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ABSTRACT
Increasing evidence shows that maternal overnutritionmay increase the risk of diabetes
in offspring. We hypothesized that maternal sitagliptin intervention may improve
glucose intolerance through gut targeting. Female Sprague-Dawley (SD) rats were fed
a normal diet (ND) or a high-fat diet (HFD) for 4 weeks before mating. ND pregnant
rats were divided into two subgroups: ND group (ND alone) and the ND-sitagliptin
group (NDcombinedwith 10mg/kg/day sitagliptin treatment).HFDpregnant ratswere
randomized to one of two groups: HFD group (HFD alone) and the HFD-sitagliptin
group (HFD combined with 10 mg/kg/day sitagliptin treatment) during pregnancy
and lactation. Glucose metabolism was assessed in offspring at weaning. Intestinal
gene expression levels were investigated. Maternal sitagliptin intervention moderated
glucose intolerance and insulin resistance in male pups. Moreover, maternal sitagliptin
treatment inhibited offspring disordered intestinal expression of proinflammatory
markers, including interleukin-6 (Il6), ll1b, and tumor necrosis factor (Tnf ), at weaning
and reduced intestinal IL-6, TNF-α expression by immunohistochemical staining and
serum IL-6, TNF-α levels. However, maternal sitagliptin intervention did not affect
offspring serum anti-inflammatory cytokine IL-10 level. Our results are the first to
show that maternal sitagliptin intervention moderated glucose metabolism in male
offspring. It may be involved with moderating intestinal IL-6 and TNF-α expression in
male rat offspring.

Subjects Diabetes and Endocrinology, Drugs and Devices, Gastroenterology and Hepatology,
Metabolic Sciences
Keywords Sitagliptin, Fetal programming, Inflammatory, Maternal diet, Intestine

INTRODUCTION
Currently, it is estimated that four hundred and fifteen million adults have type 2
diabetes mellitus (T2DM) worldwide (Williams et al., 2020). T2DM is characterized by
abnormalities in glucose metabolism, which leads to pancreatic cell insulin secretion
disorder and peripheral insulin resistance (Virally et al., 2007). T2DMand its complications
create a societal and commercial burden. Genetic and environmental factors are involved
in the pathology of T2DM. Traditional environmental factors mainly include lifestyle
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factors, including excess energy intake and sedentary lifestyle. Recent epidemiological
evidence (Eriksson et al., 2014; Jornayvaz et al., 2016) and animal studies (Boucher &
Leung, 2015; Ohta et al., 2017) suggest that exposure to maternal overnutrition in utero
increases the risk of metabolic diseases, such as hypertension, cardiovascular disease, and
diabetes in offspring. Researchers regard in utero malnutrition status as an important
environmental risk factor for developing T2DM (Bianco-Miotto et al., 2017). Maternal
glucose dysmetabolism needs to be reversed for the wellbeing of offspring.

Dipeptidyl peptidase (DPP)-4 inhibitors can increase the activity level and duration of
action of glucagon-like peptide (GLP)-1. Thus, they have become a new class of antidiabetic
drugs in recent years. Once oral nutrients are given, GLP-1 is released from intestinal L
cells (Reimann et al., 2008). GLP-1 has several important blood glucose-lowering effects.
However, native GLP-1 is rapidly enzymatically hydrolyzed and inactivated by DPP-4
(Kieffer, McIntosh & Pederson, 1995). Since DPP-4 inhibitors prevent the degradation of
endogenous GLP-1, they have now entered the clinic to treat patients with T2DM (Lovshin
& Drucker, 2009). Sitagliptin is an orally active, fully reversible DPP-4 inhibitor that was
approved by the US Food and Drug Administration (FDA) in 2006 (Bergman et al., 2007).
As a highly selective DPP-4 inhibitor, sitagliptin prevents degradation of GLP-1 and
improves glycaemia, reduces glycated haemoglobin level, stimulates insulin secretion and
suppresses glucagon secretion (Gallwitz, 2007; Pratley & Salsali, 2007). In clinical trials,
sitagliptin is an effective hypoglycemic agent at every stage of type 2 diabetes (Deacon
& Holst, 2013). Recently, Professor Reimer et al. administered sitagliptin to high-fat diet
(HFD)-induced obese rats before pregnancy. Their results showed that this intervention
strategy did not have lasting effects on fasting blood glucose in offspring (Dennison,
Eslinger & Reimer, 2017). Another group reported that sitagliptin attenuates severe acute
pancreatitis-associated intestinal inflammation in vivo and in vitro (Zhou et al., 2019).
In a double-blind, randomized and placebo controlled clinical trial, pregnant gestational
diabetes mellitus (GDM) women in the 2nd trimester were treated with sitagliptin. After
16 weeks of treatment, improved fasting blood glucose, serum insulin, HOMA-IR and
HOMA-β was observed in sitagliptin treatment group (Sun et al., 2017). Another trial
evaluated the combination of sitagliptin and metformin in GDM patients. Compared
with metformin treatment alone, sitagliptin and metformin combination treatment had
improved glucose metabolism parameters (Elkind-Hirsch et al., 2018). Sitagliptin was
well-tolerated in these two trials, and did not increase the incidence of gastrointestinal side
effects. To date, there has been no report on the relationship between sitagliptin and the gut
in offspring that underwent in utero overnutrition. Furthermore, the potential intestinal
mechanism remains poorly defined.

