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ABSTRACT
Background. Pancreatic cancer (PC) hasmuchweaker prognosis, which can be divided
into diabetes and non-diabetes. PC patients with diabetes mellitus will have more
opportunities for physical examination due to diabetes, while pancreatic cancer patients
without diabetes tend to have higher risk. Identification of prognostic markers for
diabetic and non-diabetic pancreatic cancer can improve the prognosis of patients with
both types of pancreatic cancer.
Methods. Both types of PCpatients performdifferently at the clinical andmolecular lev-
els. TheCancerGenomeAtlas (TCGA) is employed in this study. The gene expression of
the PC with diabetes and non-diabetes is used for predicting their prognosis by LASSO
(Least Absolute Shrinkage and Selection Operator) Cox regression. Furthermore, the
results are validated by exchanging gene biomarker with each other and verified by the
independent Gene Expression Omnibus (GEO) and the International Cancer Genome
Consortium (ICGC). The prognostic index (PI) is generated by a combination of genetic
biomarkers that are used to rank the patient’s risk ratio. Survival analysis is applied to
test significant difference between high-risk group and low-risk group.
Results. An integrated gene prognostic biomarker consisted by 14 low-risk genes and
six high-risk genes in PC with non-diabetes. Meanwhile, and another integrated gene
prognostic biomarker consisted by five low-risk genes and three high-risk genes in
PC with diabetes. Therefore, the prognostic value of gene biomarker in PC with non-
diabetes and diabetes are all greater than clinical traits (HR= 1.102, P-value< 0.0001;
HR= 1.212, P-value< 0.0001). Gene signature in PC with non-diabetes was validated
in two independent datasets.
Conclusions. The conclusion of this study indicated that the prognostic value of genetic
biomarkers in PCs with non-diabetes and diabetes. The gene signature was validated
in two independent databases. Therefore, this study is expected to provide a novel
gene biomarker for predicting prognosis of PC with non-diabetes and diabetes and
improving clinical decision.
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INTRODUCTION
PC is an aggressive cancer of the digestive system, which is becoming a serious health
problem worldwide. Overall survival for patients with pancreatic cancer is poor, mainly
due to a lack of biomarkers to enable early diagnosis and a lack of prognostic markers that
can inform decision-making, facilitating personalized treatment and an optimal clinical
outcome (Siegel, Miller & Jemal, 2016). In most cases, type-II diabetes frequently occurs
in patients with PC .Thus, it is considered to be an important risk factor for malignancy
of PC (Huxley et al., 2005). However, non-diabetes PC patients have no early diagnosis
indicator, which makes it more difficult to diagnose. In addition, PC with diabetes and
without diabetes are very different in histopathology (Girelli et al., 1995) and molecular
levels. Currently, many studies do not consider the difference between PCwith diabetes and
non-diabetes. They just considered that diabeteswas a risk factor in PCdevelopment (Fisher,
2001). With the deeper understanding of the relationship between PC patient with diabetes
and non-diabetes, recent data suggests that diabetes and altered in glucose metabolism are
the consequence of PC, and yet, the clinical presentation of the altered glucose metabolism
in these patients vary considerably (Yalniz & Pour, 2005). So, PC patients with diabetes
and non-diabetes may represent two types of PC. Therefore, we predict that PC patients
with diabetes and non-diabetes are also different in their prognostic biomarkers. The
different prognostic biomarkers indicate that they should be treated respectively via their
own different ways.

Generally, patients with diabetes have more opportunities to detect the potential
risk of pancreatic cancer, while patients without diabetes often lack indicators for early
diagnosis and miss the best opportunity for pancreatic cancer treatment. Furthermore,
good prognostic markers can also be targeted at two types of pancreatic cancer patients to
propose better treatment options, improve the prognosis.

