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ABSTRACT
Gymnosperms such as ginkgo, conifers, cycads, and gnetophytes are vital components
of land ecosystems, and they have significant economic and ecologic value, as well as im-
portant roles as forest vegetation. In this study, we investigated the structural variation
and evolution of chloroplast transfer RNAs (tRNAs) in gymnosperms. Chloroplasts
are important organelles in photosynthetic plants. tRNAs are key participants in
translation where they act as adapter molecules between the information level of
nucleic acids and functional level of proteins. The basic structures of gymnosperm
chloroplast tRNAs were found to have family-specific conserved sequences. The
tRNA9 -loop was observed to contain a conforming sequence, i.e., U-U-C-N-A-
N2. In gymnosperms, tRNAIle was found to encode a ‘‘CAU’’ anticodon, which is
usually encoded by tRNAMet. Phylogenetic analysis suggested that plastid tRNAs
have a common polyphyletic evolutionary pattern, i.e., rooted in abundant common
ancestors. Analyses of duplication and loss events in chloroplast tRNAs showed that
gymnosperm tRNAs have experienced little more gene loss than gene duplication.
Transition and transversion analysis showed that the tRNAs are iso-acceptor specific
and they have experienced unequal evolutionary rates. These results provide new
insights into the structural variation and evolution of gymnosperm chloroplast tRNAs,
which may improve our comprehensive understanding of the biological characteristics
of the tRNA family.

Subjects Evolutionary Studies, Genomics, Plant Science
Keywords tRNA, Chloroplast, Anti-codon, Evolution, Transition and transversion, Phylogeny

INTRODUCTION
Gymnosperms originated in the Paleozoic Devonian Period (about 385 million years ago),
and they are key groups in terms of the transformation from spore reproduction to seed
reproduction in higher plants (Gerrienne et al., 2004; Crisp & Cook, 2011). According to
the latest phylogenetic classification, gymnosperm species are divided into eight orders,
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12 families, 84 genera, and more than 1,000 species (Wang & Ran, 2014). Gymnosperms
include ginkgo, cycads, conifers, and gnetophytes, which are grown in forests as important
timber species and they provide raw materials for human usage, such as fiber, resin, and
tannin (Christenhusz et al., 2010). In addition, gymnosperms include some important
threatened plants, where 40% are at high risk of extinction (Forest et al., 2018). Recent
phylogenetic and evolutionary studies of gymnosperms have demonstrated the rapid
evolution of mitochondrial (mt) genes and provided further evidence of sister relationship
between conifers and Gnetales (Ran, Gao & Wang, 2010). The high levels of genetic
diversity and population differentiation among the Pinus species in gymnosperms have
been studied based on plastid DNAmarkers (Liu et al., 2014). Other studies have indicated
patterns related to the physiological ecology, phylogenetic relationships, and population
genetic structure of gymnosperm species (Yu et al., 2014; Li et al., 2015; Dong et al., 2016).
However, these studies mainly considered the phylogeny and evolution at the whole
populations level. Thus, the detailed evolutionary characteristics of gymnosperms still need
to be elucidated.

Chloroplasts are the site of photosynthesis and of various essential metabolic pathways,
e.g., fatty acid and amino acid biosynthesis and the assimilation of nitrogen, sulfur,
and selenium (Hoober, 2006; Des Marais, 2000 Knorr & Heimann, 2001; Pilon-Smits et al.,
2002; Guo et al., 2007; Kretschmer, Croll & Kronstad, 2017). It is generally recognized that
chloroplasts are derived from proto-eukaryotic symbiotic cyanobacteria that internalized in
eukaryotic cells (Hiroki & Daisuke, 2018) and evolved into central organelles. Chloroplasts
have their own genome encoding about 100 proteins and they are maternally inherited
organelles in most angiosperm plants (Abdallah, Salamini & Leister, 2000; Heuertz et al.,
2004; Civan et al., 2014). Among gymnosperms, paternal plastid inheritance is the typical
characteristic of conifers (Fauré et al., 1994; Kaundun & Matsumoto, 2011). Studies have
shown that the chloroplast genome is quite conserved with an average evolutionary rate
of 0.2–1. 0×10−9 per site per year, which is only one-fifth of that for the nuclear genome
(Drouin, Daoud & Xia, 2008; Duchene & Bromham, 2013). The chloroplast genome is a
covalently closed circular structure with four parts comprising the large single copy region
(LSC), small single copy region (SSC), inverted repeat region A (IRa), and inverted repeat
region B (IRb). The two IRs have the same sequences but in the opposite direction (Wang
et al., 2008; Logacheva et al., 2009;Hereward et al., 2018). Due to the independent evolution
of the chloroplast genome, it is possible to construct a molecular phylogenetic tree using
the chloroplast genome and without requiring any other data. Data analysis based on the
conserved evolution of plastids is highly valuable for phylogenetic studies (Kim & Suh,
2013) because it can provide reliable and useful phylogenetic information. The relative
completeness and independence of the chloroplast genome means that it can provide
valuable material for research purposes.

Transfer RNAs (tRNAs) undergo numerous post-transcriptional nucleotide
modifications and they exhibit abundant chemical diversity where the bases experience
methylation, formylation, and other modifications (Suzuki & Suzuki, 2014). Chemical
nucleotide modifications are frequent in tRNAs and they are important for the structure,
stability, correct folding, aminoacylation, and decoding. For example, a previous analysis
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of the chemically synthesized f5C34-modified anticodon loop of human mt-tRNAMet

showed that f5C34 contributes to the anticodon domain structure of the mt-tRNA (Lusic
et al., 2008). tRNAs comprise sequences of less than 100 polynucleotides that fold into
a clover-type secondary structure and then into an L-shaped tertiary structure (Wilusz,
2015). The secondary structure of tRNAs comprises different arms as well as loops, i.e., the
D-arm, acceptor arm, anticodon arm, pseudouridine arm (9-arm), D-loop, variable
arm, anticodon loop, and pseudouridine loop (9-loop) (Giegé, Puglisi & Florentz, 1993;
Mizutani & Goto, 2000). This unique structure allows tRNA to act as important bridges
between the information level of nucleic acids and functional level of proteins. The vital
components of tRNAs comprise an anti-codon region that discerns the messenger RNA
carried by the specific codons, a 3′-CCA tail for attaching to the cognate amino acid, the
9-arm, and a 9-loop that has a relationship with the ribosome machinery (Kirchner &
Ignatova, 2014). Asymmetric combinations and the divided segments in tRNA genes allow
us to understand the diversity of tRNA molecules. tRNA species fulfill various functions in
cellular homeostasis, regulation of gene expression and epigenetics, biogenesis, and even
biological disease (Ribasd & Dedon, 2014; Kanai, 2015; Schimmel, 2017). The evolutionary
relationships determined between cyanobacteria and monocots show that tRNAs evolved
polyphyletically and they originated from multiple common ancestors with a high rate of
gene loss (Mohanta et al., 2017;Mohanta et al., 2019). Nevertheless, the basic details of the
tRNAs in plant chloroplasts still need to be elucidated and the diverse evolutionary features
of gymnosperm tRNAs are still unclear.

In this study, we assessed all of the chloroplast genomes in 12 families of gymnosperms
from eight orders. The main aims of this study were as follows: (1) to determine the
diversification of nucleotides in the secondary structure of gymnosperm tRNAs; (2) to
identify the detailed genomic features of chloroplast tRNAs; (3) to assess the evolutionary
relationships among different chloroplast tRNAs; and (4) to evaluate the duplication or
loss events that occurred in all of the tRNAs considered. Our findings provide important
insights into the biological characteristics and evolutionary variation of the tRNA family.

