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ABSTRACT
Portable chest X-ray (pCXR) has become an indispensable tool in the management
of Coronavirus Disease 2019 (COVID-19) lung infection. This study employed
deep-learning convolutional neural networks to classify COVID-19 lung infections
on pCXR from normal and related lung infections to potentially enable more
timely and accurate diagnosis. This retrospect study employed deep-learning
convolutional neural network (CNN) with transfer learning to classify based on
pCXRs COVID-19 pneumonia (N = 455) on pCXR from normal (N = 532), bacterial
pneumonia (N = 492), and non-COVID viral pneumonia (N = 552). The data was
randomly split into 75% training and 25% testing, randomly. A five-fold cross-
validation was used for the testing set separately. Performance was evaluated using
receiver-operating curve analysis. Comparison was made with CNN operated on
the whole pCXR and segmented lungs. CNN accurately classified COVID-19 pCXR
from those of normal, bacterial pneumonia, and non-COVID-19 viral pneumonia
patients in a multiclass model. The overall sensitivity, specificity, accuracy, and AUC
were 0.79, 0.93, and 0.79, 0.85 respectively (whole pCXR), and were 0.91, 0.93, 0.88,
and 0.89 (CXR of segmented lung). The performance was generally better using
segmented lungs. Heatmaps showed that CNN accurately localized areas of hazy
appearance, ground glass opacity and/or consolidation on the pCXR. Deep-learning
convolutional neural network with transfer learning accurately classifies COVID-19
on portable chest X-ray against normal, bacterial pneumonia or non-COVID
viral pneumonia. This approach has the potential to help radiologists and frontline
physicians by providing more timely and accurate diagnosis.

Subjects Bioinformatics, Infectious Diseases, Radiology and Medical Imaging, Respiratory
Medicine, Computational Science
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INTRODUCTION
Coronavirus Disease 2019 (COVID-19) is a highly infectious disease that causes severe
respiratory illness (Hui et al., 2020; Lu, Stratton & Tang, 2020). It was first reported in
Wuhan, China in December 2019 (Li et al., 2020c) and was declared a pandemic on
Mar 11, 2020. The first confirmed case of coronavirus disease 2019 (COVID-19) in the
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United States was reported from Washington State on January 31, 2020 (Holshue
et al., 2020). Soon after, Washington, California and New York reported outbreaks.
COVID-19 has already infected 10 million, killed more than 0.5 million people, and
the United States has become the worst-affected country, with more than 2.4 million
diagnosed cases and at least 122,796 deaths (https://coronavirus.jhu.edu, accessed 28 June
2020). There are recent spikes of COVID-19 infection cases across many states and around
the world and there will likely be second waves and recurrence.

A definitive test of COVID-19 infection is the reverse transcription polymerase chain
reaction (RT-PCR) of a nasopharyngeal or oropharyngeal swab specimen (Tang et al.,
2020;Wang et al., 2020). Although RT-PCR has high specificity, it has low sensitivity, high
false negative rate, and long turn-around time (Tang et al., 2020; Wang et al., 2020)
(currently ~4 days) although improvement and other tests are becoming available (CDC,
https://www.cdc.gov/coronavirus/2019-ncov/lab/index.html). By contrast, portable chest
X-ray (pCXR) is convenient to perform, has a fast turnaround, and is well suited for
imaging contagious patients and longitudinal monitoring of critically ill patients in
the intensive care units because the equipment can be readily disinfected, preventing
cross-infection. pCXR of COVID-19 infection has certain unique characteristics, such
as predominance of bilateral, peripheral, and low lobes involvement, with ground-glass
opacities with or without airspace consolidations as the disease progresses. These
characteristics generally differ from other lung pathologies, such as bacterial pneumonia
or other viral (non-COVID-19) lung infection. Based on CXR and laboratory findings,
clinicians might start patients on empirical treatment before the RT-PCR results become
available or even if the RT-PCR come back negative due to high false negative rate of
RT-PCR. Early treatment in COVID-19 patients is associated with better clinical
outcomes. Similarly, computed tomography (CT), which offers relatively more detailed
features (such as subtle ground-glass opacity (Li et al., 2020b; Xu et al., 2020)), has also
been used in the context of COVID-19. However, CT suite and equipment are more
challenging to disinfect, and thus it is much less suitable for examining patients suspected
of or confirmed with contagious diseases in general and COVID-19 in particular.
Longitudinal CT monitoring of critically ill patients in the intensive care units is also
challenging. In short, pCXR has become an indispensable imaging tool in the management
of COVID-19 infection, is often one of the first examinations a patient suspected of
COVID-19 infection receives in the emergency room, and ideally used for longitudinal
monitoring of critically ill patients in the intensive care units.