In this study, The Cancer Genomic Atlas (TCGA) database, the Gene Expression
Omnibus (GEO) database and the International Cancer Genome Consortium (ICGC)were
employed to investigate and validate gene biomarker for prognosis in PC with or without
diabetes. By characterizing genetic alterations, TCGA project has provided a large number
of comprehensive genomic cancer data and corresponding clinical data that we can be used
to figure out the relationship between them, which allows us to understand PC better and
more accurate. However, high through-put genomic data (microarray or High seq V2)
may encounter the problem in statistics which called ‘‘curse of dimensionality’’ (Mramor
et al., 2005). Due to this problem, ordinary regression is subject to over-fitting and instable
coefficients and stepwise variable selection methods do not scale well (Jr, Lee & Mark,
1996). Therefore, the least absolute shrinkage and selection operator (LASSO) method is
employed to resolve this problem (Wang, You & Lian, 2015; Simon et al., 2011). Through
adjusting the coefficient of Cox regression, LASSO can penalize the regression in high
dimensionality and collinearity to solve ‘‘curse of dimensionality’’ (Tibshirani et al., 2012;
Friedman, Hastie & Tibshirani, 2010). Least Absolute Shrinkage and Selection Operator
(LASSO) regression and a hybrid of these (elastic net regression); all three methods are
based on penalizing the L1 norm, the L2 norm, and both the L1 norm and L2 norm with
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tuning parameters. Although the traditional Cox proportional hazards model is widely
used to discover cancer prognostic factors, it is not appropriate for the genomic setting
due to the high dimensionality and collinearity. Several groups have proposed to combine
the Cox regression model with the elastic net dimension reduction method to select
survival-correlated genes within a high-dimensional expression dataset and have made
available the associated computation procedures. Many studies have adopted elastic-net
regression to screen genes, in order to predict survival of patients. In the current study,
we are going to subject the integrated mRNA and clinical factors profiles of PC patients,
aiming to identify and analyze gene biomarker that can predict the overall survival (OS) in
the diabetes and non-diabetes of PC patients by LASSO.

Recently, many studies employed the TCGA (TCGA-PAAD) and GEO dataset
(GSE62452) to identify useful gene biomarker which can predict prognosis in many
various cancer patients (Bing et al., 2016; Yang et al., 2016). In this study, the ICGC dataset
was also employed to validate prognostic gene signature. Along with the increasing genomic
data of PC patients, lots of corresponding studies begin to analyze the genomic data and
try their best to explore interesting and meaningful but extremely difficult problems (Gore
et al., 2015; Craven et al., 2015).

MATERIAL AND METHODS
Information of patients
All related studies about diabetic and non-diabetic patients with PC were identified and
collected by carefully searching from the online TCGA (TCGA: GDC TCGA Pancreatic
Cancer) databases (http://tcga-data.nci.nih.gov/tcga/). The following combination of
keywords was simultaneously applied for the literature search according to the requirement
of this study ‘pancreatic cancer’ or ‘PC’ or ‘pancreatic tumor’ or ‘pancreatic malignancy’
and ‘diabetes’ and ‘non-diabetes’. In addition, the following research feature criteria
are used to further improve and screen the desired search samples: (1) researches that
concentrated on patients with diabetes and non-diabetes were selected; (2) survival time
involved of patients was more than 30 days; (3) patients who didn’t receive any adjuvant
therapy before. (4) all tissues that were from patients must be the primary tumor. After
filtering and screening the data by these above criteria, 136 samples were selected from
TCGA databases, which included 99 non-diabetic patients and 37 diabetic patients with
PC.

RNA data gathering and filtering
The data of mRNA expression was downloaded from TCGA database. And the IIIumina
HiSeq RNASeqV2 platform is selected.

Clinical factors and survival analysis
Clinical factors for the both diabetic and non-diabetic patients with PC are listed
exhaustively in Table 1. For the correlation between RNA expression and OS was carried
out by forthputting univariate Cox regression (the two-sided log-rank test). In the present
meta-analysis, HRs and corresponding 95% CIs were combined to estimate the value
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Table 1 Clinical traits in PC patients with non-diabetes and diabetes.