The objective of the present study was to determine the effect of maternal early sitagliptin
intervention on glucose metabolism in offspring. Specifically, we examined intestinal
gene expression in the offspring of dams consuming a HFD with or without sitagliptin
intervention during pregnancy and lactation.
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MATERIALS AND METHODS
Animal treatments and diets
Ethical approval for the study was granted by the Peking Union Medical Hospital Animal
Ethics Committee (Project XHDW-2015-0051, 15 Feb 2015) and conformed to the NIH
Animal Care guidelines (NIH publication No. 85-23, revised 1996). Rats were placed in a
12-h light/dark cycle and temperature (22 ± 1 ◦C) and humidity (65%–70%) controlled
housing and were given food and water ad libitum. Eight-week-old female Sprague-Dawley
rats (obtained from the Institute of Laboratory Animal Sciences of the Chinese Academy
of Medical Sciences and Peking Union Medical College in Beijing, China, n= 32) were
randomized into one of two groups for 4 weeks: normal diet (America Institute of
Nutrition-93, AIN-93, kcal %: 10% fat, 20% protein, and 70% carbohydrate; 3.85 kcal/gm,
ND, n= 16) or HFD (kcal %: 45% fat, 20% protein, and 35% carbohydrate; 4.73 kcal/gm,
n= 16). Then, female rats were bred with male rats. After the identification of a copulation
plug, dams were housed individually. To evaluate the effect of sitagliptin on mother rats
with different diet and their offspring, we divided dams fed an ND into two subgroups:
the ND only group and ND-sitagliptin group (n= 8 for each group). Meanwhile, dams fed
a HFD were randomized to two subgroups: the HFD only group or the HFD-sitagliptin
group (n= 8 for each group). The typical human daily dose of sitagliptin is 100 mg/60 kg
body weight. Thus, according to the formula: drat =(37 × dhuman)/6 (Nair & Jacob, 2016),
the corresponding dose of sitagliptin for rats is 10.28 mg/kg per day. Therefore, HFD-
sitagliptin group rats were fed a HFD supplemented orally with 10 mg/kg/day sitagliptin
treatment (Merck, West Point, PA, USA) as described in a previous study (Mega et al.,
2011; Samaha, Said & Salem, 2019; Wojcicka et al., 2019). Dams treated with this protocol
through pregnancy and lactation. The size of every litter was culled to 6 pups (3 male and
3 female rats) to ensure that there was no nutritional bias between litters. On the day of
birth, one male offspring and one female offspring from each litter was randomly selected
for experimental study (8 male and 8 female in each group). At weaning, offspring from
all dams (8 male and 8 female for each group) were sacrificed following intraperitoneal
injection of pentobarbital sodium (150 mg/kg). The intestines were immediately stored at
−80 ◦C. Other surviving rats were kept feeding for other study. Fig. 1 shows the animal
experimental protocol.

Body weight, glucose tolerance, serum insulin and inflammatory
cytokines assay
Dams were weighed on the day of confirmation of pregnancy and during the pregnancy.
Pups were weighed on the day after birth and weaning. At weaning, pups underwent an oral
glucose tolerance test (OGTT). Briefly, after overnight food deprivation, blood was sampled
from the tip of the tail in rats before and 30, 60, and 120min after oral glucose administration
via gavage (2 g/kg). Blood glucose concentrations were determined by using a blood glucose
meter (Contour TS glucometer, Bayer, Hamburg, Germany). The area under the glucose
tolerance curve (AUC) of the OGTT was calculated as previously described (Zhang et
al., 2018). At weaning, the pups were anesthetized after 10 h of fasting. Blood samples
were collected from the intraorbital retrobulbar plexus. Serum insulin was measured
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Figure 1 Animal experiment timeline.
Full-size DOI: 10.7717/peerj.10310/fig-1

using an ELISA kit (EZRMI-13K, Millipore, Billerica, MA, USA). Insulin sensitivity was
assessed using HOMA-IR as previously described (Zhang et al., 2018). The levels of serum
proinflammatory cytokines interleukin-6 (IL-6), TNF-α and anti-inflammatory cytokine
IL-10 were measured using ELISA kits (RAB0311, Merck, Darmstadt, Germany, ab46070,
Abcam, Cambridge, MA, USA and RAB0246 Merck, Darmstadt, Germany).