The usage of pCXR under the COVID-19 pandemic circumstances is unusual in many
aspects. For instance, pCXR is preferred as it can be used at the bedside without moving the
patients, but the imaging quality is not as good as conventional CXR. In addition,
COVID-19 patients may not be able to take full inspirations during the examination,
obscuring possible pathology, especially in the lower lung fields. Many sicker patients
may be positioned on the side which compromises imaging quality. Thus, pCXR data
under the COVID-19 pandemic circumstances are suboptimal and, thus, may be more
challenging to interpret. Moreover, pCXR is increasingly read by non-chest radiologists in
some hospitals due to increasing demands, resulting in reduced accuracy and efficiency.
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Portable chest X-ray images contain important clinical features that could be easily
missed by the naked eyes. Computer-aided methods can improve efficiency and accuracy
of pCXR interpretations, which in turn provides more timely and relevant information to
frontline physicians. Deep-learning artificial intelligence (AI) is increasingly used to
analyze diagnostic images (Ehteshami Bejnordi et al., 2018; LeCun, Bengio & Hinton,
2015). AI has the potential to facilitate disease diagnosis, staging of disease severity and
longitudinal monitoring of disease progression.

One common machine-learning algorithm is the convolutional neural network (CNN)
(Krizhevsky, Sutskever & Hinton, 2012), which takes an input image, learns important
features in the image such as size or intensity, and saves these parameters as weights
and bias to differentiate types of images (Song et al., 2020). CNN architecture is ideally
suited for analyzing images. Moreover, many of the machine learning algorithms are
trained to solve specific tasks, where models need to be rebuilt from scratch if the feature
changes. Transfer learning overcomes such drawback by utilizing knowledge acquired
for one task to solve related ones. Transfer learning is useful when dealing with small
sample size data because the pre-trained weights improve efficiency and performance
(Byra et al., 2018; Samala et al., 2017).

Many AI algorithms based on deep-learning convolutional neural networks have
been deployed for pCXR applications (Harris et al., 2019; Heo et al., 2019; Mekov,
Miravitlles & Petkov, 2020) and these algorithms can be readily repurposed for COVID-19
pandemic circumstances. While there are already many papers describing prevalence and
radiographic features on pCXR of COVID-19 lung infection (see reviews (Bao et al.,
2020)), there are a few AI papers (Apostolopoulos & Mpesiana, 2020; Cohen et al., 2020;
Elaziz et al., 2020; Hurt, Kligerman & Hsiao, 2020;Murphy et al., 2020; Ozturk et al., 2020;
Pereira et al., 2020; Zhu et al., 2020a) to classify CXRs of COVID-19 patients from CXR of
normals or related lung infections. The full potential of AI applications of pCXR under
COVID-19 pandemic circumstances is not yet fully realized.

The goal of this pilot study is to employ deep-learning convolutional neural
networks to classify normal, bacterial infection, and non-COVID-19 viral infection
(such as influenza) against COVID-19 infection on pCXR. The performance was evaluated
using receiver-operating curve (ROC) analysis. Heatmaps were also generated to visualize
and assessment the performance of the AI algorithm.

