) and267

information loss (δ ) are systematically varied.268

In this simulation, the Heaton version of the task (Heaton (1981)) is administered to the Bayesian269

cognitive agent. In this particular version, the sorting rule (true environmental state) changes after a270

fixed number of consecutive correct responses. In particular, when the agent correctly matches the target271

card in 10 consecutive trials, the sorting rule is automatically changed. The task ends after completing a272

maximum of 128 trials.273

Generative Model274

The cognitive agent’s responses are generated at each time step (trial) by processing the experimental275

feedback. Its performance depends on the parameters governing the computation of the relevant quantities.276

The generative algorithm is outlined in Algorithm 1.277

Algorithm 1 Bayesian cognitive agent

1: Set parameters θ = (λ ,δ ).
2: Set initial activation levels ω0 = (0.5,0.5,0.5).
3: Set initial observation x0 =∅ and p(s1|x0) = p(s1).
4: for t = 1, ...,T do

5: Sample feature from prior/predictive internal model st ∼ p(st |x0:t−1).
6: Obtain a new observation xt = (at , ft).
7: Compute state posterior p(st |x0:t).
8: Compute new activation levels ω t .

9: Compute stability matrix Γ(t).
10: Update prior/predictive internal model to p(st+1|x0:t).
11: end for

Simulation 1: Clinical Assessment of the Bayesian Agent278

Ideally, the qualitative performance of the Bayesian cognitive agent will resemble human performance. To279

this aim, we adopt a metric which is usually employed in clinical assessment of test results in neurological280

and psychiatric patients (Braff et al. (1991); Zakzanis (1998); Bechara and Damasio (2002); Landry and281

Al-Taie (2016)). Thus, agent performance is codified according to a neuropsychological criterion (Heaton282

(1981); Flashman et al. (1991)) which allows to classify responses into several response types. These283

response types provide the scoring measures for the test.284

Here, we are interested in: 1) non-perseverative errors (E); 2) perseverative errors (PE); 3) number of285

trials to complete the first category (TFC); and 4) number of failures to maintain set (FMS). Perseverative286

errors occur when the agent applies a sorting rule which was valid before the rule has been changed.287

Usually, detecting a perseveration error is far from trivial, since several response configurations could be288

observed when individuals are required to shift a sorting rule after completing a category (see Flashman289

et al. (1991) for details). On the other hand, non-perseverative errors refer to all errors which do not fit290

the above description, or in other words, do not occur as a function of changing the sorting rule, such as291

casual errors.292

The number of trials to complete the first category tells us how many trials the agent needs in order to293

achieve the first sorting principle, and can be seen as an index of conceptual ability (Anderson (2010);294

Singh et al. (2017)). Finally, a failure to maintain a set occurs when the agent fails to match cards295

according to the sorting rule after it can be determined that the agent has acquired the rule. A given sorting296

rule is assumed to be acquired when the individual correctly sorts at least five cards in a row (Heaton297

(1981); Figueroa and Youmans (2013)). Thus, a failure to maintain a set arises whenever a participant298

suddenly changes the sorting strategy in the absence of negative feedback. Failures to maintain a set are299

mostly attributed to distractibility. We compute this measure by counting the occurrences of first errors300

after the acquisition of a rule.301

We run the generative model by varying flexibility across four levels, λ ∈ {0.3,0.5,0.7,0.9}, and infor-302

mation loss across three levels, δ ∈ {0.4,0.7,0.9}. We generate data from 150 synthetic cognitive agents303
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per parameter combination and compute standard scoring measures for each of the agents simulated304

responses. Results from the simulation runs are depicted in Table 2 and a graphical representation is305

provided in Figure 3.306

Scoring Measure Info. Loss (δ )
Flexibility (λ )

λ = 0.3 λ = 0.5 λ = 0.7 λ = 0.9

Casual Errors (E)

δ = 0.4 9.07 (2.68) 7.95 (2.07) 7.50 (2.13) 6.85 (1.75)

δ = 0.7 10.84 (2.35) 9.60 (2.2) 8.25 (2.23) 7.37 (1,74)

δ = 0.9 12.75 (2.96) 11.25 (2.43) 9.12 (2.09) 7.79 (1.73)

Perseverative Errors (PE)

δ = 0.4 20.81 (2.27) 18.18 (1.88) 14.99 (1.88) 12.37 (1.12)

δ = 0.7 19.77 (2.55) 17.65 (2.26) 15.42 (1.94) 12.39 (1.47)

δ = 0.9 18.56 (2.76) 16.58 (2.53) 14.49 (2.03) 12.33 (1.44)

Trials to First Category (TFC)

δ = 0.4 12.20 (1.46) 11.91 (1.35) 11.83 (1.24) 11.67 (1.04)

δ = 0.7 13.82 (2.76) 13.32 (2.52) 12.97 (2.13) 12.29 (1.53)

δ = 0.9 17.27 (4.21) 16.63 (4.04) 14.39 (3.58) 12.91 (1.91)

Failures to Maintain Set (FMS)

δ = 0.4 0.11 (0.31) 0.09 (0.31) 0.05 (0.32) 0.02 (0.14)

δ = 0.7 1.65 (1.4) 1.41 (1.3) 0.84 (0.91) 0.35 (0.69)

δ = 0.9 4.44 (1.96) 3.88 (1.86) 2.79 (1.56) 1.54 (1.25)

Table 2. Mean clinical scoring measures as functions of flexibility (λ ) and information loss (δ ). Cells

show the average scores across simulated agents (standard deviation is shown in parenthesis).