RNA isolation, microarray processing and analysis
Previous studies showed that the programming effects of maternal high fat diet occurred
in a sexually dimorphic manner (Yokomizo et al., 2014; Zheng et al., 2014), possible due
to the influence of confounding factors related to female hormone profile and estrous
cycle (Kleinert et al., 2018). Thus, this study mainly focused on male offspring. Total RNA
was isolated from the intestines of male pups in the HFD and HFD-sitagliptin groups by
using TRIzol reagent (Life Technologies Inc., Carlsbad, CA, USA). Gene expression in the
intestine was detected by an Affymetrix GeneChip Rat Gene 2.0 ST whole transcript-based
array (Affymetrix Technologies, Santa Clara, CA). The differential gene criteria between
the two groups was 1.50-fold or higher (p< 0.05). The data obtained have been deposited
in the NCBI Gene Expression Omnibus (GEO) database (accession number GSE134070).

The Gene Ontology (GO) classification system and Kyoto Encyclopedia of Genes and
Genomes (KEGG) were used to assign biological meaning to the group of different genes
and pathway enrichment through Database for Annotation, Visualization, and integrated
Discovery (DAVID) software. STRING software (Biobyte Solution, Heidelberg, Germany)
was used to analyze the connections among differentially expressed genes.

Real-time PCR
To validate the gene array results, the expression of genes (Il1b, Il6, and tumor necrosis
factor (Tnf )) was analyzed using real-time PCR. Total RNA from the four groups was
reverse-transcribed by Superscript II (Life Technologies, Carlsbad, CA). The primers are
shown in Table 1. Real-time PCR was performed with an ABI Prism 7500 Real-Time
System (Applied Biosystems, Foster City, CA) using ABI SYBR Mix (Applied Biosystems,
Foster City, CA). The mRNA levels of the target gene were corrected by glyceraldehyde
3-phosphate dehydrogenase (Gapdh) using the 2−11Ct method.
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Table 1 Oligonucleotide sequences for qPCR analysis.

Gene symbol GenBank ID Forward primer Reverse primer Product size (bp)

Il6 NM_012589 AGCGATGATGCACTGTCAGA GGAACTCCAGAAGACCAGAGC 127
Il1b NM_031512 GACTTCACCATGGAACCCGT GGAGACTGCCCATTCTCGAC 104
Tnf NM_012675 GAACTCAGCGAGGACACCAA GCCAGTGTATGAGAGGGACG 124

Notes.
Il6, interleukin 6; Il1b, interleukin 1b; Tnf, tumor necrosis factor.

Immunohistochemistry for IL-6 and TNF-α in the intestine
Intestinal sections were fixed in 10% neutral buffered formalin, cast in paraffin, sliced
into 4 µm sections and placed onto microscope slides. After deparaffinization, slides were
immersed in PBS. Then, sections were stained with anti-IL-6 (sc-57315, 1:100, Santa Cruz
Biotechnology, Dallas, TX) and anti-TNF-α (sc-52746, 1:100, Santa Cruz Biotechnology,
Dallas, TX) at 4 ◦C overnight. Slides were then incubated with horseradish peroxidase
(HRP)-conjugated secondary antibody (1:2000, Santa Cruz Biotechnology, Dallas, TX) for
1 h at room temperature. Immunolabeling was visualized with 0.05% diaminobenzidine
(DAB). A Nikon 80i microscope (Nikon) was used to capture the images, and Nikon
Elements (Nikon) software was used for image processing. Three slides were analyzed for
each rat, and eight rats were included in each group.

Statistical analysis
Data are shown as the mean ±SD. Statistical analyses were calculated with Student’s t -test
for the difference between two groups and with one-way ANOVA followed by Tukey’s post
hoc test for the difference among groups. GraphPad Prism 6 (GraphPad Software Inc., CA,
USA) was used for data analysis. P < 0.05 was defined as significant.