Non-diabetes PC(n= 99) Diabetes PC(n= 37)

Factors Death/patients Log-rank Multivariate
Cox P

Death/patients Log-rank Multivariate
Cox P

Age 0.051 0.496 0.959 0.446
<=64 22/52 7/16
>64 31/47 8/21
Gender 0.402 0.172 0.001* 0.340
Female 27/50 7/12
Male 26/49 8/25
Tumor Status 9.3e−06* 0.0004* 0.005* 0.513
With Tumor 42/57 10/17
Tumor Free 6/35 2/15
Unknown 7/7 3/5
Alcohol history 0.537 0.144 0.599 0.638
Yes 40/68 10/27
No 12/39 5/10
Unknown 1/2 –
History of chronic pancreatitis 0.597 0.998 0.273 0.998
Yes 4/8 3/4
No 48/86 10/31
Unknown 1/5 2/2
Number of lymph nodes positive by he 0.003* 0.396 0.480 0.533
<3 22/52 7/20
>=3 30/45 8/16
Maximum tumor dimension 0.394 0.216 0.147 0.279
>3.5 27/44 9/16
<=3.5 26/51 6/20
Neoplasm histologic grade 0.039* 0.004*

G1 4/16 – 2/7 –
G2 31/52 0.606 6/20 0.998
G3 17/29 0.202 7/10 0.308
G4 1/2 0.757 – –
TNM stage 0.100 0.431
Stage I 0/1 – 0/1 –
Stage IA 1/3 0.997 0/1 0.998
Stage IB 3/10 0.998 0/2 0.998
Stage IIA 5/13 0.998 3/7 0.998
Stage IIB 43/70 0.998 11/24 0.998
Stage III 1/2 – 0/1 –
Stage IV – – 1/1 –

Notes.
*p< 0.05, statistically significant.
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of cancer prognosis. The hazard ratio (HR) was calculated from exp (β) and β was the
coefficient from Cox regression. Clinical variables from univariate Cox proportional
hazards regression P-value ≤0.05 were regarded as an important indicator of diabetic and
non-diabetic patient prognosis.

The expression of mRNA associated with survival analysis
The relationship between patient survival and mRNA expression was analyzed through
drawing on the univariate Cox proportional hazard regression. The null-selected RNA
is calculated again and again. P-value ≤0.05 screened for mRNA (P ≤ 0.05). In normal
conditions, RNAs that had a HR>1 and P value ≤0.05 were considered to be a risky
gene while HR<1 is seen as an improved low-risky gene. In diabetic patients with PC, we
reached a conclusion that 64 mRNAs are significantly associated with overall survival time
(p< 0.05) by univariate Cox regression. In non-diabetic patients with PC, we acknowledged
that 1,559 mRNAs are obvious significantly associated with overall survival time (p< 0.05).
In data of high dimension gene expression, the coefficients (β) of Cox regression model
needs to be penalized in order that it can fit better and minimize errors as much as
possible. Therefore, elastic net-regulated Cox regression method is applied to calculate the
results from univariate Cox regression. The penalized log-likelihood function is defined as
following:

lp(β,X)= l (β,X)−λ
p∑

j=1

|βj |

With the value of λ increasing, value of
∑p

j=1|βj | would be decreased. Then, some
coefficients (β) of RNAs would be changed into 0. This result was analyzed by selecting
the LASSO-adjusted Cox regression coefficient 6=0 mRNA. These steps are carried out by
R package ‘‘glmnet’’. Finally, we obtained eight mRNAs in diabetic patient with PC and 20
mRNAs in non-diabetic patients with PC.

Prognosis index construction
PI is calculated from linear combination of candidate RNAs and their expression for
each PC patient. We defined a weighted prognostic index (WPI) (Xiong et al., 2014) for
integrating indicators of RNAs for each PC patient, as following:

PI=
∑

(βi∗Vi) (1)

WPI=
PI−mean(PI )

SD(PI )
(2)