MATERIALS AND METHODS
Data sources
This retrospective study used publicly available pCXR of (i) COVID-19 infection,
(ii) non-COVID-19 viral infection, (iii) bacterial pneumonia, and (iv) normal subjects.
The COVID-19 pCXR were downloaded from on May 27th, 2020 (Cohen, Morrison &
Dao, 2020). The original download contained 673 CT or pCXR images of COVID-19,
SARS, acute respiratory distress syndromes, pneumocystis, streptococcus, legionella,
Chlamydophila, E. coli, Klebsiella, lipoid, Varicella, and influenza. The labels for the data
came from a metadata file associated with the open dataset. The final sample size for
COVID-19 patients was 455 pCXR from 197 patients. We recognized that this dataset was
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a public, community-driven dataset and there are potential selection biases. A radiologist
(B.S.) evaluated all images for quality and relevance and each case was COVID-19 positive
based on available data. As a result of this evaluation, a few images that were deemed
to be of poor quality, were excluded.

The other datasets were taken from the established Kaggle chest X-ray image
(pneumonia) dataset (https://www.kaggle.com/paultimothymooney/chest-xray-
pneumonia). Although the Kaggle database has a large sample size, we randomly selected
a sample size comparable to that of COVID-19 to avoid asymmetric sample size bias
that could skew sensitivity and specificity. The sample sizes chosen for bacterial
pneumonia, non-COVID-19 viral pneumonia, and normal pCXR were 492, 552 and
532 patients, respectively. Similarly, a chest radiologist evaluated all images for quality.

CNN: A CNN, a type of neural network, is ideally suited for analyzing images. In a
standard CNN model, a filter (window) travels over each region of an image and looks for
different features such as edges, colorations, patches, and more in order to classify an
image into a certain category. Our CNN architecture was based on VGG16 (Fig. 1),
a convolutional neural network (Simonyan & Zisserman, 2014), architecture was utilized
for computation efficiency and ease to implement, for immediate translation potential.
Our VGG16 architecture had 13 convolution layers that each run a series of filters over the
image to extract important features. The VGG16 model was used because it was pretrained
on the ImageNet database and properly employs transfer learning which makes the
training process efficient. In other words, instead of having to learn all the relationships
in an image from scratch, the model is already familiar with that when transfer learning
is employed. The data was normalized first by transforming all files into RGB images
and resizing them into 224 × 224 pixels to make them compatible with the VGG16
framework. Next, the images were one-hot-encoded and randomly split into 75%
training and 25% testing. One hot encoding means to turn all the categorical labels into
numerical values containing zeroes and ones to make it much easier for the computer
to read. VGG16 implements 13 convolutional layers: five Max Pooling layers and three
Dense layers which sum up to 21 layers and 16 weight layers (Ren et al., 2020). Conv 1
has 64 filters while Conv 2 has 128 filters, Conv 3 has 256 filters while Conv 4 and Conv 5
have 512 filters. The first two layers have two sublayers while the 4th and 5th layers
have three sublayers. A sublayer is another layer within a convolutional layer that further
filters images and passes information down to the next sublayers. The information
collected from all the sublayers is compiled and sent to the next layer to make a cohesive
prediction. A max-pooling layer was used after each step in the model to down sample
the input and identify its important features based on the methods described in Ren et al.
(2020). A max-pooling layer reduces the dimensionality of the image and allows for
assumptions to be made about features contained in the sub regions (Ren et al., 2020).
All convolutional layers used rectified linear units (ReLUs) as an activation function
because it adds a small number of learnable parameters (Ren et al., 2020). Three fully
connected layers were used, each having 4,096 nodes. Fully connected layers compose
some of the last few layers in a model and connect all the inputs from each layer to the
activation unit of the next layer (Ren et al., 2020). Dropout layers were used, along with the
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Softmax function, to prevent overfitting. Dropout layers work by randomly setting the
edges of hidden neurons to zero at each update of the training phase. The softmax function
turns all the scores from the images into a normalized probability distribution, which
helps make the final prediction (Ren et al., 2020). For data analysis, batch sizes of 32 were
used to limit computational expense and trained for 50 epochs. Epochs can be thought
of as iterations. Several optimizers were tested and Adams optimization function was