MATERIALS & METHODS
Annotation and identification of chloroplast tRNA sequences in
gymnosperms
We downloaded complete chloroplast genomes for 12 representative gymnosperms
in eight orders from the National Center for Biotechnology Information database
(NCBI, https://www.ncbi.nlm.nih.gov/). The gymnosperm species investigated were:
Cycas debaoensis Y. C. Zhong & C. J. Chen (KM459003), Dioon spinulosum Dyer ex
Eichler (NC_027512), Ginkgo biloba L. (NC_016986), Cedrus deodara (Roxb.) G. Don
(NC_014575), Wollemia nobilis W. G. Jones, K. D. Hill & J. M. Allen (NC_027235),
Retrophyllum piresii Silba C. N. (KJ017081), Sciadopitys verticillata (Thunb.) Sieb. et
Zucc. (NC_029734), Cunninghamia lanceolata (Lamb.) Hook. (NC_021437), Taxus
mairei (Lemee et Levl.) Cheng et L. K. Fu (KJ123824), Welwitschia mirabilis Hook.f.
(EU342371), Gnetum gnemon L. (KR476377), and Ephedra equisetina Bge. (NC_011954).

Zhang et al. (2020), PeerJ, DOI 10.7717/peerj.10312 3/27

https://peerj.com
https://www.ncbi.nlm.nih.gov/).
http://www.ncbi.nlm.nih.gov/nuccore/KM459003
http://www.ncbi.nlm.nih.gov/nuccore/NC_027512
http://www.ncbi.nlm.nih.gov/nuccore/NC_016986
http://www.ncbi.nlm.nih.gov/nuccore/NC_014575
http://www.ncbi.nlm.nih.gov/nuccore/NC_027235
http://www.ncbi.nlm.nih.gov/nuccore/KJ017081
http://www.ncbi.nlm.nih.gov/nuccore/NC_029734
http://www.ncbi.nlm.nih.gov/nuccore/NC_021437
http://www.ncbi.nlm.nih.gov/nuccore/KJ123824
http://www.ncbi.nlm.nih.gov/nuccore/EU342371
http://www.ncbi.nlm.nih.gov/nuccore/KR476377
http://www.ncbi.nlm.nih.gov/nuccore/NC_011954
http://dx.doi.org/10.7717/peerj.10312


The gymnosperm tRNA genomes were annotated using GeSeq-Annotation of Organellar
Genomes tool (Tillich et al., 2017) where the parameters were set as: circular sequence(s),
chloroplast of sequence source, generate multi FASTA; BLAST protein search identity
25% for annotating plastid IR, 85% identity for BLAST rRNA, tRNA and DNA search,
Embryophyta chloroplast (CDS+rRNA), third party tRNA annotator ARAGORN v1.2.38,
ARWEN v1.2.3, tRNAScan-SE v2.0, and without Refseq choice.

Structural analysis of chloroplast tRNAs
ARAGORN (Laslett & Canback, 2004) and tRNAScan-SE software (Lowe & Eddy, 1997)
were employed to analyze the sequences and the secondary structure of tRNAs in the
chloroplast genomes of the involved gymnosperm plants. The default parameters were set
in ARAGORN software. The parameters for tRNAScan-SE were set as: sequence source,
bacterial; search mode, default; query sequences, formatted (FASTA); and genetic code for
tRNA isotype prediction, universal.

Phylogenetic tree construction
Aphylogenetic tree was constructed for all of the tRNAs usingMEGA7.0 software (Kumar et
al., 2008; Kumar, Stecher & Tamura, 2016). To study the evolutionary details of chloroplast
tRNAs in gymnosperm species, an alignment file for tRNAs was achieved by CLUSTAL
Omega software before the phylogenetic tree was constructed. MEGA7 software was used
to transform the alignment file into MEGA format. The phylogenetic tree was constructed
with the following parameters: phylogeny reconstruction of analysis, maximum likelihood
model, bootstrap method in phylogeny test, 1,000 bootstrap replicates, nucleotides type,
gamma distributed with invariant sites (G+I) model, five discrete gamma categories, partial
deletion for gaps/missing data treatment, 95% site coverage cut-off, and very strong for
branch swap filter.

Transition/transversion analysis
The sequences of the tRNA isotypes were aligned to determine the transition and
transversion rates for chloroplast tRNAs in gymnosperm plants. The files covering all 20
types of tRNAs were transformed into the MEGA file format and analyzed separately using
MEGA7.0 software (Kumar, Tamura & Nei, 1994). The transition and transversion rates
were analyzed for tRNAs with the following parameters: substitution pattern estimation
(ML) analysis, automatic (neighbor-joining tree), maximum likelihood statistical method,
nucleotide substitution type, Kimura two-parameter model, gamma distributed (G) site
rates, five discrete gamma categories, partial deletion of gaps/missing data treatment, 95%
of site coverage cut-off, and very strong branch swap filter.

Loss and duplication events analysis for tRNA genes
In order to investigate the duplication or loss events in tRNA genes, the NCBI taxonomy
browser was utilized to construct the whole species tree for the 12 gymnosperm species
considered. The phylogenetic tree conducted in the evolutionary study was employed
as gene tree. The gene tree for the tRNAs and species tree for the gymnosperm species
were submitted to Notung 2.9 software (Chen, Durand & Farach-Colton, 2000), and then

Zhang et al. (2020), PeerJ, DOI 10.7717/peerj.10312 4/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.10312


Table 1 A view of the gymnosperms in analysis. Statistics of the 12 gymnosperms in the study.

Order Family Subfamily Genus Species NCBI Locus

Cycadales Cycadaceae Cycas debaoensis KM459003
Zamiaceae Diooideae Dioon spinulosum NC_027512

Ginkgoales Ginkgoaceae Ginkgo biloba NC_016986
Pinales Pinaceae Abieteae Cedrus deodara NC_014575
Araucariales Araucariaceae Wollemia nobilis NC_027235

Podocarpaceae Retrophyllum piresii KJ017081
Cupressales Sciadopityaceae Sciadopitys verticillata NC_029734

Cupressaceae Cunninghamia Cunninghamia lanceolata NC_021437
Taxaceae Taxus mairei KJ123824

Welwitschiales Welwitschiaceae Welwitschia mirabilis EU342371
Gnetales Gnetaceae Gnetum gnemon KR476377
Ephedrales Ephedraceae Ephedra equisetina NC_011954

reconciled to discover duplicated and lost tRNA genes in the chloroplast genomes of
gymnosperms.

RESULTS
Genomic features of gymnosperm chloroplast tRNAs
Sequences were analyzed to identify the genomic tRNAs in the chloroplast genomes of
12 gymnosperm species comprising C. debaoensis, D. spinulosum, G. biloba, C. deodara,
W. nobilis, R. piresii, S. verticillata, C. lanceolata, T. mairei, W. mirabilis, G. gnemon, and
E. equisetina, which were obtained from the NCBI database (Table 1). The results showed
that the length of the chloroplast tRNAs vary from the smallest with 64 nucleotides (nt)
(tRNAMet -CAU in T. mairei) to the largest with 96 nt (tRNATyr-AUA in W. nobilis, C.
deodara, and G. biloba) (Data S1). We found that the chloroplast genomes of gymnosperm
plants encode 28 to 33 tRNAs (Table 2), whereD. spinulosum, C. deodara, and S. verticillata
encode 31 anticodons, W. nobilis, R. piresii, C. lanceolata, and G. gnemon encode 32 tRNA
isotypes, G. biloba, andW. mirabilis encode 33 tRNAs. Other species comprising T. mairei,
E. equisetina and C. debaoensis encode 28, 28, 30 tRNA isotypes, respectively (Table 2).
tRNAAla was not found in R. piresii and T. mairei, and tRNAVal was not detected in T.
mairei (Fig. S3). We also observed that all of the species do not encode selenocysteine
and its suppressor tRNA (Table 2). Overall, tRNASer (in W. nobilis) and tRNAArg (in W.
mirabilis) are the most abundant (four types) followed by tRNALeu (three types) (Table 2).