The simulated performance of our Bayesian cognitive agents demonstrates that different parameter307

combinations capture different meaningful behavioral patterns. In other words, flexibility and information308

loss seem to interact in a theoretically meaningful way.309

First, overall errors increase when flexibility (λ ) decreases, which is reflected by the inverse relation310

between the number of casual, as well as perseverative, errors and the values of parameter λ . Moreover,311

this pattern is consistent across all the levels of parameter δ . More precisely, information loss (δ ) seems to312

contribute to the characterization of the casual and the perseverative components of the error in a different313

way. Perseverative errors are likely to occur after a sorting rule has changed and reflect the inability of the314

agent to use feedback to disengage attention from the currently attended feature. They therefore result315

from local cognitive dynamics conditioned on a particular stage of the task (e.g., after completing a series316

of correct responses).317

Second, information loss does not interact with flexibility when perseverative errors are considered.318

This is due to the fact that high information loss affects general performance by yielding a dysfunctional319

response strategy which increases the probability of making an error at any stage of the task. The lack of320

such interaction provides evidence that our computational model can disentangle between error patterns321

due to perseveration and those due to general distractibility, according to neuropsychological scoring322

criteria.323

However, in our framework, flexibility (λ ) is allowed to yield more general and non-local cognitive324

dynamics as well. Indeed, λ plays a role whenever belief updating is demanded as a function of negative325

feedback. An error classified as non-perseverative (e.g., casual error) by the scoring criteria might still be326

processed as a feedback-related evidence for belief updating. Consistently, the interaction between λ and327

δ in accounting for causal errors shows that performance worsens when both flexibility and information328

loss become less optimal, and that such pattern becomes more pronounced for lower values of δ .329

On the other hand, a specific effect of information loss (δ ) can be observed for the scoring measures330

related to slow information processing and distractibility. The number of trials to achieve the first category331

reflects the efficiency of the agent in arriving at the first true environmental model. Flexibility does not332

contribute meaningfully to the accumulation of errors before completing the first category for some levels333

of information loss. This is reflected by the fact that the mean number of trials increases as a function of334

δ , and do not change across levels of λ for low and mid values of δ . A similar pattern applies for failures335

to maintain a set. Both scoring measures index a deceleration of the process of evidence accumulation for336
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Figure 3. Clinical scoring measures as functions of flexibility (λ ) and information loss (δ ) - simulated

scenarios. The different cells show the violin plots for the estimated distribution densities of the scoring

measures obtained from the group of synthetic individuals, for the levels of λ across different levels of δ .

In particular, they show the distribution of non-perseverative errors (E), perseverative errors (PE), number

of trials to complete the first category (TFC), number of failures to maintain set (FMS) obtained from 150

synthetic agent’s response simulations for each cell of the factorial design.
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a specific environmental configuration, although the latter is a more exhaustive measures of dysfunctional337

adaptation.338

Therefore, an interaction between parameters can be observed when information loss is high. A339

slow internal model convergence process increases the amount of errors due to improper rule sampling340

from the internal environmental model. However, internal model convergence also plays a role when341

a new category has to be accomplished after completing an older one. On the one hand, compromised342

flexibility increases the amount of errors due to inefficient feedback processing. This leads to longer trial343

windows needed to achieve the first category. On the other hand, when information loss is high, belief344

updating upon negative feedback is compromised due to high internal model uncertainty. At this point, the345

probability to err due to distractibility increases, as accounted by the failures to maintain a set measures.346

Finally, the joint effect of δ and λ for high levels of information loss suggests that the roles played by347

the two cognitive parameters in accounting for adaptive functioning can be entangled when neuropsycho-348

logical scoring criteria are considered.349

Simulation 2: Information-Theoretic Analysis of the Bayesian Agent350

In the following, we explore a different simulation scenario in which information-theoretic measures are351

derived to assess performance of the Bayesian cognitive agent. In particular, we explore the functional352

relationship between cognitive parameters and the dynamics of the recovered information-theoretic353

measures by simulating observed responses by varying flexibility across three levels, λ ∈ {0.1,0.5,0.9},354

and information loss across three levels, δ ∈ {0.1,0.5,0.9}.355

For this simulation scenario, we make no prior assumptions about sub-types of error classification.356

Instead, we investigate the dynamic interplay between Bayesian surprise, Bt , Shannon surprise, It , and357

entropy, Ht over the entire course of 128 trials in the WCST.358

Figure 4. Information-theoretic measures varying as a function of flexibility λ and information loss δ

across 128 trials of the WCST. Optimal belief updating and uncertainty reduction are achieved with low

information loss and high flexibility (first row, third column).