Figure 1 VGG16 architecture. VGG16 architecture with 16 weighted layers including three fully
connected layers. Full-size DOI: 10.7717/peerj.10309/fig-1
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found to yield the lowest validation loss. The learning rate was lowered from the
recommended 0.01 to 0.001 to prevent overshooting the global minimum loss. Categorical
cross entropy was used as a loss function since the loss value decreases as the predicted
probability converges to the actual label.

Convolutional neural network analysis was performed on the whole pCXR as well as
virtually segmented lungs. Lung segmentation was performed using a CNN architecture
with 22 convolutional layers, 4 max-pooling layers, and 4 merged layers for connectivity.
A ReLu activation function was used with the Keras library. The output consisted of a
mask of the segmented lungs. The segmented lungs were then fed into the CNN model for
the Covid19 classification. This model was trained on the Montgomery dataset and
achieved an IoU score of 0.956 and dice score of 0.972.

Heatmaps: To visualize the spatial location on the images that the CNN networks
were paying attention to, heatmaps were generated with class activation maps algorithm
(38). This was done by adding global average pooling into CNN and calculating gradient
backpropagation given one specific output class to obtain the class activation maps,
indicating the discriminative image regions CNN paid attention to.

Statistical methods and performance evaluation: Five-fold cross-validation was used
for the test set separately. Performance of the prediction model used standard ROC
analysis of the area under the curve (AUC), accuracy, sensitivity, specificity, precision,
recall and F1 scores. Precision was computed using true positives divided by the sum of
false positives and true positives; Recall was computed using the true positives divided by
the sum of true positives and false negatives; F1 scores were the mean of recall and
precision rates.

RESULTS
Figure 2 shows examples of pCXR from a normal subject, patients with bacterial
pneumonia, non-COVID-19 viral pneumonia, and COVID-19 infection. COVID-19 is
often characterized by ground-glass opacities with or without nodular consolidation with

Figure 2 CXR. Examples of chest radiographs (A) normal, (B) COVID-19 viral pneumonia, (C) non-
COVID-19 viral pneumonia, and (D) bacterial pneumonia. COVID-19 is often characterized by
ground-glass opacities with or without nodular consolidation with predominance of bilateral, peripheral
and lower lobes involvement. Non-COVID-19 viral pneumonia is often characterized by diffuse inter-
stitial opacities, usually bilaterally. Bacterial pneumonia is often characterized by confluent areas of focal
airspace consolidation. Arrows indicate regions of above-described characteristic features.

Full-size DOI: 10.7717/peerj.10309/fig-2
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predominance of bilateral, peripheral and lower lobes involvement. Non-COVID-19
viral pneumonia is often characterized by diffuse interstitial opacities, usually bilaterally.
Bacterial pneumonia is often characterized by confluent areas of focal airspace
consolidation.

Figure 3 shows the training and validation loss and accuracy as a function of the epoch
of the CNNmodels. Loss decreases and accuracy improved with increasing epoch for both
training and validation dataset. The accuracy typically reached >0.8.

CNN was used to classify COVID-19 pCXR from those of normal, bacterial pneumonia,
and non COVID-19 viral pneumonia patients in a multi-class neural network model.
The results of the multi-class CNN classification for the whole CXR in the form of the
confusion matrix is shown in Table 1. The precision, recall, and F1 scores for the
whole pCXR (Table 2) showed good to excellent performance. For CNN with transfer

Figure 3 CNN training and validation. CNN (A) training and (B) validation loss and accuracy. Loss
decreases and accuracy improved with increasing epoch for both training and validation dataset.