Variations in structures of chloroplast tRNAs
Some tRNAs with a loop structure in the variable region were found to be encoded in the
gymnosperm chloroplast genomes (Figs. 1 and 2). A novel tRNA lacking the D-arm was
found in tRNAGly in W. nobilis (Fig. 3). As shown in Figs. 1 and 2, tRNALeu, tRNASer, and
tRNATyr contain expanded variable stem/loops. In these tRNAs (except for tRNASer-GCU
of D. spinulosum), the anticodon loop of tRNASer contains the conserved consensus
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Table 2 Distribution of tRNA isotypes in chloroplast genome of gymnosperms.

tRNA isotypes Number of tRNAs
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Ala 1 1 1 1 1 0 1 1 0 1 1 1
1 1 2 2 2 2 1 1 1 2 2 1Gly

Pro 2 2 2 2 2 2 1 2 2 2 2 1
Thr 1 2 2 2 2 2 2 2 2 2 2 1
Val 2 2 1 1 1 2 2 2 0 2 2 1
Ser 3 3 3 3 4 3 3 3 2 3 3 3
Arg 3 3 3 3 3 3 3 2 2 4 3 2
Leu 3 3 3 3 3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

Phe
Asn
Lys 1 1 1 1 1 1 1 2 1 1 1 1
Asp 1 1 1 1 1 2 1 1 1 1 1 1
Glu 2 2 1 2 2 2 2 2 1 2 2 2
His 1 1 2 1 1 1 1 1 1 1 1 1
Gln 1 1 1 1 1 1 2 2 1 1 1 1
Ile 1 1 1 1 1 1 1 1 4 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 1 1 1 1 1 1 1 1 1

Met/fMet
Tyr
Cys 1 1 2 1 1 1 1 1 1 1 1 1
Trp 1 1 1 1 1 1 1 1 1 1 1 2
Selenocysteine 0 0 0 0 0 0 0 0 0 0 0 0
Suppressor 0 0 0 0 0 0 0 0 0 0 0 0
Total 30 31 33 31 32 32 31 32 28 33 32 28
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Figure 1 Certain tRNAs in C. debaoensis,D. spinulosum,G. biloba, C. deodara, and R. piresii contain
expanded variable stem and loops. tRNASer, tRNALeu, and tRNATyr from C. debaoensis (A, tRNASer-
GGA), D. spinulosum (B, tRNASer-GCU), G. biloba (C, tRNASer-UGA), C. deodara (D, tRNASer-GGA;
E, tRNALeu-CAA), R. piresii (F, tRNATyr-GUA) were observed to contain an expanded variable stem and
variable loop (indicated by yellow box). The anti-codon loop of tRNASer (except for tRNASer-GCU of
D. spinulosum) was made up of seven nucleotides with the conservative N-U-N-G-A-A-N consensus se-
quence.

Full-size DOI: 10.7717/peerj.10312/fig-1

sequence N-U-N-G-A-A-N, and tRNAsLeu have the consensus sequence C-U-N-A-N2-A.
The variable loop region is predicted to fold into stem-loop structures with apical loops of
3 to 7 nt in tRNASer and several tRNALeu variants. The stems contain up to 7 bp (Figs. 1
and 2). The expanded variable loop structures may play important functions during the
protein translation process in chloroplasts.

Chloroplast genomes contain 25 to 30 anticodon-specific tRNAs
The genomes of the species analyzed were found to code for at least two copies of tRNAMet-
CAU/tRNAfMet-CAU. Each of the gymnosperm chloroplast genomes encodes 25 to 30
anticodon-specific tRNAs (Tables 2 and 3), where E. equisetina encodes 25 anticodons,
T. mairei encodes 26 anticodons, C. debaoensis, S. verticillata, and C. lanceolata encode
28 anticodons, and D. spinulosum, C. deodara, W. mirabilis, and R. piresii encode 29
anticodons. Other species comprising W. nobilis, G. gnemon and G. biloba encodes 30
anticodons (Table 3).
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Figure 2 Certain tRNAs in S. verticillata, C. lanceolata, T. mairei,W. mirabilis, andG. gnemon contain
expanded variable stem and loops. tRNASer, tRNALeu from S. verticillate (A, tRNASer-UGA; F, tRNALeu-
UAG), C. lanceolata (B, tRNALeu-UAA), T. mairei (C, tRNASer-UGA),W. mirabilis (D, tRNASer-GGA), G.
gnemon (E, tRNALeu-CAA) were observed to contain a variable stem and variable loop (indicated by yel-
low box). The anti-codon loop of tRNASer was made up of seven nucleotides with the conservative N-U-
N-G-A-A-N consensus sequence, and the consensus sequence was C-U-N-A-N2-A for tRNALeu.

Full-size DOI: 10.7717/peerj.10312/fig-2

tRNAArg-CCG was present in the genomes of nine gymnosperm species but absent
from C. lanceolata, T. mairei, and E. equisetina, while tRNAGly-UCC was lacking from
C. debaoensis, S. verticillata, D. spinulosum, C. lanceolata, T. mairei, and E. equisetina
(Table 3). The most abundant anticodons found in the chloroplast genomes were
tRNAGly-GCC, tRNAPro-UGG, tRNASer-UGA, tRNASer-GCU, tRNAArg-ACG, tRNAArg-
UCU, tRNALeu-UAG, tRNALeu-CAA, tRNAPhe-GAA, tRNAAsn-GUU, tRNALys-UUU,
tRNAAsp-GUC, tRNAGlu-UUC, tRNAHis-GUG, tRNAGln-UUG, tRNAIle-CAU, tRNAMet-
CAU, tRNATyr-GUA, tRNACys-GCA, and tRNATrp-CCA (Table 3). Two tRNATrp iso-
acceptors are present in E. equisetina chloroplasts, compared with a single one in the other
gymnosperm species analyzed in this study.

Conserved gymnosperm chloroplast tRNAs
The clover leaf-like secondary structure of a tRNA is shown in Fig. 4. In the study, we
found that most tRNAs contain a ‘‘G’’ as the first nucleotide in the D-arm, except for
tRNALys, tRNAMet, tRNAPro, tRNAThr, tRNATyr, and tRNAVal. ‘‘A’’ is present in the first
and the last position of the D-loop apart from tRNAGly, tRNAIle, tRNALeu, tRNAMet, and
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Table 3 Distribution of anti-codons in the chloroplast genome of gymnosperms. Each of the gymnosperm chloroplast genomes encodes 25 to 30 anticodon-specific
tRNAs. E. equisetina encodes 25 anticodons, T. mairei encodes 26 anticodons, C. debaoensis, S. verticillata, and C. lanceolata encode 28 anticodons, and D. spinulosum,
C. deodara, W. mirabilis, and R. piresii encode 29 anticodons. Other species comprisingW. nobilis, G. gnemon and G. biloba encodes 30 anticodons.