RESULTS
The effect of sitagliptin intervention on food intake, energy intake,
body weight and blood glucose in pregnancy and lactation on dams
Food intake from HFD and HFD-sitagliptin reduced compared with ND-sitagliptin
(p< 0.01, Fig. 2A) during pregnancy. However, energy intake of HFD dams was higher
than that of the ND and ND-sitagliptin dams (p< 0.01, Fig. 2B). Accordingly, HFD dams
gained significantly more weight than ND and ND-sitagliptin dams during pregnancy
(p< 0.01, Fig. 2C). Sitagliptin intervention reduced dam food intake, energy intake and
weight gain of HFD dams during pregnancy (p< 0.05or0.01, Figs. 2A, 2B, 2C). HFD
dams had higher fasting blood glucose than ND and ND-sitagliptin dams at weaning time
(p< 0.01, Fig. 2D); however, sitagliptin intervention reduced fasting blood glucose of HFD
dams at weaning (p< 0.01, Fig. 2D).

The effect of maternal sitagliptin intervention on metabolism in
offspring
No difference in birth weight was observed among pups from ND, ND-sitagliptin, HFD,
and HFD-sitagliptin dams (p> 0.05, Table 2). Body weight at 3 weeks of age was higher
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Figure 2 Effect of sitagliptin onmaternal food intake (A), energy intake (B), body weight gain (C) and
blood glucose (D). (A) Maternal food intake during pregnancy. (B) Maternal energy intake during preg-
nancy. (C) Maternal body weight gain during pregnancy. (D) Maternal fasting blood glucose at weaning
time. Values are mean± S.D. (n = 8). * p < 0.05, ** p < 0.01, ns not significant. ND: normal diet; HFD:
high fat diet.

Full-size DOI: 10.7717/peerj.10310/fig-2

in both of male and female offspring from HFD dams than those from ND and ND-
sitagliptin dams (p< 0.05 or 0.01, Table 2). Notably, maternal sitagliptin intervention
reduced offspring body weight at 3 weeks of age (p< 0.01, Table 2). Only male pups from
HFD dams had higher fasting blood glucose, blood glucose after oral glucose load, and
area under the curve (AUC) of blood glucose than those from ND and ND-sitagliptin
dams (p< 0.01, Table 2). Maternal sitagliptin intervention reduced fasting blood glucose,
blood glucose after oral glucose load and AUC of blood glucose in male offspring from
HFD dams (p< 0.01, Table 2). Additionally, the serum fasting insulin concentration and
HOMA-IR index in pups from HFD dams were higher than those in male pups from ND
and ND-sitagliptin dams (p< 0.01, Table 2), and maternal sitagliptin intervention reduced
serum fasting insulin levels and the HOMA-IR index (p< 0.01, Table 2). There was no
significant difference in fasting blood glucose, AUC of blood glucose, serum insulin and
HOMA-IR among ND, ND-sitagliptin and HFD groups in female offspring (p> 0.05,
Table 2). Female offspring in HFD-sitagliptin group had a slight increase than those from
ND group in fasting blood glucose, AUC of blood glucose and HOMA-IR (p< 0.05,
Table 2).

The effect of maternal early sitagliptin intervention on gene
expression in male offspring intestine from gene array results and
pathways
Two hundred and one genes were differentially expressed in the intestines of pups
from HFD-sitagliptin dams compared with those of pups from HFD dams (>1.50-fold,
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Table 2 Biochemical parameters of male and female offspring.

Biochemical
parameters

Offspring
gender

ND ND-sitagliptin HFD HFD-sitagliptin

Male 6.85± 0.51 6.71± 0.54 7.08± 0.43 7.20± 0.58
birth weight (g)

Female 6.70± 0.28 6.88± 0.34 6.96± 0.15 6.99± 0.40
Male 51.25± 4.53 53.75± 6.07 60.13± 4.16∗∗# 51.38± 4.21&&

body weight at weaning time (g)
Female 48.13± 5.19 50.13± 4.70 61.50± 3.20∗∗## 48.50± 2.82&&

Male 4.94± 0.40 5.10± 0.69 6.23± 0.60∗∗## 5.03± 0.45&&Fasting blood glucose (mmol/L)
at weaning time Female 4.54± 0.53 4.70± 0.32 4.81± 0.20 5.00± 0.42∗

Male 12.58± 0.67 12.98± 1.07 18.78± 0.63∗∗## 14.98± 0.98∗∗##&&
AUC (mmol/L/h)

Female 13.25± 0.81 14.11± 1.32 14.64± 1.78 15.05± 2.10∗

Male 0.66± 0.15 0.57± 0.08 1.26± 0.10∗∗## 0.71± 0.08##&&
Insulin (ng/mL)

Female 0.51± 0.07 0.52± 0.11 0.56± 0.10 0.60± 0.07
Male 3.05± 0.74 2.75± 0.65 7.41± 1.13∗∗## 3.40± 0.48##&&