Where βi represents the coefficient in Cox regression of the i th variable. And Vi ii
signifies the value of the i th variable. Mean (PI) and SD (PI) stand for the mean value and
standard deviation of the PI, respectively. Where Vi is the expression value of each mRNA
(log2-transformed expression value) and β i is the LASSO regulated Cox proportional
hazards regression coefficient of the i th RNA or clinical traits.
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Risk stratification and ROC curves
The capacity of the integrated RNA and clinical model to predict clinical outcome was
evaluated by comparing the analysis of area under curve (AUC) of the receiver operation
characteristic (ROC) curves. AUC for the ROC curve was applied to the ‘‘survival ROC ’’
package in R software (Heagerty, Lumley & Pepe, 2000). The higher AUC is considered as a
better model performance and range of AUC value is from 0.5 to 1. The AUC range from
0.80–0.90 is treated as good performance. And the range from 0.90–1.00 was considered
to be excellent performance. The risk of patient group was classified into two groups
based on the median of WPIs: high-risk and a low-risk. Survival analysis is forthputting
Kaplan–Meier curves. Statistical analysis and graph in this study were performed using
the software of R software (Ihaka & Gentleman, 1996), version 3.2.4 and Bioconductor,
version 2.15 (Gentleman et al., 2004).

Gene ontology and pathway enrichment
Gene ontology (GO) functional enrichment analysis was performed to RNAs which
classified as low-risk and high-risk group by making use of the online tool of the DAVID
(version 6.8). We chose ‘‘Homo sapiens’’ as the background in order to search terms
‘‘GO_TERM_BP_FAT’’ for further analysis. And these genes are also enriched in Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway for analysis (Aoki & Kanehisa,
2002).

Validation data of patient information collection
In this study, we selected two independent datasets to validation. An independent mRNA
expression data of PC patients with 65 PC patients was downloaded from Gene Expression
Omnibus (GEO: GSE62452) database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE62452). The clinical traits and expression were all downloaded from GSE62452.
And the mRNA expression data were generated by Affymetrix Human Genome U133A
Array. Data from GEO was analyzed using the updated July 26, 2018.

Another database was downloaded from ICGC database (https://dcc.icgc.org/). We
selected Pancreatic Cancer –AU data for further validation. This dataset included 92 PC
patients with RNAseq and clinical information. The genomic data of this dataset uses the
technology of next generation sequencing. This gene data contained 56,026 RNAs and 92
patients’ follow-up data. We extracted gene signature from 56,026 RNAs for verification
prognosis. (All raw data and code was listed in File S1).

RESULTS
Clinical traits
In the TCGA PC cohort of the 136 patients, 99 patients are non-diabetic PC patients
and 37 patients are diabetic PC patients. We calculated the clinical factors by adopting
univariate survival analysis and multivariable Cox regression analysis. We selected nine
clinical variables including age, gender, tumor status, alcohol history, history of chronic
pancreatitis, number of lymph nodes positive, maximum tumor dimension, neoplasm
histologic grade and pathologic stage. And these data are summarized in Table 1. In
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Figure 1 (A) Survival analysis in pancreatic cancer patient with non-diabetes. (B) WPI distribution in the
TCGA pancreatic cancer cohort without diabetes. (C) Survival analysis in pancreatic cancer patient with
diabetes. (D) WPI distribution in the TCGA pancreatic cancer cohort with diabetes.

Full-size DOI: 10.7717/peerj.10297/fig-1

pancreatic patients without a diabetes cohort, tumor status was significantly associated
with overall survival by long-rank and multivariate Cox regression analysis. This result
indicated that tumor status is an independent factor correlated with overall survival. In
pancreatic patients with diabetes cohort, gender is significantly associated with overall
survival time. But this factor is not an independent factor by multivariate Cox regression
analysis (Fig. 1, Table 1).

Gene signature analysis in PC cohort
By analyzing of non-diabetes and diabetes PC patients through LASSO Cox regression
and multivariate Cox regression, we have obtained 20 mRNAs and 8 mRNAs biomarkers,
respectively, which were significantly associated with overall survival. Among these genes,
the values of HR<1 and P value <0.01 were considered as protective RNAs and otherwise
the values of HR >1 were risky RNAs (Tables 2 and 3). The graph for elastic net Cox
regression can be found in Supplementary 1 and Supplementary 2.