tRNA
Isotypes

Isoacceptors tRNA
Isotypes

Isoacceptors

C. debaoensis (28) S. verticillata (28)
Ala AGC: 0 GGC: 0 CGC: 0 UGC: 1 Ala AGC: 0 GGC: 0 CGC: 0 UGC: 1
Gly ACC: 0 GCC: 1 CCC: 0 UCC: 0 Gly ACC: 0 GCC: 1 CCC: 0 UCC: 0
Pro AGG: 0 GGG: 1 CGG: 0 UGG: 1 Pro AGG: 0 GGG: 0 CGG: 0 UGG: 1
Thr AGU: 0 GGU: 0 CGU: 0 UGU: 1 Thr AGU: 0 GGU: 1 CGU: 0 UGU: 1
Val AAC: 0 GAC: 1 CAC: 0 UAC: 1 Val AAC: 0 GAC: 1 CAC: 0 UAC: 1
Ser AGA: 0 GGA: 1 CGA: 0 UGA: 1 ACU: 0 GCU: 1 Ser AGA: 0 GGA: 1 CGA: 0 UGA: 1 ACU: 0 GCU: 1
Arg ACG: 1 GCG: 0 CCG:1 UCG: 0 CCU: 0 UCU: 1 Arg ACG: 1 GCG: 0 CCG:1 UCG: 0 CCU: 0 UCU: 1
Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 1 UAA: 1 Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 1 UAA: 1
Phe AAA: 0 GAA: 1 Phe AAA: 0 GAA: 1
Asn AUU: 0 GUU: 1 Asn AUU: 0 GUU: 1
Lys CUU: 0 UUU: 1 Lys CUU: 0 UUU: 1
Asp AUC: 0 GUC: 1 Asp AUC: 0 GUC: 1
Glu CUC: 0 UUC: 2 Glu CUC: 0 UUC: 2
His AUG: 0 GUG: 1 His AUG: 0 GUG: 1
Gln CUG: 0 UUG: 1 Gln CUG: 0 UUG: 2
Ile AAU: 0 GAU: 0 CAU: 1 UAU: 0 Ile AAU: 0 GAU: 0 CAU: 1 UAU: 0
Met CAU: 2 Met CAU: 2
Tyr AUA: 0 GUA: 1 Tyr AUA: 0 GUA: 1
Cys ACA: 0 GCA: 1 Cys ACA: 0 GCA: 1
Trp CCA: 1 Trp CCA: 1
Supressor CUA: 0 UUA: 0 UCA: 0 Supressor CUA: 0 UUA: 0 UCA: 0
Sec UCA: 0 Sec UCA: 0

D. spinulosum (29) C. lanceolata (28)
Ala AGC: 0 GGC: 0 CGC: 0 UGC: 1 Ala AGC: 0 GGC: 0 CGC: 0 UGC: 1
Gly ACC: 0 GCC: 1 CCC: 0 UCC: 0 Gly ACC: 0 GCC: 1 CCC: 0 UCC: 0
Pro AGG: 0 GGG: 1 CGG: 0 UGG: 1 Pro AGG: 0 GGG: 1 CGG: 0 UGG: 1
Thr AGU: 0 GGU: 1 CGU: 0 UGU: 1 Thr AGU: 0 GGU: 1 CGU: 0 UGU: 1
Val AAC: 0 GAC: 1 CAC: 0 UAC: 1 Val AAC: 0 GAC: 1 CAC: 0 UAC: 1
Ser AGA: 0 GGA: 1 CGA: 0 UGA: 1 ACU: 0 GCU: 1 Ser AGA: 0 GGA: 1 CGA: 0 UGA: 1 ACU: 0 GCU: 1

(continued on next page)

Zhang
etal.(2020),PeerJ,D

O
I10.7717/peerj.10312

9/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.10312


Table 3 (continued)

tRNA
Isotypes

Isoacceptors tRNA
Isotypes

Isoacceptors

Arg ACG: 1 GCG: 0 CCG:1 UCG: 0 CCU: 0 UCU: 1 Arg ACG: 1 GCG: 0 CCG: 0 UCG: 0 CCU: 0 UCU: 1
Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 1 UAA: 1 Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 1 UAA: 1
Phe AAA: 0 GAA: 1 Phe AAA: 0 GAA: 1
Asn AUU: 0 GUU: 1 Asn AUU: 0 GUU: 1
Lys CUU: 0 UUU: 1 Lys CUU: 1 UUU: 1
Asp AUC: 0 GUC: 1 Asp AUC: 0 GUC: 1
Glu CUC: 0 UUC: 2 Glu CUC: 0 UUC: 2
His AUG: 0 GUG: 2 His AUG: 0 GUG: 1
Gln CUG: 0 UUG: 1 Gln CUG: 0 UUG: 2
Ile AAU: 0 GAU: 0 CAU: 1 UAU: 0 Ile AAU: 0 GAU: 0 CAU: 1 UAU: 0
Met CAU: 2 Met CAU: 2
Tyr AUA: 0 GUA: 1 Tyr AUA: 0 GUA: 1
Cys ACA: 0 GCA: 1 Cys ACA: 0 GCA: 1
Trp CCA: 1 Trp CCA: 1
Supressor CUA: 0 UUA: 0 UCA: 0 Supressor CUA: 0 UUA: 0 UCA: 0
Sec UCA: 0 Sec UCA: 0

G. biloba (30) T. mairei (26)
Ala AGC: 0 GGC: 0 CGC: 0 UGC: 1 Ala AGC: 0 GGC: 0 CGC: 0 UGC: 0
Gly ACC: 0 GCC: 1 CCC: 0 UCC: 1 Gly ACC: 0 GCC: 1 CCC: 0 UCC: 0
Pro AGG: 0 GGG: 1 CGG: 0 UGG: 1 Pro AGG: 0 GGG: 1 CGG: 0 UGG: 1
Thr AGU: 0 GGU: 1 CGU: 0 UGU: 1 Thr AGU: 0 GGU: 1 CGU: 0 UGU: 1
Val AAC: 0 GAC: 1 CAC: 0 UAC: 0 Val AAC: 0 GAC: 0 CAC: 0 UAC: 0
Ser AGA: 0 GGA: 1 CGA: 0 UGA: 1 ACU: 0 GCU: 1 Ser AGA: 0 GGA: 0 CGA: 0 UGA: 1 ACU: 0 GCU: 1
Arg ACG: 1 GCG: 0 CCG:1 UCG: 0 CCU: 0 UCU: 1 Arg ACG: 1 GCG: 0 CCG: 0 UCG: 0 CCU: 0 UCU: 1
Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 2 UAA: 0 Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 1 UAA: 1
Phe AAA: 0 GAA: 1 Phe AAA: 0 GAA: 1
Asn AUU: 0 GUU: 1 Asn AUU: 0 GUU: 1
Lys CUU: 0 UUU: 1 Lys CUU: 0 UUU: 1
Asp AUC: 0 GUC: 1 Asp AUC: 0 GUC: 1
Glu CUC: 0 UUC: 1 Glu CUC: 0 UUC: 1
His AUG: 0 GUG: 2 His AUG: 0 GUG: 1
Gln CUG: 0 UUG: 1 Gln CUG: 0 UUG: 1
Ile AAU: 0 GAU: 0 CAU: 1 UAU: 0 Ile AAU: 1 GAU: 0 CAU: 2 UAU: 1
Met CAU: 2 Met CAU: 2
Tyr AUA: 1 GUA: 1 Tyr AUA: 0 GUA: 1
Cys ACA: 1 GCA: 1 Cys ACA: 0 GCA: 1
Trp CCA: 1 Trp CCA: 1

(continued on next page)
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Table 3 (continued)

tRNA
Isotypes

Isoacceptors tRNA
Isotypes

Isoacceptors

Supressor CUA: 0 UUA: 0 UCA: 0 Supressor CUA: 0 UUA: 0 UCA: 0
Sec UCA: 0 Sec UCA: 0