Figure 4 depicts results from the nine simulation scenarios. Although an exhaustive discussion on359

cognitive dynamics should couple information-theoretic measures with patterns of correct and error360

responses, we focus solely on the information-theoretic time series for illustrative purposes. We refer to361

the Application section for a more detailed description of the relation between observed responses and362

estimated information-theoretic measures in the context of data from a real experiment.363

Again, simulated performance of the Bayesian cognitive agent shows that different parameter com-364

binations yield different patterns of cognitive dynamics. Observed spikes and their related magnitudes365
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signal informative task events (e.g., unexpected negative feedback), as accounted by Shannon surprise, or366

belief updating, as accounted by Bayesian surprise. Finally, entropy encodes the epistemic uncertainty367

about the environmental model on a trial-by-trial basis.368

In general, low information loss (δ ) ensures optimal behavior by speeding up internal model conver-369

gence by decreasing the number of trials needed to minimize uncertainty about the environmental states.370

Low uncertainty reflects two main aspects of adaptive behavior. On the one hand, the probability that371

a response occurs due to sampling of improper rules decreases, allowing the agent to prevent random372

responses due to distractibility. On the other hand, model convergence entails a peaked Shannon surprise373

when a negative feedback occurs, due to the divergence between predicted and actual observations.374

Flexibility (λ ) plays a crucial role in integrating feedback information in order to enable belief375

updating. The first row depicted in Figure 4 shows cognitive dynamics related to low information loss,376

across the levels of flexibility. As can be noticed, there is a positive relation between the magnitude of the377

Bayesian surprise and the level of flexibility, although unexpectedness yields approximately the same378

amount of signaling, as accounted by peaked Shannon surprise. From this perspective, surprise and belief379

updating can be considered functionally separable, where the first depends on the particular internal model380

probability configuration related to δ , whilst the second depends on flexibility λ .381

However, more interesting patterns can be observed when information loss increases. In particular,382

model convergence slows down and several trials are needed to minimize predictive model entropy.383

Casual errors might occur within trial windows characterized by high uncertainty, and interactions384

between entropy and Shannon surprise can be observes in such cases. In particular, Shannon surprise385

magnitude increases when model’s entropy decreases, that is, during task phases in which the internal386

model has already converged. As a consequence, negative feedback could be classified as informative or387

uninformative, based on the uncertainty in the current internal model. This is reflected by the negative388

relation between entropy and Shannon surprise, as can be noticed by inspecting the graphs depicted in389

the third row of Figure 4. Therefore, the magnitude of belief updating depends on the interplay between390

entropy and Shannon surprise, and can differ based on the values of the two measures in a particular task391

phase.392

In sum, both simulation scenarios suggest that the simulated behavior of our generative model is393

in accord with theoretical expectations. Moreover, the flexibility and information loss parameters can394

account for a wide range of observed response patterns and inferred dynamics of information processing.395

Parameter Estimation396

In this section, we discuss the computational framework for estimating the parameters of our model from397

observed behavioral data. Parameter estimation is essential to inferring the cognitive dynamics underlying398

observed behavior in real-world applications of the model. This section is slightly more technical and can399

be skipped without significantly affecting the flow of the text.400

Computational Framework401

Rendering our cognitive model suitable for application in real-world contexts also entails accounting for402

uncertainty about parameter estimates. Indeed, uncertainty quantification turns out to be a fundamental403

and challenging goal when first-level quantities, that is, cognitive parameter estimates, are used to recover404

(second-level) information-theoretic measures of cognitive dynamics. The main difficulties arise when405

model complexity makes estimation and uncertainty quantification intractable at both analytical and406

numerical levels. For instance, in our case, probability distributions for the hidden model are generated at407

each trial, and the mapping between hidden states and responses changes depending on the structure of408

the task environment.409

Identifying such a dynamic mapping is relatively easy from a generative perspective, but it becomes410

challenging, and almost impossible, when inverse modeling is required. Generally, this problem arises411

when the likelihood function relating model parameters to the data is not available in closed-form or too412

complex to be practically evaluated (Sisson and Fan (2011)). To overcome these limitations, we apply413

the first version of the recently developed BayesFlow method (see Radev et al. (2020) for mathematical414

details). At a high-level, BayesFlow is a simulation-based method that estimates parameters and quantifies415

estimation uncertainty in a unified Bayesian probabilistic framework when inverting the generative416

model is intractable. The method is based on recent advances in deep generative modeling and makes417

no assumptions about the shape of the true parameter posteriors. Thus, our ultimate goal becomes to418
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approximate and analyze the joint posterior distribution over the model parameters. The parameter419

posterior is given via an application of Bayes’ rule:420

p(θ |x0:T ,m0:T ) =
p(x0:T ,m0:T |θ)p(θ)