The PI was significantly associated with pancreatic patient survival. After normalized
PI to WPI, the median value of WPI is acted as cutoff threshold to classify low-risk and
high-risk patient cohort (Fig. 1).

Validation of the prognostic gene signature
The results were employed in two different ways to verify its stability and reliability. Firstly,
we used the gene biomarker in PC patients with diabetes (8 mRNAs) to test the survival
curve in PC patients with non-diabetes. Secondly, we used the gene biomarker in PC
patients with non-diabetes (20 mRNAs) to swap above calculation.
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Table 2 Gene biomarker in PC patients with non-diabetes.

Hazard 95% CI P-value Description

Low Risk genes
TTTY9B 0 0.000–0.028 0.0102* testis-specific transcript, Y-linked 9B (non-protein coding)
RNF121 0.001 0.000–0.260 0.0142* RING finger protein 121
FHAD1 0.006 0.001–0.051 <0.001* Forkhead-associated domain-containing protein 1
GTF2F2 0.007 0.000–0.516 0.0235* General transcription factor IIF subunit 2
ADAMTS19 0.009 0.001–0.113 0.0002* A disintegrin and metalloproteinase with thrombospondin

motifs 19
LHFPL1 0.024 0.002–0.283 0.0031* Lipoma HMGIC fusion partner-like 1 protein
DHDH 0.05 0.013–0.191 <0.001* Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase
LOC256880 0.062 0.006–0.600 0.0164*

SLC25A41 0.093 0.022–0.392 0.001* Solute carrier family 25 member 41
ZNF233 0.095 0.017–0.516 0.0060* Zinc finger protein 233
C6orf195 0.129 0.024–0.695 0.0171*

PCDHA11 0.144 0.050–0.419 <0.001* Proto cadherin alpha-11
LOC401127 0.146 0.022–0.969 0.0463*

TUBBP5 0.303 0.139–0.663 0.0028* tubulin beta pseudo gene 5

High risk genes
CRCT1 2.107 1.154–3.847 0.0152* Cysteine-rich C-terminal protein 1
MUC20 14.76 4.387–49.66 <0.001* Mucin-20
RTP1 18.01 1.075–301.8 0.0444* Receptor-transporting protein 1
C10orf111 23.6 1.314–423.9 0.0319*

SPACA5 23.83 1.821–311.7 0.0156* Sperm acrosome-associated protein 5
FZD10 26.54 5.142–136.9 <0.001* Frizzled-10

Notes.
*p< 0.05, statistically significant.

Table 3 Gene biomarker in PC patients with diabetes.

Hazard 95% CI (95%) p-value Description

Low Risk genes
SYS1-DBNDD2 0.347 0.909–1.815 0.0020*

NCRNA00167 0.231 0.978–1.719 0.0015*

IRX5 0.473 0.282–1.185 0.0012* Iroquois-class homeodomain protein IRX-5
ZNF77 0.244 0.770–1.801 0.0040* Zinc finger protein 77
CATSPERG 0.296 0.651–0.991 0.0029* Cation channel sperm-associated protein subunit gamma

High Risk genes
ZNF793 2.968 0.358–1.978 0.0063* Zinc finger protein 793
GBP6 1.744 0.342–1.207 0.0011* Guanylate-binding protein 6
FOSL1 2.306 0.9601–1.051 0.0091* Fos-related antigen 1

Notes.
*p< 0.05, statistically significant.
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Figure 2 Using gene signature of PC with diabetes to test in PC with non-diabetes. (A) Gene signature
of PC with diabetes validation in PC with non-diabetes. (B) Gene signature of PC with diabetes validation
in PC with diabetes.

Full-size DOI: 10.7717/peerj.10297/fig-2

The validated results showed that the gene biomarker in two groups performed poor
result after exchange (Fig. 2). The results indicated that the gene biomarker in different
groups has specificity in each condition.

For validation result, independent mRNA expression data and corresponding clinical
information of PC patient with non-diabetes is downloaded fromGEO database to estimate
the reproducibility and robustness of the results from TCGA database.