C. deodara (29) W. mirabilis (29)
Ala AGC: 0 GGC: 0 CGC: 0 UGC: 1 Ala AGC: 0 GGC: 0 CGC: 0 UGC: 1
Gly ACC: 0 GCC: 1 CCC: 0 UCC: 1 Gly ACC: 0 GCC: 1 CCC: 0 UCC: 1
Pro AGG: 0 GGG: 1 CGG: 0 UGG: 1 Pro AGG: 0 GGG: 1 CGG: 0 UGG: 1
Thr AGU: 0 GGU: 1 CGU: 0 UGU: 1 Thr AGU: 0 GGU: 1 CGU: 0 UGU: 1
Val AAC: 0 GAC: 1 CAC: 0 UAC: 0 Val AAC: 0 GAC: 1 CAC: 0 UAC: 1
Ser AGA: 0 GGA: 1 CGA: 0 UGA: 1 ACU: 0 GCU: 1 Ser AGA: 0 GGA: 1 CGA: 0 UGA: 1 ACU: 0 GCU: 1
Arg ACG: 1 GCG: 0 CCG:1 UCG: 0 CCU: 0 UCU: 1 Arg ACG: 1 GCG: 0 CCG: 2 UCG: 0 CCU: 0 UCU: 1
Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 1 UAA: 1 Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 1 UAA: 1
Phe AAA: 0 GAA: 1 Phe AAA: 0 GAA: 1
Asn AUU: 0 GUU: 1 Asn AUU: 0 GUU: 1
Lys CUU: 0 UUU: 1 Lys CUU: 0 UUU: 1
Asp AUC: 0 GUC: 1 Asp AUC: 0 GUC: 1
Glu CUC: 0 UUC: 2 Glu CUC: 0 UUC: 2
His AUG: 0 GUG: 1 His AUG: 0 GUG: 1
Gln CUG: 0 UUG: 1 Gln CUG: 0 UUG: 1
Ile AAU: 0 GAU: 04 CAU: 1 UAU: 0 Ile AAU: 0 GAU: 0 CAU: 1 UAU: 0
Met CAU: 2 Met CAU: 2
Tyr AUA: 0 GUA: 1 Tyr AUA: 0 GUA: 1
Cys ACA: 0 GCA: 1 Cys ACA: 0 GCA: 1
Trp CCA: 1 Trp CCA: 1
Supressor CUA: 0 UUA: 0 UCA: 0 Supressor CUA: 0 UUA: 0 UCA: 0
Sec UCA: 0 Sec UCA: 0

W. nobilis (30) G. gnemon (30)
Ala AGC: 0 GGC: 0 CGC: 0 UGC: 1 Ala AGC: 0 GGC: 0 CGC: 0 UGC: 1
Gly ACC: 0 GCC: 1 CCC: 0 UCC: 1 Gly ACC: 0 GCC: 1 CCC: 0 UCC: 1
Pro AGG: 0 GGG: 1 CGG: 0 UGG: 1 Pro AGG: 0 GGG: 1 CGG: 0 UGG: 1
Thr AGU: 0 GGU: 1 CGU: 0 UGU: 1 Thr AGU: 0 GGU: 1 CGU: 0 UGU: 1
Val AAC: 0 GAC: 1 CAC: 0 UAC: 0 Val AAC: 0 GAC: 1 CAC: 0 UAC: 1
Ser AGA: 0 GGA: 1 CGA: 1 UGA: 1 ACU: 0 GCU: 1 Ser AGA: 0 GGA: 1 CGA: 0 UGA: 1 ACU: 0 GCU: 1
Arg ACG: 1 GCG: 0 CCG:1 UCG: 0 CCU: 0 UCU: 1 Arg ACG: 1 GCG: 0 CCG:1 UCG: 0 CCU: 0 UCU: 1
Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 1 UAA: 1 Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 1 UAA: 1
Phe AAA: 0 GAA: 1 Phe AAA: 0 GAA: 1
Asn AUU: 0 GUU: 1 Asn AUU: 0 GUU: 1
Lys CUU: 0 UUU: 1 Lys CUU: 0 UUU: 1
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Table 3 (continued)

tRNA
Isotypes

Isoacceptors tRNA
Isotypes

Isoacceptors

Asp AUC: 0 GUC: 1 Asp AUC: 0 GUC: 1
Glu CUC: 0 UUC: 2 Glu CUC: 0 UUC: 2
His AUG: 0 GUG: 1 His AUG: 0 GUG: 1
Gln CUG: 0 UUG: 1 Gln CUG: 0 UUG: 1
Ile AAU: 0 GAU: 0 CAU: 1 UAU: 0 Ile AAU: 0 GAU: 0 CAU: 1 UAU: 0
Met CAU: 2 Met CAU: 2
Tyr AUA: 0 GUA: 1 Tyr AUA: 0 GUA: 1
Cys ACA: 0 GCA: 1 Cys ACA: 0 GCA: 1
Trp CCA: 1 Trp CCA: 1
Supressor CUA: 0 UUA: 0 UCA: 0 Supressor CUA: 0 UUA: 0 UCA: 0
Sec UCA: 0 Sec UCA: 0

R. piresii (29) E. equisetina (25)
Ala AGC: 0 GGC: 0 CGC: 0 UGC: 0 Ala AGC: 0 GGC: 0 CGC: 0 UGC: 1
Gly ACC: 0 GCC: 1 CCC: 0 UCC: 1 Gly ACC: 0 GCC: 1 CCC: 0 UCC: 0
Pro AGG: 0 GGG: 1 CGG: 0 UGG: 1 Pro AGG: 0 GGG: 0 CGG: 0 UGG: 1
Thr AGU: 0 GGU: 1 CGU: 0 UGU: 1 Thr AGU: 0 GGU: 1 CGU: 0 UGU: 0
Val AAC: 0 GAC: 1 CAC: 0 UAC: 1 Val AAC: 0 GAC: 1 CAC: 0 UAC: 0
Ser AGA: 0 GGA: 1 CGA: 0 UGA: 1 ACU: 0 GCU: 1 Ser AGA: 0 GGA: 1 CGA: 0 UGA: 1 ACU: 0 GCU: 1
Arg ACG: 1 GCG: 0 CCG:1 UCG: 0 CCU: 0 UCU: 1 Arg ACG: 1 GCG: 0 CCG:0 UCG: 0 CCU: 0 UCU: 1
Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 1 UAA: 1 Leu AAG: 0 GAG: 0 CAG: 0 UAG: 1 CAA: 1 UAA: 1
Phe AAA: 0 GAA: 1 Phe AAA: 0 GAA: 1
Asn AUU: 0 GUU: 1 Asn AUU: 0 GUU: 1
Lys CUU: 0 UUU: 1 Lys CUU: 0 UUU: 1
Asp AUC: 0 GUC: 2 Asp AUC: 0 GUC: 1
Glu CUC: 0 UUC: 2 Glu CUC: 0 UUC: 2
His AUG: 0 GUG: 1 His AUG: 0 GUG: 1
Gln CUG: 0 UUG: 1 Gln CUG: 0 UUG: 1
Ile AAU: 0 GAU: 0 CAU: 1 UAU: 0 Ile AAU: 0 GAU: 0 CAU: 1 UAU: 0
Met CAU: 2 Met CAU: 2
Tyr AUA: 0 GUA: 1 Tyr AUA: 0 GUA: 1
Cys ACA: 0 GCA: 1 Cys ACA: 0 GCA: 1
Trp CCA: 1 Trp CCA: 2
Supressor CUA: 0 UUA: 0 UCA: 0 Supressor CUA: 0 UUA: 0 UCA: 0
Sec UCA: 0 Sec UCA: 0

Zhang
etal.(2020),PeerJ,D

O
I10.7717/peerj.10312

12/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.10312


Figure 3 An abnormal tRNA structure lacking the D-arm found inW. nobilis. The tRNAGly with anti-
codon UCC was found lacking the D-arm.