∫

p(x0:T ,m0:T |θ)p(θ)dθ
(10)

where we set θ = (λ ,δ ) and stack all observations and matching signals into the vectors x0:T =421

(x0,x1, ...,xT ) and m0:T = (m0,m1, ...,mT ), respectively. The BayesFlow method uses simulations from422

the generative model to optimize a neural density estimator which learns a probabilistic mapping between423

raw data and parameters. It relies on the fact that data can easily be simulated by repeatedly running424

the generative model with different parameter configurations θ sampled from the prior. During training,425

the neural network estimator iteratively minimizes the divergence between the true posterior and an426

approximate posterior. Once the network has been trained, we can efficiently obtain samples from the427

approximate joint posterior distribution of the cognitive parameters of interest, which can be further428

processed in order to extract meaningful summary statistics (e.g., posterior means, medians, modes,429

etc.). Importantly, we can apply the same pre-trained inference network to an arbitrary number of real or430

simulated data sets (i.e., the training effort amortizes over multiple evaluations of the network).431

For our purposes of validation and application, we train the network for 50 epochs which amount432

to 50000 forward simulations. As a prior, we use a bivariate continuous uniform distribution p(θ) ∼433

U ([0,0], [1,1]). We then validate performance on a separate validation set of 1000 simulated data sets434

with known ground-truth parameter values. Training the networks took less than a day on a single machine435

with an NVIDIA® GTX1060 graphics card (CUDA version 10.0) using TensorFlow (version 1.13.1) (?).436

In contrast, obtaining full parameter posteriors from the entire validation set took approximately 1.78437

seconds. In what follows, we describe and report all performance validation metrics.438

Performance Metrics and Validation Results439

To assess the accuracy of point estimates, we compute the root mean squared error (RMSE) and the440

coefficient of determination (R2) between posterior means and true parameter values. To assess the quality441

of the approximate posteriors, we compute a calibration error (Radev et al. (2020)) of the empirical442

coverage of each marginal posterior Finally, we implement simulation-based calibration (SBC, Talts et al.443

(2018)) for visually detecting systematic biases in the approximate posteriors.444

Point Estimates. Point estimates obtained by posterior means as well as corresponding RMSE and R2
445

metrics are depicted in Figure 5A-B. Note, that point estimates do not have any special status in Bayesian446

inference, as they could be misleading depending on the shape of the posteriors. However, they are simple447

to interpret and useful for ease-of-comparison. We observe that pointwise recovery of λ is better than that448

of δ . This is mainly due to suboptimal pointwise recovery in the lower (0,0.1) range of δ . This pattern is449

evident in Figure 5A-B and is due to the fact that δ values in this range produce almost indistinguishable450

data patterns. Bootstrap estimates yielded an average RMSE of 0.155 (SD = 0.004) and an average R2 of451

0.708 (SD = 0.015) for the δ parameter. An average RMSE of 0.094 (SD = 0.002) and an average R2
452

of 0.895 (SD = 0.007) were obtained for the λ parameter. These results suggest good global pointwise453

recovery but also warrant the inspection of full posteriors, especially in the low ranges of δ .454

Full Posteriors. Average bootstrap calibration error was 0.011 (SD = 0.005) for the marginal posterior of455

δ and 0.014 (SD = 0.007) for the marginal posterior of λ . Calibration error is perhaps the most important456

metric here, as it measures potential under- or overconfidence across all confidence intervals of the457

approximate posterior (i.e., an α-confidence interval should contain the true posterior with a probability458

of α , for all α ∈ (0,1)). Thus, low calibration error indicates a faithful uncertainty representation of the459

approximate posteriors. Additionally, SBC-histograms are depicted in Figure 5C-D. As shown by (Talts460

et al. (2018)), deviations from the uniformity of the rank statistic (also know as a PIT histogram) indicate461

systematic biases in the posterior estimates. A visual inspection of the histograms reveals that the posterior462

means slightly overestimate the true values of δ . This corroborates the pattern seen in Figure 5A-B for463

the lower range of δ .464

Finally, Figure 5E-H depicts the full marginal posteriors on two example validation sets. Even on465

these two data sets, we observe strikingly different posterior shapes. The marginal posterior of δ obtained466

from the first data set is slightly left-skewed and has its density concentrated over the (0.8,1.0) range. On467

the other hand, the marginal posterior of δ from the second data set is noticeably right-skewed and peaked468

across the lower range of the parameter. The marginal posteriors of λ appear more symmetric and warrant469
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Figure 5. Parameter recovery results on validation data; (A and B) Posterior means vs. true parameter

values; (C and D) Histograms of the rank statistic used for simulation-based calibration; (E-H) Example

full posteriors for two validation data sets; (I and J) Example information-theoretic dynamics recovered

from the parameter posteriors.