HOMA-IR
Female 2.31± 0.46 2.35± 0.60 2.53± 0.60 2.83± 0.37∗

Notes.
Values are mean± S.D. (n= 8). *p< 0.05, **p< 0.01 vs ND group, #p< 0.05, ##p< 0.01 vs ND-sitagliptin group, &&p< 0.01 vs HFD group. ND, normal diet; HFD, high fat
diet.

p< 0.05; 119 upregulated and 82 downregulated). To investigate the possible regulatory
mechanisms of genes affected by maternal early sitagliptin intervention on offspring
intestine, we analyzed biological processes, molecular functions, and cellular components
through Gene Ontology and enriched KEGG pathways by DAVID. The results showed
that differentially expressed genes between the HFD and HFD-sitagliptin groups were
enriched in the following biological processes: inflammatory response, cellular response to
lipopolysaccharide, positive regulation of calcidiol 1-monooxygenase activity, response to
yeast, and positive regulation of chemokine production (p< 0.0001, Fig. 3, Table 3). They
are mainly enriched in the following molecular functions: cytokine activity, interleukin-1
receptor binding, heme binding, alkane 1-monooxygenase activity, and GTPase binding
(p< 0.05, Fig. 3, Table 3). Significant cellular components were extracellular space,
phagocytic cup, endoplasmic reticulummembrane, actin filament, and extracellular region
(p< 0.05, Fig. 3, Table 3). Enriched KEGG pathways by DAVID displayed in the KEGG
pathway database showed that genes affected by maternal sitagliptin intervention on
offspring intestine were significantly enriched in African trypanosomiasis, inflammatory
bowel disease, retinol metabolism, malaria, tuberculosis, leishmaniasis, amoebiasis,
cytokine-cytokine receptor interaction, hematopoietic cell lineage, and salmonella infection
(p< 0.005, Fig. 4, Table 4). In STRING analysis, all differentially expressed genes were
mapped in one network. In this network figure, Il1b, Il6, and Tnf were in the center of the
differentially expressed gene network (Fig. 5, Table 5).

The effect of maternal sitagliptin intervention on gene expression in
male offspring intestine from real-time PCR
To assess the reliability of the array hybridization results, three differentially expressed genes
were quantified using real-time PCR. Gene array GO analysis showed that the inflammatory
response was among the top biological processes. Moreover, cytokine-cytokine receptor
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Figure 3 The enriched GO terms with differentially expressed genes between HFD group and HFD-
sitagliptin group. Top five terms in biological process (BP), cellular component (CC) and molecular
function (MP).

Full-size DOI: 10.7717/peerj.10310/fig-3

Table 3 The enriched GO terms with differentially expressed genes in HFD-sitagliptin group vs HFD group (p< 0.05).

Term ID Term name Count p value Fold
enrichment

Catalog

GO:0006954 inflammatory response 12 8.59× 10−5 4.42 biological processes
GO:0071222 cellular response to lipopolysaccharide 9 1.44× 10−4 5.90 biological processes
GO:0060559 positive regulation of calcidiol

1-monooxygenase activity
3 2.44× 10−4 109.59 biological processes

GO:0001878 response to yeast 4 3.07× 10−4 29.22 biological processes
GO:0032722 positive regulation of chemokine production 4 7.45× 10−4 21.91 biological processes
GO:0005615 extracellular space 24 6.08× 10−4 2.16 cellular components
GO:0001891 phagocytic cup 3 1.19× 10−2 17.80 cellular components
GO:0005789 endoplasmic reticulum membrane 11 1.87× 10−2 2.34 cellular components
GO:0005884 actin filament 4 2.33× 10−2 6.50 cellular components
GO:0005576 extracellular region 12 3.77× 10−2 1.99 cellular components
GO:0005125 cytokine activity 9 1.07× 10−4 6.15 Molecular function
GO:0005149 interleukin-1 receptor binding 3 9.36× 10−3 20.14 Molecular function
GO:0020037 heme binding 6 1.91× 10−2 3.88 Molecular function
GO:0018685 alkane 1-monooxygenase activity 2 2.74× 10−2 71.61 Molecular function
GO:0051020 GTPase binding 3 3.51× 10−2 10.07 Molecular function
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Figure 4 Top ten KEGG pathways enrichment point diagram in HFD-sitagliptin group compared with
HFD group. The vertical axis represents the pathway name, the horizontal axis represents the Rich factor,
the size of the dot indicates the number of genes expressed in the pathway, and the color of the dot corre-
sponds to the different p value.

Full-size DOI: 10.7717/peerj.10310/fig-4

Table 4 The enriched KEGG pathway with differentially expressed genes in HFD-sitagliptin group vs HFD group (p< 0.005).