Full-size DOI: 10.7717/peerj.10312/fig-3

tRNAGln. In addition, in the final two positions of the 9-arm, all of the tRNAs were
found to have conserved ‘‘G-G’’ nucleotides, except for tRNAArg, tRNACys, tRNAPhe, and
tRNAVal (Table 4). Small conserved consensus sequences were found in the 9 region. To
be specific, except for tRNASer, the 9-loop in tRNAs was found to contain a conserved
sequence comprising U-U-C-N-A-N2 according to a multiple sequence alignment of 20
members of the tRNA gene family (Table 4).
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Table 4 Conserved sequence motifs in chloroplast tRNAs from gymnosperms. Small conserved con-
sensus motifs were observed in the 9 region. To be specific, except for tRNASer , the 9-loop in tRNAs was
found to contain a conserved sequence comprising U-U-C-NA-N2 according to a multiple sequence align-
ment of 20 members of the tRNA gene family.

Notes.
Note that the consensus sequences are shown from 5′ to 3′. The asterisk mark (*) show the absence of conserved nucleotide
consensus sequence in respective region of chloroplast tRNAs. 5′ AC-arm, 5′ Acceptor arm; ANC-arm, Anti-codon arm;
ANC-loop, Anti-codon loop; 9-arm, Pseudouridine arm; 9-loop, Pseudouridine loop. The short lines under the bases in an-
ticodon loop of tRNAIle are to indicate its possible modification.

Diversification of tRNAs structures
The diverse arms and loops of tRNAs allow the regulation and control of protein translation.
Each arm and loop has a specific nucleotide composition. Our analysis based on 373 tRNAs
showed that the acceptor arm of chloroplast tRNAs contains 6 bp to 7 bp (Table S1). The
D-arms were found to contain 3 or 4 bp generally, with a stable ‘‘G’’ in the initial position
and ‘‘C’’ in the last position of the D-stem 5′ strand in most tRNAs (such as tRNA tRNAAla,
tRNAAsn, tRNAAsp, tRNACys, tRNAGlu, tRNAHis, tRNAIle, and tRNAPhe). Most D-loops
usually contain 7 to 11 nt with conserved ‘‘A’’ nucleotides at the two end locations. The
anticodon arms of chloroplast tRNAs mainly contain 5 bp (90.4%). We found that 367

Zhang et al. (2020), PeerJ, DOI 10.7717/peerj.10312 14/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.10312#supp-5
http://dx.doi.org/10.7717/peerj.10312


Figure 4 Clover leaf-like structure of gymnosperms tRNA. The tRNA contains the Acceptor arm (6–7
bp, dark green, >96% conserved), D-arm (3–4 bp, light blue, >65% conserved), D-loop (7–11 nt, pur-
ple, >80% conserved), Anti-codon arm (5 bp, dark blue, >75% conserved), anti-codon loop (7 nt, gray,
>99% conserved), variable region (3–23 nt, orange, >45% conserved), 9-arm (5 bp, light purple, >97%
conserved), and 9-loop (7 nt, green, >95% conserved). ‘‘% conservation’’ means the conservative ratio of
base identities in each stem and loop structure of the whole set of gymnosperm tRNAs. Several tRNAs har-
bor the nucleotides of C-C-A tail.

Full-size DOI: 10.7717/peerj.10312/fig-4

(about 99%) tRNAs contain 7 nt in their anticodon loop, thereby indicating that the
sequence of the anticodon loop is highly conserved (Table 4, Table S1). The variable loops
of different tRNAs contain 3 to 23nt, where those in tRNAAla, tRNAAsp, tRNAHis, tRNAPhe,
and tRNAPro contain 5 bp (Table S1). The9-arm contains 5 bp inmost of the gymnosperm
chloroplast tRNAs, except for tRNAAla and some of the tRNATrp, tRNAGly, tRNAThr, and
tRNAArg in chloroplast. The 9-loops of most tRNAs contain 7 nt, apart from tRNAAla and
several of tRNACys and tRNAThr (Table S1).

Gymnosperm chloroplast tRNAs derived from multiple common
ancestors
The phylogenetic tree demonstrated the presence of three major clusters covering 64
groups and the different types of all tRNAs (as shown by the different strings in Fig. S1).
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We detected 37 groups in cluster I, five in cluster II, and 22 groups in cluster III. Cluster
I contains tRNA tRNASer, tRNATyr, tRNAHis, tRNAGln, tRNAThr, tRNAPro, tRNAGly,
tRNAMet, tRNAAsp, tRNAArg, tRNAAla, tRNACys, tRNALys, tRNAGlu, tRNAIle, tRNAAsn,
tRNAVal, tRNALeu, and tRNATrp. Cluster II contains tRNAHis, tRNASer, tRNATyr, and
tRNALeu. Cluster III contains tRNALeu, tRNAIle, tRNAGly, tRNAThr, tRNASer, tRNAVal,
tRNAGlu, tRNALys, tRNACys, tRNAGln, tRNAHis, tRNAArg, tRNAPhe, tRNAAla, and tRNAMet

(Fig. S1). tRNASer, tRNAHis, and tRNA Leu are present in cluster I but also in cluster II
and cluster III, thereby suggesting that these tRNAs evolved from multiple lineages. Most
of the tRNAs were found to form more than one group in the phylogenetic tree. In cluster
I, the tRNAs that formed two groups in the phylogenetic tree were identified as tRNATyr,
tRNAGln, tRNAMet, tRNAAsp, tRNAAla, tRNALys, tRNAIle, and tRNATrp, whereas those that
clustered to form three groups were determined as tRNASer, tRNAPro, tRNAArg, tRNAGlu,
tRNAAsn, tRNAVal, and tRNALeu. Moreover, tRNAThr clustered into four groups. In cluster
II, tRNASer was found to form two groups. In cluster III, tRNAGly and tRNAVal were found
to form two groups, whereas tRNAThr formed three groups, tRNAIle formed four groups.
Some tRNAs in cluster III were found to group individually, where these tRNAs containing
the anticodons C-G-A in tRNA tRNASer, U-U-C in tRNAGlu, U-U-U in tRNALys, G-C-A in
tRNACys, U-U-G in tRNAGln, G-U-G in tRNAHis, U-C-U in tRNAArg, G-A-A in tRNAPhe,
U-G-C in tRNAAla, and C-A-U in tRNAMet all grouped separately (Fig. S1). The multiple
groupings of different tRNAs suggest that they evolved from multiple common ancestors.
Furthermore, the tRNAs presented in cluster III, i.e., tRNAMet (CAU), tRNAThr (UGU,
GGU), tRNAVal (UAC), tRNAAla (UGC), tRNAPhe (GAA), tRNAArg (UCU), tRNAHis

(GUG), tRNAGln (UUG), tRNACys (GCA), tRNALys (UUU), tRNAGlu (UUC), tRNAIle

(UAU), tRNAVal (GAC), tRNALeu (CAA), tRNAGly (UCC), tRNASer (CGA), tRNAGly

(GCC), and tRNAIle (CAU), tended to be the most basic tRNAs and they had undergone
gene duplication and diversification to generate other tRNA molecules.

C-A-U anticodon in tRNAIle

Our detailed genomic study showed that tRNAIle also encodes a C-A-U anticodon in
addition to the presence of this typical anticodon in tRNAMet. In general, the C-A-U
anticodon is recognized as a typical characteristic of tRNAMet and there is only one
iso-acceptor. In particular, we found that the tRNAIle in T. mairei encodes two C-A-U
anticodons, and C. debaoensis, S. verticillata, D. spinulosum, C. lanceolata, G. biloba, C.
deodara, W. mirabilis, G. gnemon, R. piresii, E. equisetina, and W. nobilis also encode a
C-A-U anticodon (Table 3, Data S1, Fig. S3).