the use of the posterior mean as a useful summary of the distribution. These two examples underline the470

importance of investigating full posterior distributions as a means to encode epistemic uncertainty about471

parameter values. Moreover, they demonstrate the advantage of imposing no distributional assumptions472

on the resulting posteriors, as their form and sharpness can vary widely depending on the concrete data473

set.474

APPLICATION475

In this section we fit the Bayesian cognitive model to real clinical data. The aim of this application is to476

evaluate the ability of our computational framework to account for dysfunctional cognitive dynamics of477

information processing in substance dependent individuals (SDI) as compared to healthy controls.478

Rationale479

The advantage of modeling cognitive dynamics in individuals from a clinical population is that model480

predictions can be examined in light of available evidence about individual performance. For instance,481

SDIs are known to demonstrate inefficient conceptualization of the task and dysfunctional, error-prone482

response strategies. This has been attributed to defective error monitoring and behavior modulation483

systems, which depend on cingulate and frontal brain regions functionality (Kübler et al. (2005); Willuhn484

et al. (2003)). On the other hand, the WCST should be a rather easy and straightforward task for healthy485

participants to obtain excellent performance. Therefore, we expect our model to consistently capture such486

characteristics. To test these expectations, we estimate the two relevant parameters λ and δ from both487

clinical patients and healthy controls from an already published dataset (Bechara and Damasio (2002)).488

The Data489

The dataset used in this application consists of responses collected by administering the standard Heaton490

version of the WCST (Heaton (1981)) to healthy participants and SDIs. In this version of the task, the491

sorting rule changes when a participant collects a series of 10 consecutive correct responses, and the492

task ends when this happens for 6 times. Participants in the study consisted of 39 SDIs and 49 healthy493

individuals. All participants were adults (> 18 years old) and gave their informed consent for inclusion494

which was approved by the appropriate human subject committee at the University of Iowa. SDIs were495

diagnosed as substance dependent based on the Structured Clinical Interview for DSM-IV criteria (First496

(1997)).497
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Model Fitting498

We fit the Bayesian cognitive agent separately to data from each participant in order to obtain individual-499

level posterior distributions. We apply the same BayesFlow network trained for the previous simulation500

studies, so obtaining posterior samples for each participant is almost instant (due to amortized inference).501

Results502

The means of the joint posterior distributions are depicted for each individual in Figure 6, and provide a503

complete overview of the heterogeneity in cognitive sub-components at both individual and group levels504

(individual-level full joint posterior distributions can be found in the SI Appendix).505

Figure 6. Joint posterior mean coordinates of the cognitive parameters, flexibility (λ ) and information

loss (δ ), estimated for each individual. We observe a great heterogeneity in the distribution of posterior

means, most pronouncedly for the flexibility parameter. However, a moderate between-subject variability

in information loss can still be observed in both groups.

The estimates reveal a rather interesting pattern across both healthy and SDI participants. In particular,506

in both clinical and control groups, individuals with a poor flexibility (e.g., low values of λ ) can be507

detected. However, the group parameter space appears to be partitioned into two main clusters consisting508

of individuals with high and low flexibility, respectively. As can be noticed, the majority of SDIs belongs509

to the latter cluster, which suggests that the model is able to capture error-related defective behavior in the510
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clinical population and attribute it specifically to the flexibility parameter. On the other hand, individual511

performance seems hardly separable along the information loss parameter dimension.512

As a further validation, we compare the classification performance of two logistic regression models.513

The first uses the estimated parameter means as inputs and the participants’ binary group assignment514

(patient vs. control) as an outcome. The second uses the four standard clinical measures (non-perseverative515

errors (E), perseverative errors (PE), number of trials to complete the first category (TFC), number of516

failures to maintain set (FMS) computed from the sample as inputs and the same outcome. Since517

we are interested solely in classification performance and want to mitigate potential overfitting due to518

small sample size, we compute leave-one-out cross-validated (LOO-CV) performance for both models.519

Interestingly, both logistic regression models achieve the same accuracy of 0.70, with a sensitivity of 0.71520

and specificity of 0.70. Thus, it appears that our model is able to differentiate between SDIs and healthy521

individuals as good as the standard clinical measures.522

However, as pointed out in the previous sections, estimated parameters serve merely as a basis to523

reconstruct cognitive dynamics by means of the trial-by-trial unfolding of information-theoretic measures.524