Pathway ID Pathway term Count Fold
enrichment

p value Involved genes

rno05143 African trypanosomiasis 7 16.40 3.25× 10−6 PRKCA, IL6, TNF, IL18, IFNG, IL1B, HBB
rno05321 Inflammatory bowel disease (IBD) 7 9.59 7.67× 10−5 IL6, TNF, IL18, IFNG, IL1B, IL22, IL1A
rno00830 Retinol metabolism 7 7.51 2.99× 10−4 CYP4A2, CYP4A1, DHRS4, LOC100362350,

HSD17B6, CYP2C24, CYP2B12
rno05144 Malaria 6 9.05 4.68× 10−4 IL6, TNF, IL18, IFNG, IL1B, HBB
rno05152 Tuberculosis 9 4.40 8.83× 10−4 LSP1, CORO1A, IL6, TNF, IL18, IFNG, IL1B,

IL1A, ITGAM
rno05140 Leishmaniasis 6 7.42 1.16× 10−3 TNF, NCF1, IFNG, IL1B, IL1A, ITGAM
rno05146 Amoebiasis 7 5.56 1.46× 10−3 PRKCA, IL6, TNF, SERPINB6, IFNG, IL1B,

ITGAM
rno04060 Cytokine-cytokine receptor

interaction
9 4.02 1.56× 10−3 IL6, TNF, CCR6, IL18, IFNG, IL1B, IL22, IL1A,

THPO
rno04640 Hematopoietic cell lineage 6 6.51 2.09× 10−3 IL6, TNF, IL1B, IL1A, ITGAM, THPO
rno05132 Salmonella infection 6 6.43 2.20× 10−3 IL6, IL18, IFNG, IL1B, IL1A, RHOG
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Figure 5 Gene-gene interaction network in HFD-sitagliptin group compared with HFD group. The
nods stand for differentially expressed genes in HFD-sitagliptin group compared with HFD group. The
lines stand for the interactions between two proteins.

Full-size DOI: 10.7717/peerj.10310/fig-5

Table 5 A list of genes with connective degree no less than ten in the STRING network.

Gene accession Gene symbol Gene name Degree

NM_012589.2 Il6 interleukin 6 22
NM_012675.3 Tnf tumor necrosis factor 17
NM_031512.2 Il1b interleukin 1 beta 13
NM_012711.1 Itgam integrin subunit alpha M 12
NM_138880.2 Ifng interferon gamma 1 11
NM_019165.1 Il18 interleukin 18 10
NM_001005892.2 Spi1 Spi-1 proto-oncogene 10
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Figure 6 Confirmation of three representative differentially expressed genes (Il6, Il1b, Tnf ) by qPCR.
Values are mean± S.D. (n= 8). ** p< 0.01, ns not significant. ND: normal diet; HFD: high fat diet.

Full-size DOI: 10.7717/peerj.10310/fig-6

interactions were among the top ten KEGG pathways. Proinflammatory markers Il6, Il1b
and Tnf were in the center of the differentially expressed gene network. Thus, we selected
these cytokines to validate the gene array results. Il6, Il1b, and Tnf expression levels were
increased in the intestines of male offspring from HFD dams compared to those from ND
and ND-sitagliptin dams (p< 0.01, Fig. 6). Interestingly, maternal sitagliptin intervention
reduced Il6, Il1b, and Tnf expression levels in male offspring intestines form HFD dams
(p< 0.01, Fig. 6).

The effect of maternal sitagliptin intervention on proinflammatory
markers IL-6 and TNF-α protein expression in male offspring
intestines by immunohistochemical staining
Consistent with the findings by real-time PCR, IL-6 and TNF-α expression in male
offspring intestines from HFD dams was increased, compared with those from ND and
ND-sitagliptin dams (p< 0.01, Fig. 7). However, maternal sitagliptin intervention reduced
the immunoreactivity of IL-6 and TNF-α in male offspring from HFD dams (p< 0.01,
Fig. 7).

The effect of maternal sitagliptin intervention on serum
proinflammatory cytokines IL-6, TNF-α and anti-proinflammatory
cytokine IL-10 in male offspring
Serum proinflammatory cytokines IL-6 and TNF-α increased significantly in male rat
offspring from HFD dams (p< 0.01, Fig. 8), Maternal sitagliptin treatment reduced serum
IL-6 and TNF-α levels in male offspring from HFD dams (p< 0.01, Fig. 8). However, there
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Figure 7 Effect of maternal sitagliptin on intestinal IL-6 and TNF-α expression in male offspring. (A–
D) Immunostaining for IL-6 (200X) in ND, ND-sitagliptin, HFD, and HFD-sitagliptin group, (E–H) Im-
munostaining for TNF-α (200X) in ND, ND-sitagliptin, HFD, and HFD-sitagliptin group, (I) Optical
density of IL-6 and TNF-α in intestine. Values are mean± S.D. (n= 8). ** p< 0.01, ns not significant. ND:
normal diet; HFD: high fat diet.