Transition/transversion of tRNAs
A previous study (Mohanta et al., 2019) showed that the evolutionary rates are almost
equal for tRNAs with respect to transition and transversion despite the low probability of
transition or transversion events in tRNAs. In this study, we identified several intriguing
substitutions of gymnosperm chloroplast tRNAs. Overall, our analysis of the substitution
rates detected using the whole set of chloroplast tRNAs showed that average transition rate
(15.38) was significantly larger than the average transversion rate (4.81) with a ratio of 3:1
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Table 5 Transition and transversion rate of chloroplast tRNA. In all of the chloroplast tRNAs, the average transition rate (shown in bold value)
was slightly higher than the average transversion rate, thereby indicating that chloroplast tRNAs have unequal substitution rates.

From/To A U C G From/To A U C G

Alanine lysine
A – 12.50 12.50 0.00 A – 1.47 1.47 22.06
U 12.50 – 0.00 12.50 U 1.47 – 22.06 1.47
C 12.50 0.00 – 12.50 C 1.47 22.06 – 1.47
G 0.00 12.50 12.50 – G 22.06 1.47 1.47 –

Arginine Methionine
A – 2.93 2.93 19.13 A – 3.86 3.86 17.27
U 2.93 – 19.13 2.93 U 3.86 – 17.27 3.86
C 2.93 19.13 – 2.93 C 3.86 17.27 – 3.86
G 19.13 2.93 2.93 – G 17.27 3.86 3.86 –

Asparagine Phenylalanine
A – 1.12 1.12 22.75 A – 1.21 1.21 22.58
U 1.12 – 22.75 1.12 U 1.21 – 22.58 1.21
C 1.12 22.75 – 1.12 C 1.21 22.58 – 1.21
G 22.75 1.12 1.12 – G 22.58 1.21 1.21 –

Aspartate Proline
A – 0.00 0.00 25.00 A – 1.53 1.53 21.95
U 0.00 – 25.00 0.00 U 1.53 – 21.95 1.53
C 0.00 25.00 – 0.00 C 1.53 21.95 – 1.53
G 25.00 0.00 0.00 – G 21.95 1.53 1.53 –

Cysteine Serine
A – 2.75 2.75 19.50 A – 5.16 5.16 14.68
U 2.75 – 19.50 2.75 U 5.16 – 14.68 5.16
C 2.75 19.50 – 2.75 C 5.16 14.68 – 5.16
G 19.50 2.75 2.75 – G 14.68 5.16 5.16 –

Glutamine Threonine
A – 3.83 3.83 17.35 A – 3.91 3.91 17.18
U 3.83 – 17.35 3.83 U 3.91 – 17.18 3.91
C 3.83 17.35 – 3.83 C 3.91 17.18 – 3.91
G 17.35 3.83 3.83 – G 17.18 3.91 3.91 –

Glutamate Ttyptophan
A – 4.59 4.59 15.81 A – 2.02 2.02 20.96
U 4.59 – 15.81 4.59 U 2.02 – 20.96 2.02
C 4.59 15.81 – 4.59 C 2.02 20.96 – 2.02
G 15.81 4.59 4.59 – G 20.96 2.02 2.02 –

Glycine Tyrosine
A – 1.94 1.94 21.13 A – 5.34 5.34 14.33
U 1.94 – 21.13 1.94 U 5.34 – 14.33 5.34
C 1.94 21.13 – 1.94 C 5.34 14.33 – 5.34
G 21.13 1.94 1.94 – G 14.33 5.34 5.34 –

(continued on next page)
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Table 5 (continued)

From/To A U C G From/To A U C G

Histidine Valine
A – 1.22 1.22 22.56 A – 1.73 1.73 21.54
U 1.22 – 22.56 1.22 U 1.73 – 21.54 1.73
C 1.22 22.56 – 1.22 C 1.73 21.54 – 1.73
G 22.56 1.22 1.22 – G 21.54 1.73 1.73 –

Isoleucine Overrall
A – 4.72 4.72 15.56 A – 4.81 4.81 15.38
U 4.72 – 15.56 4.72 U 4.81 – 15.38 4.81
C 4.72 15.56 – 4.72 C 4.81 15.38 – 4.81
G 15.56 4.72 4.72 – G 15.38 4.81 4.81 –

Leucine
From/To A U C G
A – 4.40 4.40 16.21
U 4.40 – 16.21 4.40
C 4.40 16.21 – 4.40
G 16.21 4.40 4.40

(Table 5). The same transition: transversion ratio bias was found in all the set of tRNAs for
tRNASer, tRNAGlu, tRNATyr, tRNAIle, tRNAMet, tRNAGln, tRNAThr, and tRNALeu. The ratio
was over 6:1 for tRNACys and tRNAArg. The transition rates for tRNATrp, tRNAVal, and
tRNAGly were about 10 times higher than their transversion rates. These findings suggest
that tRNASer, tRNAGlu, tRNATyr, tRNAIle, tRNAMet, tRNAGln, tRNAThr, tRNALeu, tRNACys,
tRNAArg, tRNATrp, tRNAVal and tRNAGly underwent transition substitutions more readily
than transversion substitutions during their evolution in gymnospermchloroplast genomes.
In addition, the transition rates in tRNALys and tRNAPro were about 15 times higher than
their transversion rates. The transition rates in tRNAAsn, tRNAPhe, and tRNAHis were
about 20 times higher than their transversion rates. These results indicate that tRNAs are
much more likely to have undergone transition events rather than transversion events. The
highest transversion rate of 12.50 was found in tRNAAla and the lowest transversion rate
of 0.00 in tRNAAsp (Table 5). Correspondingly, tRNAAla lacks any transitions (Table 5).

tRNA duplication/loss events
In addition to transition and transversion events, gene duplication and loss events have
played important roles in gene evolution. Our analysis of duplication and loss events
indicated that 153 duplication events (duplication and conditional duplication) have
occurred in all of the gymnosperm chloroplast tRNA genes investigated in this study
(Fig. S2). In addition, 220 gymnosperm chloroplast tRNA gene loss events were detected
(Table S2, Fig. S2). Thus, the loss of genes was slightly more frequent than their duplication
for gymnosperm chloroplast tRNA genes.
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DISCUSSION
tRNAs are major genetic components of semi-autonomous chloroplasts and our analysis of
gymnosperm chloroplast genomes showed that they have several basic conserved genomic
features. The gymnosperm chloroplast genomes investigated in the present study were
found to encode 28 to 33 tRNA isotypes, thereby indicating that there is substantial variation
in the quantity of tRNAs in gymnosperm chloroplast genomes. The lack of tRNAAla in
R. piresii and T. mairei, and the absence of tRNAVal in T. mairei were interesting. Thus,
it is necessary to understand how the translation process is conducted in chloroplasts
without these crucial tRNAs. According to previous studies (Treangen & Rocha, 2011;
Mohanta et al., 2019), it is likely that the deficiency of these tRNAs is compensated for by
the transfer of corresponding tRNAs from the nucleus or mitochondria. In addition to
the absence of tRNAAla and tRNAVal, all of the gymnosperm plants were shown to not
encode selenocysteine tRNA and its suppressor tRNA in their chloroplast genomes (Table
2). Selenocysteine tRNA and its suppressor tRNA were also not detected in the chloroplast
of Oryza sativa (Mohanta & Bae, 2017).

In addition to the presence of C-A-U anticodon in tRNAMet, we found that tRNA-CAU
is present in tRNAIle (Table 3). Similarly, the C-A-U anticodon was detected in tRNAIle

in Bacillus subtilis (Ehrenberg) Cohn and spinach (Kashdan & Dudock, 1982; Köhrer et al.,
2014). The possible mechanism that governs the specificity of this amino acid may involve
modification of the wobble position in the anticodon by a tRNA-modifying enzyme.
Chloroplasts originate from bacteria so the tRNAmodifications found in bacteria may also
occur in chloroplast tRNAs. In bacteria, the tRNA-modifying enzyme TilS can convert the
5′-C residue in the CAU anticodon of specific tRNAIle molecules into lysidine to decode
5′-AUA (Ile) codons instead of 5′-AUG (Met) codons (Soma et al., 2003). In addition,
when lysidine decodes isoleucine, the tautomer form of lysidine provides compatible
hydrogen bond donor–acceptor sites to allow base pairing with ‘‘A’’ and this may help to
the recognition of the codon AUA instead of AUG (Sonawane & Tewari, 2008; Sambhare
et al., 2014). The absence of tRNAIle-lysidine synthetase leads to a failure to modify C34
to lysidine in tRNAIle (LAU) (i.e., the synthesis of CAU-tRNAIle) and this inactivates the
translation of AUA codons (Köhrer et al., 2014).