Moreover, cognitive dynamics can only be analysed and interpreted by relying on the joint contribution of525

both estimated parameters and individual-specific observed response patterns.526

To further clarify this concept, we investigate the reconstructed time series of information-theoretic527

quantities based on the response patterns of two exemplary individuals (Figure 7). In particular, Figure 7A528

depicts the behavioral outcomes of a SDI with sub-optimal performance where the information-theoretic529

trajectories are reconstructed by taking the corresponding posterior means ([λ̄ = 0.07, δ̄ = 0.82]), thus530

representing compromised flexibility and high information loss. Differently, Figure 7B shows the531

information-theoretic path related to response dynamics of an optimal control participant, according to532

the parameter set [λ̄ = 0.60, δ̄ = 0.35], representing relatively high flexibility, and low information loss.533

Note, that in both cases, the reconstructed information-theoretic measures are based on the estimated534

posterior means for ease of comparison (see SI Appendix for the full joint posterior densities of the two535

exemplary individuals and the rest of the sample).536
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Figure 7. Recovered cognitive dynamics of two exemplary individuals. (A) Trial-by-trial

information-theoretic measures of a SDI characterized by very low flexibility and very high information

loss; (B) Trial-by-trial information-theoretic measures of a healthy individual characterized by relatively

high flexibility and low information loss. Labels C and E indicate correct and error responses.

Results in Figure 7A account for a typical sub-optimal behavior observed in the SDI group, where537

several errors are produced in different phases of the task. The error patterns produced by such an538

individual might be induced by a non-trivial interaction between cognitive sub-components. Lower539

values of flexibility imply that errors are likely to be produced by generating responses from an internal540

environmental model which is no longer valid. In other words, the agent is unable to rely on local feedback-541

related information in order to update beliefs about hidden states. On the other hand, higher values of542

information loss reflect a general inefficiency of belief updating processes due to slow convergence543

to the optimal probabilistic environmental model. From this perspective, Bayesian surprise Bt and544

Shannon surprise It might play different roles in regulating behavior based on different internal model545

probability configurations. In addition, errors might be processed differently based on the status of the546

internal environmental representation, as reflected by the entropy of the predictive model, Ht . Thus,547

information-theoretic measures allow to describe cognitive dynamics on a trial-by-trial basis and, further,548

to disentangle the effect that different feedback-related information processing dynamics exert on adaptive549

behavior.550

Processing unexpected observations is accounted by the quantification of surprise upon observing551

a response-feedback pair which is inconsistent with the current internal model of the task environment.552

Negative feedback is maximally informative when errors occur after the internal model has converged to553

the true task model (grey area, Figure 7A), or the entropy approaches zero (grey line, Figure 7A). The554

Shannon surprise (orange line) is maximal when errors occur within trial windows in which the agent’s555

uncertainty about environmental states is minimal (orange areas, Figure 7A). However, internal model556

updates following an informative feedback are not optimally performed, which is reflected by very small557
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Bayesian surprise (blue line, Figure 7A). This can be attributed to impaired flexibility and reflects the fact558

that after internal model convergence, informative feedback is not processed adequately and the internal559

model becomes impervious to change.560

Conversely, errors occurring when the agent is uncertain about the true environmental state carry no561

useful information for belief updating, since the system fails to conceive such errors as unexpected and562

informative. The information loss parameter plays a crucial role in characterizing this cognitive behavior.563

The slow convergence to the true environmental model, accompanied by the slow reduction of entropy564

in the predictive model, leads to a large number of trials required to achieve a good representation of565

the current task environment (white areas, Figure 7A). Errors occurring within trial windows with large566

predictive model entropy (green area, Figure 7A) do not affect subsequent behavior, and feedback is567

maximally uninformative.568

Rather different cognitive dynamics can be observed in Figure 7B, accounting for a typical optimal569

behavior where the errors produced fall within the trial windows which follow a rule completion (e.g. when570

the individual completes a sequence of 10 consecutive correct responses), and, thus, the environmental571

model becomes obsolete. However, the high flexibility, λ , allows to rely on local feedback-related572

information to suddenly update beliefs about the hidden states, that is, the most appropriate sorting573

rule. In this case, negative feedback become maximally informative after model convergence (grey area,574

Figure 7B) and the process of entropy reduction (green line, Figure 7B) is faster (e.g. less trials are575

needed) compared to the sub-optimal behavior scenario. Since uncertainty about the environmental states576

decreases faster, the Shannon surprise is always highly peaked when errors occur (orange line, Figure 7B),577

thus ensuring an efficient employment of the local feedback-related information. Accordingly, higher578

values of Bayesian surprise are observed (blue line, Figure 7B), revealing optimal internal model updating.579