Gene ontology enrichment
The Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8
was employed to discover the function of genes both in PC patient with diabetes and
non-diabetes. The eight genes in PC with diabetes were associated with regulation of
transcription with a Benjamini–Hochberg correction P-value < 0.05. And many genes had
DNA binding function. For 20 genes identified in PC without diabetes were not enriched
statistically significant association.

Comparison of clinical traits and gene biomarker for predicting
prognosis
We integrated clinical traits that significantly associated with survival and PI of gene
biomarker that significantly associated with survival to analyze the pancreatic cancer in
diabetic and non-diabetic individuals. Aftermultivariate Cox regression analysis, the results
showed that PI of gene biomarker performed greatest P-value (Table 4). We filtered the
clinical factors that significantly associated with survival by log-rank test into integrative
model. In PC with non-diabetes, tumor status, number of lymph nodes positive, stage
G2, G3 and G4 were significantly associated with survival (Table 1). And in PC with
diabetes, gender, stage G2 and G3 were significantly associated with survival by log-rank
test (Table 1).

From the Table 4, we find PI of gene biomarker have smallest P-value after multivariable
Cox regression. Although HR is not the highest among clinical traits, P-value is the
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Table 4 Multivariate Cox regression analysis of prognosis index and clinical traits.

PC with Non-diabetes HR CI Multivariate Cox P-value

PI 1.102 1.070–1.136 2.68e−10*

Tumor Status 0.117 0.298–1.924 0.0005*

Number of lymph nodes positive by he 1.589 0.907–2.783 0.106
G2 2.103 0.187–5.400 0.123
G3 2.036 0.739–5.613 0.169
G4 2.215 0.257–19.087 0.469
PC with Diabetes
PI 1.212 1.108–1.327 2.83e−05*

Gender 0.173 0.053–0.564 0.004*

G2 0.897 0.168–4.775 0.898
G3 5.310 0.892–31.616 0.067

Notes.
*p< 0.05, statistically significant.

Figure 3 The gene biomarker can greatly classifiy PC patients into high-risk and low-risk groups (p <

0.001). The AUC of ROC is 0.828, which represent that the gene biomarker model is very good. (A) Risk
and overall survival in GEO validation cohort; (B) ROC in GEO validation cohort.

Full-size DOI: 10.7717/peerj.10297/fig-3

smallest. Besides, we can find that tumor status is another significant risk factor in PC with
non-diabetes.

Independent data validation for PC with non-diabetes
For further validation result, independent mRNA expression data and corresponding
clinical information of PC patient with non-diabetes is downloaded from GEO database
(GSE62452) to estimate the reproducibility and robustness of the results from TCGA
database. The results showed that the gene signature from TCGA data could be validated
in GEO database (n= 65). PI was calculated from gene signature can effectively predict
survival of PC with non-diabetes. The median of PI value divided 65 patients into high-risk
group and low-risk group (HR= 3.006, P-value < 0.001). And results of ROC showed that
AUC= 0.828. The results indicated that the gene signature from TCGA could be validated
in independent dataset (Fig. 3).
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Figure 4 The gene signature validated in the ICGC database. (A) Risk and overall survival in the ICGC
validation cohort; (B) ROC in the ICGC database validation.

Full-size DOI: 10.7717/peerj.10297/fig-4

Pancreatic cancer data was downloaded from ICGC database. This data included 92
patients with genomic data and clinical information. The gene signature was matched
ICGC database and constructed PI model. The results showed that the PI from gene
signature can divided patients into high-risk and low-risk groups significantly (HR= 2.84,
P-value < 0.001) in ICGC data. ROC showed that AUC = 0.74, which indicated that the
gene signature also validated in ICGC and predict performance well in 3 years (Fig. 4).

DISCUSSION
PC patients showed different prognostic gene signature in diabetes and non-diabetes.
Identification special gene signature in different types of PC patients would provide precise
medicine for different patients. We identified and verified specific high-risk genes for PC
patients without diabetes. And these genes have not been reported before. These gene
targets may be potential therapeutic targets for pancreatic cancer.