Full-size DOI: 10.7717/peerj.10309/fig-3

Table 1 Confusion table. Confusion table showing the multiclass CNN classification (whole CXR).

Normal COVID-19 Non-COVID-19
viral pneumonia

Bacterial
pneumonia

Normal 122 3 17 2

Covid19 6 102 3 6

Non-COVID-19 viral pneumonia 16 2 94 20

Bacterial pneumonia 4 1 30 85

Table 2 Precision and recall rate and F1 score (whole CXR).

Precision Recall F1-score

Normal 0.82 0.85 0.84

Covid19 0.94 0.87 0.91

Non-covid19 viral pneumonia 0.65 0.71 0.68

Bacterial pneumonia 0.75 0.71 0.73

Kikkisetti et al. (2020), PeerJ, DOI 10.7717/peerj.10309 7/13

http://dx.doi.org/10.7717/peerj.10309/fig-3
http://dx.doi.org/10.7717/peerj.10309
https://peerj.com/


learning performed on the whole pCXR, the overall sensitivity, specificity, accuracy,
and AUC were 0.79, 0.93, and 0.79, 0.84 respectively. For CNN performed on segmented
lungs, the overall sensitivity, specificity, accuracy, and AUC were 0.91, 0.93, 0.88, 0.89
respectively. The performance was generally better using segmented lungs.

To visualize the spatial location on the images that the CNN networks were paying
attention to for classification, heatmaps of the COVID-19 vs. normal pCXR are shown
in Fig. 4. The CNN algorithm was able to localize the area of pathology on pCXR. For CNN
performed on the whole pCXR, the majority of the hot spots were reasonably localized
to regions of ground glass opacities and/or consolidations, but some hot spots were
located outside the lungs. For CNN performed on segmented lungs, the majority of the hot
spots were reasonably localized to regions of ground glass opacities and/or consolidations,
mostly as expected. There were a few pixels outside the lung that the algorithm paid
attention to. These “errors” could be due to small sample sizes. It learned from the training
dataset and there may be information that the algorithm might consider important. Large
sample size usually minimizes such “error.”

DISCUSSION
This study developed and applied a deep-learning CNN algorithm with transfer learning
to classify COVID-19 CXR from normal, bacterial pneumonia, and non-COVID viral
pneumonia CXR in a multiclass model. Heatmaps showed reasonable localization of
abnormalities in the lungs. The overall sensitivity, specificity, accuracy, and AUC were
0.91, 0.93, 0.88, and 0.89 respectively (segmented lungs).

There are a few AI studies to date using machine learning methods to classify CXRs
of COVID-19, normal and related lung infections. By the time this article is reviewed many
more articles will be published. Hurt, Kligerman & Hsiao (2020) used a U-net CNN
algorithm to predict pixel-wise probability maps for pneumonia on CXR on 10 COVID-19
patients. No ROC analysis was performed. Apostolopoulos & Mpesiana (2020) used
deep-learning algorithm to predict COVID-19 CXR with 98.66% sensitivity, 96.46%
specificity, and 96.78% accuracy from a collection of 1,427 CXRs of which 224 were
COVID-19 CXRs. Elaziz et al. (2020) used an innovative feature selection algorithms and
standard classifier to classify CXR between COVID-19 (N = 216) and non-COVID-19
(N = 1,675). This method achieved accuracy rates of 96.09% and 98.09% for each of the

Figure 4 Heatmap. pCXR from (A) a COVID-19 patient, (B) the corresponding segmented lung,
(C) heatmap from CNN analysis using whole pCXR, and (d) heatmap from CNN analysis using segmented
lung overlaid on whole CXR. Arrows indicated regions of ground glass opacity and/or consolidations.