In general, the role that predictive (internal) model uncertainty plays in characterizing the way580

the agent processes feedback allows to disentangle sub-types of errors based on the information they581

convey for subsequent belief updating. From this perspective, error classification is entirely dependent582

on the status of the internal environmental model across task phases. Identifying such a dynamic583

latent process is therefore fundamental, since the error codification criterion evolves with respect to the584

internal information processing dynamics. Otherwise, the problem of inferring which errors are due to585

perseverance in maintaining an older (converged) internal model and which due to uncertainty about the586

true environmental state becomes intractable, or even impossible.587

DISCUSSION588

Investigating information processing related to changing environmental contingencies is fundamental to589

understanding adaptive behavior. For this purpose, cognitive scientists mostly rely on controlled settings in590

which individuals are asked to accomplish (possibly) highly demanding tasks whose demands are assumed591

to resemble those of natural environments. Even in the most trivial cases, such as the WCST, optimal592

performance requires integrated and distributed neurocognitive processes. Moreover, these processes are593

unlikely to be isolated by simple scoring or aggregate performance measures.594

In the current work, we developed and validated a new computational Bayesian model which maps595

distinct cognitive processes into separable information-theoretic constructs underlying observed adaptive596

behavior. We argue that these constructs could help describe and investigate the neurocognitive processes597

underlying adaptive behavior in a principled way.598

Furthermore, we couple our computational model with a novel neural density estimation method599

for simulation-based Bayesian inference (Radev et al. (2020)). Accordingly, we can quantify the entire600

information contained in the data about the assumed cognitive parameters via a full joint posterior over601

plausible parameter values. Based on the joint posterior, a representative summary statistic can be602

computed to simulate the most plausible unfolding of information-theoretic quantities on a trial-by-trial603

basis.604

Several computational models have been proposed to describe and explain performance in the WCST,605

ranging from behavioral (Bishara et al. (2010); Gläscher et al. (2019); Steinke et al. (2020)) to neural606

network models (Dehaene and Changeux (1991); Amos (2000); Levine et al. (1993); Monchi et al. (2000)).607

These models aim to provide psychologically interpretable parameters or biologically inspired network608

structures, respectively, accounting for specific qualitative patterns of observed data. Behavioral models, in609

particular, abstract the main cognitive features underlying individual performance in the WCST according610

to different theoretical frameworks (e.g., attentional updating (Bishara et al. (2010)), or reinforcement611
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learning (Steinke et al. (2020))) and disentangle psychological sub-processes explaining observed task612

performance. However, the main advantage of our Bayesian model is that it provides both a cognitive613

and a measurement model which coexist within the overarching theoretical framework of Bayesian brain614

theories. More precisely, the presented model is specifically designed to capture trial-by-trial fluctuations615

in information processing as described by second-order information-theoretic quantities. The latter can616

be seen as a multivariate quantitative account of the interaction between the agent and its environment.617

Moreover, it is worth noting that such a model representation might not be applicable outside a Bayesian618

theoretical framework.619

Even though our computational model is not a neural model, it might provide a suitable description of620

cognitive dynamics at a representational and/or a computational level (Marr (1982)). This description621

can then be related to neural functioning underlying adaptive behavioral. Indeed, there is some evidence622

to suggest that neural processes related to belief maintenance/updating and unexpectedness are crucial623

for performance in the WCST. In particular, brain circuits associated with cognitive control and belief624

formation, such as the parietal cortex and prefrontal regions, seem to share a functional basis with neural625

substrates involved in adaptive tasks (Nour et al. (2018)). Prefrontal regions appear to mediate the relation626

between feedback and belief updating (Lie et al. (2006)) and efficient functioning in such brain structures627

seems to be heavily dependent on dopaminergic neuromodulation (Ott and Nieder (2019)). Moreover,628

the dopaminergic system plays a role in the processing of salient and unexpected environmental stimuli,629

in learning based on error-related information, and in evaluating candidate actions (Nour et al. (2018);630

Daw et al. (2011); Gershman (2018)). Accordingly, dopaminergic system functioning has been put in631

relation with performance in the WCST (Hsieh et al. (2010); Rybakowski et al. (2005)) and shown to be632

critical for the main executive components involved in the task, that is, cognitive flexibility and set-shifting633

(Bestmann et al. (2014); Stelzel et al. (2010)). Further, neural activity in the anterior cingulate cortex634

(ACC) is increased when a negative feedback occurs in the context of the WCST (Lie et al. (2006)).635

This finding corroborates the view that the ACC is part of an error-detection network which allocates636

attentional resources to prevent future errors. The ACC might play a crucial role in adaptive functioning637

by encoding error-related or, more generally, feedback-related information. Thus, it could facilitate the638

updating of internal environmental models (Rushworth and Behrens (2008)).639

The neurobiological evidence suggests that brain networks involved in the WCST might endow640

adaptive behavior by accounting for maintaining/updating of an internal model of the environment641

and efficient processing of unexpected information. Is it noteworthy, that these processing aspects are642

incorporated into our computational framework. At this point, we briefly outline the empirical and643

theoretical potentials of the proposed computational framework for investigating adaptive functioning and644

discuss future research vistas.645

Model-Based Neuroscience. Recent studies have pointed out the advantage of simultaneously modeling646

and analyzing neural and behavioral data within a joint modeling framework. In this way, the latter can be647

used to provide information for the former, as well as the other way around (Turner et al. (2017, 2013);648