In this study, we proposed two classes of gene biomarkers in PC patients with and
without diabetes which can guide us to predict PC patient survival better and more
accurate. To a large extent, PC patients with and without diabetes have quite different gene
biomarker for predicting prognosis. After a series of studies, we not only find that genes
candidate in both PC patient groups have no overlapping but also figure out that gene
biomarker in non-diabetes PC patients is validated by GEO and ICGC datasets. The result
indicated that the two sets of gene biomarker in both groups have been very specified.
Therefore, they have their own gene biomarker for predicting their prognosis. Because
the differences between diabetic and non-diabetic pancreatic cancer patients are often
ignored, we only got two types of patients in TCGA database. Other validation databases
contained only non-diabetic patients. Furthermore, non-diabetic patients with pancreatic
cancer are more likely to be ignored in the diagnosis, leading to a higher risk of such
patients. Thus, we validated gene biomarker in non-diabetes PC patients in more datasets.
Although a large number of studies have reported some biomarkers in PC patients, many
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genes have been identified primarily in PC patients without diabetes. We identified and
compared the gene signature that predict both types of PC patients. And many genes have
not been reported yet so far. Among the high risk prognostic genes, CRCT1, MUC20,
RTP1, C10orf111, SPACA5 and FZD10 have high level of HR. MUC20, FZD10 have been
identified in PC patients (Lee et al., 2016; Kirikoshi & Katoh, 2002) and these two genes
play a vital role in two important pathways associated with cancer. MUC20 is involved in
MET (Mesenchymal-Epithelial transitions) process which is a common process in many
tumors (Spaderna et al., 2007). And it may regulate MET signaling cascade. It appears to
decrease hepatocyte growth factor (HGF)-induced transient MAPK activation (Higuchi
et al., 2004). FZD10 is associated with WNT signaling pathway which is implicated in
embryogenesis as well as in carcinogenesis (Terasaki et al., 2002). Other genes were not
reported in PC patients, but only SPACA5 is reported in bladder cancer (Zhang, Chen
& Chen, 2016). Although many genes have not been reported before, we find that these
combinations of these genes can greatly distinguish high-risk and low-risk PC patients with
non-diabetes. In addition, these genes were validated in an independent GEO database
and ICGC database. The results of GSE62452 in the GEO database indicated that these
genes were stably expressed and the gene biomarker could distinct between high-risk and
low-risk gene greatly.

The gene biomarker in PC patients with diabetes, three genes are high-risk genes. We
can find that the production of these three genes (ZNF793, GBP6, FOSL1) are binding
function proteins. Thus, we infer that they are all transcription factors. Of the three genes,
FOSL1 has been reported to be closely associated with PC (Vallejo, Valencia & Vicent,
2017; Vallejo et al., 2017; Sahin et al., 2005). But these studies have not reported that this
high-risk gene is associated with PC with diabetes yet. Only one study reported that FOSL1
is closely associated with diabetes mellitus (Portal-Núñez et al., 2010). And this gene has
not been identified in PC with non-diabetes. GBP6 is reported in diabetes (O’Tierney et
al., 2012) but is not reported in PC patients with diabetes. ZNF793 is not identified in both
PC and diabetes. Thus, we infer that the gene is a potential risk factor in PC patients with
diabetes.

Through multivariate Cox regression analysis, it is interesting to note that tumor
status is an independent predictor of prognosis in non-diabetes PC patients. Gender is an
independent predictor of prognosis in patients with diabetes in PC. Tumor status is a vital
clinical factor for predicting the prognosis in many cancers.

From the results, we find that there was no overlapping of both groups. Thus, we
conclude that two types of PC vary greatly at the molecular level. Prognostic gene signature
in non-diabetes PC patients showed robustness among two datasets (GEO and ICGC).
Many genes have not reported in publication and we hope that these genes can predict
prognosis for improving clinical decision.

CONCLUSION
Pancreatic cancer patients with diabetes and without diabetes have different gene signature
for predicting their respective prognosis. The results indicated that the gene signature
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of pancreatic cancer patients without diabetes has been validated in two independent
datasets. Thus, the different gene marker might be as an useful tool for clinical decisions
in the future.
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