Full-size DOI: 10.7717/peerj.10310/fig-7
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Figure 8 Effect of maternal sitagliptin on serum pro-inflammatory cytokines IL-6, TNF-α and anti-
inflammotory cytokine IL-10 in male offspring. (A) Serum IL-6, (B) Serum TNF-α, (C) Serum IL-10.
Values are mean± S.D. (n= 8). **p< 0.01, nsnot significant. ND: normal diet; HFD: high fat diet.

Full-size DOI: 10.7717/peerj.10310/fig-8

was no difference in serum anti-proinflammatory cytokine IL-10 levels among four groups
(p> 0.05, Fig. 8).

DISCUSSION
Our results showed that sitagliptin had no significant effect on body weight and glucose
metabolism of mother rats with normal diet and their pups. HFD increased energy intake
and body weight gain during pregnancy, whereas sitagliptin intervention significantly
reduced energy intake and body weight gain during pregnancy. A previous study also
provided evidence that preconception sitagliptin treatment reduced body weight gain
during pregnancy in a HFD-induced obese rodent model (Dennison, Eslinger & Reimer,
2017). In addition, we found that sitagliptin intervention improved maternal glucose
homeostasis. One pilot study evaluated sitagliptin-metformin combined therapy in glucose-
impaired women with a history of gestational diabetes mellitus (GDM) (Elkind-Hirsch et
al., 2018). Sitagliptin-metformin is superior to metformin alone in improving glycemia in
this prediabetic gestational female population (Elkind-Hirsch et al., 2018). Another clinical
trial administered sitagliptin to Chinese GDM patients in their 2nd trimester (Sun et al.,
2017). Sixteen weeks of sitagliptin administration significantly lowered fasting plasma
glucose levels (Sun et al., 2017).

In addition, our findings revealed that a maternal HFD increased male and female
offspring body weight at weaning. Consistent with our findings, other researchers also
found that maternal high-fat diet exposure did not change birth weight but increased
weaning weight in both female and male offspring (Ribaroff et al., 2017). However, our
result showed that only male offspring from HFD dams had higher fasting blood glucose,
glucose intolerance and insulin resistance. Previous paper also indicated the impact
of offspring sex on blood glucose and insulin level is conflicting (Aldhous et al., 2015;
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Zheng et al., 2016). The potential mechanism lies in different responses to maternal diet,
such as hormone release (Aiken & Ozanne, 2013). Next, we evaluated the effect of maternal
sitagliptin intervention on offspring glucosemetabolism.We found thatmaternal sitagliptin
intervention attenuated glucose metabolism and insulin resistance in male offspring at
weaning. However, intervening before pregnancy with sitagliptin did not have a significant
effect on glucose metabolism (Dennison, Eslinger & Reimer, 2017). These different results
may be due to differences in sitagliptin treatment time and duration.

Increasing evidence has revealed that maternal diet significantly affects infant microbiota
composition (Nash, Frank & Friedman, 2017). A maternal HFD reduced the relative
composition of Campylobacter, Helicobacter, and Bacteroidetes (Ma et al., 2014) and
increased Lachnospiraceae and Clostridiales (Myles et al., 2013) in offspring. Importantly,
changing to a control diet cannot completely reverse the key bacterial composition in pups
(Ma et al., 2014). Bacterial composition disorders may affect biological processes in the gut.
Currently, the gut is considered an important organ for whole body immune/metabolic
health. Our results are the first to evaluate the effects of maternal sitagliptin intervention
on offspring intestines. We observed that maternal sitagliptin intervention increased the
expression of 119 genes and reduced the expression of 82 genes in male offspring intestine.
Abundant studies have revealed that exposure to a high-fat diet causes significant alterations
in intestinal gene expression (De Wit et al., 2011; Desmarchelier et al., 2012; Steegenga et
al., 2012; Tremblay et al., 2013; Steegenga et al., 2017) found that maternal exposure to a
Western-style (WS) diet during the perinatal period altered intestinal gene expression.
These differentially expressed genes play an important role in intestinal development and
functioning.