Full-size DOI: 10.7717/peerj.10309/fig-4
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respective datasets. Note that patient cohorts were highly asymmetric. Murphy et al.
(2020) used an AI to classify COVID-19 CXRs (N = 223) from non-COVID-19 CXRs
(N = 231) with an 0.81 AUC and they also showed that AI outperformed expert readers.
Ozturk et al. (2020) used an AI model to perform multiclass classification for COVID-19
(N = 127) vs. No-Findings (N = 500) vs. Pneumonia (N = 500) as well as a binary
classification for COVID vs. No-Findings which achieved 87.02% and 98.08% accuracies,
respectively. Pereira et al. (2020) performed a multiclass classification and a hierarchical
classification for COVID-19 vs. pneumonia vs. no-finding using resampling algorithms,
texture descriptors, and CNN. This model achieved a F1-Score of 0.65 for the multiclass
approach and F1 score of 0.89 for the hierarchical classification. AUC and accuracy
were not reported. AI has also been employed to stage pCXR disease severity against
radiologist scores (Cohen et al., 2020; Zhu et al., 2020a). Our study had one of the larger
cohorts, balanced sample sizes, and multi-class model. Our approach is also amongst
the simplest AI models with comparable performance index, likely facilitate immediate
clinical translation. Together, these studies indicate that AI has the potential to assist
frontline physicians in distinguishing COVID-19 infection based on CXRs.

Heatmaps are informative tools to visualize regions that CNN algorithm pays attention
to for detection. This is particular important given AI operates on high dimensional
space. Such heatmaps enable reality checks and make AI interpretable with respect to
clinical findings. Our algorithm showed that the majority of the hotspots were highly
localized to abnormalities within the lungs, that is, ground glass opacity and/or
consolidation, albeit imperfect. The majority of the above-mentioned machine learning
studies to classify COVID-19 CXRs did not provide heatmaps. We also noted that CNN
on whole pCXR image resulted in some hot spots located outside the lungs. CNN of
segmented lungs solved this problem. Another advantage of using segmented lung is
reduced computational cost during training. Transfer learning also reduced computational
cost, making this algorithm practical. The performance is generally better using segmented
lungs.

Most COVID-19 positive patients showed significant abnormalities on pCXR.
Some early studies have even suggested that pCXR could be used as a primary tool
for COVID-19 screening in epidemic areas (Ai et al., 2020), which could complement
swab testing which still has long turnaround time and non-significant false positive rate.
In some cases, imaging revealed chest abnormalities even before swab tests confirm
infection (Fang et al., 2020; Li et al., 2020a). In addition, pCXR can detect superimposed
bacteria pneumonia, which necessitates urgent antibiotic treatment. pCXR can also suggest
acute respiratory distress syndrome, which is associated with severe negative outcomes
and necessitates immediate treatment. Together with the potential widespread shortage of
intensive care units and mechanical ventilators in many hospitals, pCXR may play a
critical role in decision-making. A timely implementation of AI methods could help to
realize the full potential of pCXR in this COVID-19 pandemic.

This pilot proof-of-principal study has several limitations. This is a retrospective study
with a small sample size and the data sets used for training had limited alternative
diagnoses. Although the Kaggle database has a large sample size for non-COVID-19 CXR,
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we chose the sample sizes to be comparable to that of COVID-19 to avoid
asymmetric sample sizes that could skew sensitivity and specificity. Future studies will
need to increase the COVID-19 sample size and include additional lung pathologies.
The spatiotemporal characteristics on pCXR of COVID-19 infection and its relation to
clinical outcomes are unknown. Future endeavors could include developing AI algorithms
to stage severity, and predict progression, treatment response, recurrence, and survival,
to inform and advise risk management and resource allocation associated with the
COVID-19 pandemic, with inclusion of clinical variables in predictive models (Lam et al.,
2020; Zhao et al., 2020; Zhu et al., 2020b).

In conclusion, deep learning convolutional neural networks with transfer learning
accurately classify COVID-19 pCXR from pCXR of normal, bacterial pneumonia, and
non-COVID viral pneumonia patients in a multi-class neural network model. This
approach has the potential to help radiologists and frontline physicians by providing
efficient and accurate diagnosis.
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