During protein coding, a certain species or gene tends to use one or more specific
synonym codons, which is referred to as codon usage bias (Comeron & Aguadé, 1998;
Rota-Stabelli et al., 2012). In the present study, tRNAArg-CCG was found to be present in
the genomes of nine species but absent from C. lanceolata, T. mairei, and E. equisetina.
Similarly, tRNAGly-UCC was shown to be absent from the chloroplast genomes of C.
debaoensis, S. verticillata,D. spinulosum,C. lanceolata,T. mairei, and E. equisetina (Table 3).
These results suggest that gymnosperm chloroplast tRNA genes are characterized by codon
usage bias (Wei & Jin, 2017; Li et al., 2015).

In general, the secondary structure of tRNAs is characterized as clover leaf-like, except
for a few tRNAs with unusual secondary structures (Jühling et al., 2018). In our study,
we identified clover leaf-like tRNAs with expanded variable loop regions (Figs. 1 and 2).
Numerous tRNALeu, tRNASer, and tRNATyr were found to have specific variable loop
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configurations in terms of length and structure, suggesting significant structural variation
among chloroplast tRNAs. It is interesting to note that there were also stem-loop structures
in variable regions of certain tRNAs in cyanobacteria. This might indicate that similar
structural variations exist between chloroplast tRNAs and cyanobacterial tRNAs (Mohanta
et al., 2017). Future studies will have to determine the biological importance of these variant
tRNAs. The novel tRNA structure lacking the D arm might play some other significative
functions in the translation progress and additional research is necessary to elucidate
its exact function and mechanisms. Most tRNAs have a clover-like structure formed by
complementary base pairing between small segments (Hubert et al., 1998; Florentz, 2002).
Previous studies have showed that the acceptor arm of tRNAs in chloroplasts contain 7 bp
to 9 bp, the D-arm contains 3 bp to 4 bp, the D-loop has 4 nt to 12 nt, the anticodon arm
has 5 bp, the anticodon loop contains 7 nt, the variable region comprises 4 nt to 23 nt,
and 9-arm contains 5 bp, and the 9-loop has 7 nt (Wilusz, 2015; Mohanta & Bae, 2017;
Mohanta et al., 2019). In the present study, we found that the acceptor arm of chloroplast
tRNAs contains 6 bp to 7 bp in 373 tRNAs, where the D-arm has 3 bp or 4 bp and the
D-loop usually contains 7 nt to 11 nt. The anticodon loop of gymnosperm chloroplast
tRNAs generally contains 7 nt, and thus the sequence of the anticodon loop is typically
conserved (Table 4, Table S1). The variable loop of different tRNAs contain 3 nt to 23 nt
(Table S1). The 9-arm of gymnosperm chloroplast tRNAs generally contains 5 bp and the
9-loop has 7 nt (Table S1). Our results are consistent with previous findings (Wilusz, 2015;
Mohanta & Bae, 2017) and they suggest that chloroplast RNAs are significantly conserved.
The consensus sequence ‘‘U-U-C-N-A-N2’’ was found in the 9 region (Table 4). Previous
studies also reported the existence of a similar sequence in the 9-loop of tRNAs in Oryza
sariva and Cyanobacteria (Mohanta & Bae, 2017; Mohanta et al., 2017). This suggests that
the consensus ‘‘U-U-C-N-A-N2’’ motif of the 9 region, identified here and in previous
analyses, is a general consensus motif of canonical tRNAs.

Our phylogenetic analysis detected three clear clusters and many tRNA groups. Some
tRNAs (tRNASer, tRNAHis, and tRNALeu) in cluster I and cluster II were also in cluster III,
thereby indicating that these tRNAs evolved from multiple lineages by gene duplication
and gene divergence. Moreover, anticodon types comprising CGA, UUC, UUU, GCA,
UUG, GUG, UCU, UGC, and CAU appeared several times in the phylogenetic tree, and
thus the corresponding tRNAs evolved from multiple common ancestors. The overlapping
of tRNAs groups demonstrates that these tRNAs might have diverse common ancestors
in the evolutionary process (Mohanta & Bae, 2017). Phylogenetic analysis also showed
that tRNAMet (CAU), tRNAThr (UGU, GGU), tRNAVal (UAC), tRNAAla (UGC), tRNAPhe

(GAA), tRNAArg (UCU), tRNAHis (GUG), tRNAGln (UUG), tRNACys (GCA), tRNALys

(UUU), tRNAGlu (UUC), tRNAIle (UAU), tRNAVal (GAC), tRNALeu (CAA), tRNAGly

(UCC), tRNASer (CGA), tRNAGly (GCC), and tRNAIle (CAU) in cluster III tended to be
the most basic tRNAs, whereas tRNAMet tended to be the most original tRNA. Overall, the
results clearly indicate that the tRNAs encoded in gymnosperm chloroplast genomes have
multiple common evolutionary ancestors.

Our results also provided insights into the gene substitution rates in gymnosperm
chloroplast tRNAs. Overall, the average transition rate for tRNAs was greater than the
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transversion rate, where the relationship was about 3:1 (Table 5). In all of the chloroplast
tRNAs, the average transition rate was slightly higher than the average transversion rate,
thereby indicating that chloroplast tRNAs have unequal substitution rates.

In addition to the transition and transversion events in tRNAs, loss and duplication
events have played significant roles in the evolution of tRNAs in gymnosperm chloroplast
genomes (He & Zhang, 2006;Magadum et al., 2013). In general, the gene loss events tended
to occur after whole genome duplication events. We found 153 duplication events and 220
loss events in gymnosperm chloroplast tRNAs, and thus loss events have occurred slightly
more frequently than duplication events (Table S2).

CONCLUSIONS
Our basic structure analysis showed that gymnosperm chloroplast genomes encode 25
to 30 anticodon-specific tRNAs. The acceptor arm of chloroplast tRNA contains 6 bp
to 7 bp, the D-arm has 3 bp or 4 bp, the D-loop contains 7 nt to 11 nt mainly, and
the anticodon loop usually contains 7 nt. In different tRNAs, the variable loop contains
3 nt to 23 nt. The 9-arm contains a conserved sequence comprising U-U-C-N-A-N2.
tRNAAla was absent from R. piresii and T. mairei, and tRNAVal was lacking in T. mairei.
Gymnosperm chloroplasts do not encode selenocysteine tRNA and its suppressor tRNA
in their genomes. A CAU anticodon is encoded in tRNAMet as well as in tRNAIle. A novel
tRNA structure lacking the D arm was identified for the chloroplast tRNAGly ofW. nobilis.
Numerous tRNALeu, tRNASer, and tRNATyr types were found to have expanded variable
regions. Phylogenetic analysis showed that tRNAs might have multiple common ancestors
in the evolutionary process. Different tRNAs harbored their own transition/transversion
rates, i.e., it was iso-acceptor specific. And the transition rate was generally higher than
the transversion rate. Furthermore, gene loss events (220) have occurred slightly more
frequently than gene duplication events (153) in gymnosperm chloroplast tRNAs. Our
results provide new insights into the evolution of gymnosperm chloroplast tRNAs and
their diverse roles.
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