Interestingly, our findings show that maternal sitagliptin intervention mainly affected
the inflammatory response biological process and cytokine-cytokine receptor interaction
pathway. We observed dysregulated Il6, Il1b and Tnf gene expression in the intestines of
male offspring in the HFD group at weaning, and remarkably, intestines of male offspring
in the HFD-sitagliptin group exhibited reduced Il6, Il1b, and Tnf gene expression.
Correspondingly, immunohistochemistry results also showed that maternal sitagliptin
intervention reversed increased IL-6 and TNF-α levels in male offspring intestines affected
by a maternal HFD. More interesingly, maternal sitagliptin intervention reduced serum
IL-6 and TNF-α in male rat offspring. However, maternal sitagliptin did not affect
offspring serum IL-10 levels. T2DM has been considered a disease condition with a
low-grade inflammation state (Wellen & Hotamisligil, 2005). Glucose metabolism and food
intake content are related to inflammatory status (Greco et al., 2014; Silveira et al., 2018),
such as hypoglycemia and high fat diet (Arya et al., 2010). Proinflammatory pattern of
upregulated IL-6 was observed in adipose tissue from GDM women (Lorenzo-Almoros
et al., 2019; Wolf et al., 2004). In an animal model, a maternal high-fat diet not only
induces cytokines in maternal serum and placenta involving IL-1β, TNF-α and MCP-1
(Ashino et al., 2012; Frias et al., 2011) but also enhances the level of TNF-α in adipocytes
(Murabayashi et al., 2013) and increases IL-6 and TNF-α levels in the liver (Bruce et al.,
2009; Oben et al., 2010). Adipose derived cytokines such as IL-6 and TNF-α elevated
in obese adolescents and children (Syrenicz et al., 2006). The accumulation of activated
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macrophages within adipose tissue enlarged adipocytes of obese animals and humans
(Weisberg et al., 2003; Xu et al., 2003). IL-6 and TNF-α may interact with each other.
TNF-α functions at adipose perhaps stimulate the secretion of IL-6 (Kern et al., 2001). We
found the reduced body weight in sitagliptin treated mother rats and their offspring. Thus,
sitagliptin may inhibit low-grade chronic inflammation through reducing adipose tissue
mass. In addition to the liver and adipose tissue (Hotamisligil, 2006), the gut may show
dysbiosis and a certain degree of inflammation involved with gut barrier function disorder
and hyperpermeability (Slyepchenko et al., 2016). For instance, gut-derived inflammation is
involved with intestinal lipopolysaccharide (LPS) hyperpermeability (Lucas & Maes, 2013).
Some evidence shows that a HFD increases proinflammatory cytokine expression in the
intestine (Ding et al., 2010; Kim et al., 2012). Maternal HFD increased offspring serum IL-6
and TNF-α levels, even switch to normal diet after weaning in offspring (Kačarević et al.,
2017; Peric Kacarevic et al., 2016). This indicates that inflammatory response was provoked
in offspring by prenatal HFD. And HFD also elevated the concentration of LPS which can
induce insulin resistance (Cani et al., 2007). Antibiotic treatment can lower inflammatory
markers, decrease glucose intolerance and caecal LPS levels in obesemice (Cani et al., 2008).
Moreover, HFD-induced inflammatory markers are directly transferred to the offspring
via dam circulation or alter the quality and quantity of milk production during lactation
(Bautista et al., 2016; Saben et al., 2014). Therefore, maternal sitagliptin intervention may
inhibit proinflammatory cytokines IL-6 and TNF-α expression in the intestine to moderate
intestinal permeability to LPS, leading to attenuate glucose dysmetabolism in offspring.

There is still some limitations of this study need to be stated. Nutrient composition
of milk in dams during lactation may also play a role in offspring health. The milk of
obese rats contained more energy than that from lean rats (Rolls et al., 1986). The effect
of maternal HFD during lactation on milk composition is conflicting, because of different
milk collection time-point. Butruille et al. reported that maternal HFD during lactation
had no effect on rat global breast milk composition (Butruille et al., 2019). However, others
found that milk from HFD dams had higher fat content at postnatal day (PND) 10 and
21(Purcell et al., 2011). And pups fromHFD dams consumedmore than pups from normal
control diet dams (Purcell et al., 2011). For technical limitation, we did not test breast milk
composition, consumption and neonatal rat blood glucose. Thus, we cannot eliminate the
effect of maternal sitaglition on breast milk composition and consumption.

CONCLUSIONS
In conclusion, we demonstrated that maternal sitagliptin intervention provides protection
to offspring glucose metabolism and that improvement of intestinal proinflammatory
cytokines IL-6 and TNF-α expression may be involved in the mechanism. The intestinal
proinflammatory cytokines IL-6 and TNF-α pathway may be a novel target for reversing
offspring glucose abnormalities affected by in utero overnutrition.
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