Forstmann et al. (2011)). This involves the development of joint models which encode assumptions about649

the probabilistic relationships between neural and cognitive parameters.650

Within our framework, the reconstruction of information-theoretic discrete time series yields a651

quantitative account of the agent’s internal processing of environmental information. Event-related652

cognitive measures of belief updating, epistemic uncertainty and surprise can be put in relation with neural653

measurements by explicitly providing a formal account of the statistical dependencies between neural654

and cognitive (information-theoretic) quantities. In this way, latent cognitive dynamics can be directly655

related to neural event-related measures (e.g., fMRI, EEG). Applications in which information-theoretic656

measures are treated as dependent variables in standard statistical analysis are also possible.657

Neurological Assessment. Although neuroscientists have considered performance in the WCST as a658

proxy for measuring high-level cognitive processes, the usual approach to the analysis of human adaptive659

behavior consists in summarizing response patterns by simple heuristic scoring measures (e.g., occurrences660

of correct responses and sub-types of errors produced) and classification rules (Flashman et al. (1991)).661

However, the theoretical utility of such a summary approach remains questionable. Indeed, adaptive662

behavior appears to depend on a complex and intricate interplay between multiple network structures663

(Barcelo et al. (2006); Monchi et al. (2001); Lie et al. (2006); Barceló and Rubia (1998); Buchsbaum et al.664

(2005)). This posits a great challenge for disentangling high-level cognitive constructs at a model level665

and further investigating their relationship with neurobiological substrates. It appears that standard scoring666
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measures might not be able to fulfil these tasks. Moreover, there is a pronounced lack of anatomical667

specificity in previous research concerning the neural and functional substrates of the WCST (Nyhus and668

Barceló (2009)).669

Thus, there is a need for more sophisticated modeling approaches. For instance, disentangling errors670

due to perseverative processing of previously relevant environmental models from those due to uncertainty671

about task environmental states, is important and nontrivial. Sparse and distributed error patterns might672

depend on several internal model probability configurations. Such internal models are latent, and can673

only be uncovered through cognitive modeling. Therefore, information-based criteria to response (error)674

classification can enrich clinical evaluation beyond heuristically motivated criteria.675

Generalizability. Another important advantage of the proposed computational framework is that it is not676

solely confined to the WCST. In fact, one can argue that the seventy-year old WCST does not provide677

the only or even the most suitable setting for extracting information about cognitive dynamics from678

general populations or maladaptive behavior in clinical populations. One can envision tasks which679

embody probabilistic (uncertain) or even chaotic environments (for instance with partially observable680

or unreliable feedback or partially observable states) and demand integrating information from different681

modalities (O’Reilly et al. (2013); Nour et al. (2018)). These settings might prove more suitable for682

investigating changes in uncertainty-related processing or cross-modal integration than deterministic and683

fully observable WCST-like settings.684

Despite these advantages, our proposed computational framework has certain limitations. A first685

limitation might concern the fact that the new Bayesian cognitive model accounts for the main dynamics686

in adaptive tasks by relying on only two parameters. Although such a parsimonious proposal suffices687

to disentangle latent data-generating processes, a more exhaustive formal description of cognitive sub-688

components might be envisioned. However, parameter estimation can become challenging in such a689

scenario, especially when one-dimensional response data is used as a basis for parameter recovery. Second,690

the information loss parameter appears to be more challenging to estimate than the flexibility parameter691

in some datasets. There are at least two possible remedies for this problem. On the one hand, global692

estimation of information loss might be hampered due to the model’s current functional (algorithmic)693

formulation and can therefore be optimized via an alternative formulation/parameterization. On the other694

hand, it might be the case that the data obtainable in the simple WCST environment is not particularly695

informative about this parameter and, in general, not suitable for modeling more complex and non-linear696

cognitive dynamics in general. Future works should therefore focus on designing and exploring more697

data-rich controlled environments which can provide a better starting point for investigating complex698

latent cognitive dynamics in a principled way. Additionally, the information loss parameter seems to be699

less effective in differentiating between substance abusers and healthy controls in the particular sample700

used in this work. Thus, further model-based analyses on individuals from different clinical populations701

are needed to fully understand the potential of our 2-parameter model as a clinical neuropsychological tool.702

Finally, in this work, we did not perform formal model comparison, as this would require an extensive703

consideration of various nested and non-nested model within the same theoretical framework and between704

different theoretical frameworks. We therefore leave this important endeavor for future research.705

CONCLUSIONS706

In conclusion, the proposed model can be considered as the basis for a (bio)psychometric tool for707

measuring the dynamics of cognitive processes under changing environmental demands. Furthermore,708

it can be seen as a step towards a theory-based framework for investigating the relation between such709

cognitive measures and their neural underpinnings. Further investigations are needed to refine the710

proposed computational model and systematically explore the advantages of the Bayesian brain theoretical711

framework for empirical research on high-level cognition.712
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