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ABSTRACT
Background. Host response diffuse large B-cell lymphoma (HR DLBCL) shares
features of histologically defined T-cell/histiocyte-rich B-cell lymphoma, including
fewer genetic abnormalities, frequent splenic and bone marrow involvement, and
younger age at presentation. HR DLBCL is inherently less responsive to the standard
treatment for DLBCL. Moreover, the mechanism of infiltration of HR DLBCL with
preexisting abundant T-cells and dendritic cells is unknown, and their associated
underlying immune responses incompletely defined. Here, hub genes and pathogenesis
associated with HR DLBCL were explored to reveal molecular mechanisms and
treatment targets.
Methods. Differentially expressed genes were identified in three datasets (GSE25638,
GSE44337, GSE56315). The expression profile of the genes in the GSE53786 dataset
was used to constructed a co-expression network. Protein-protein interactions analysis
in the modules of interest identified candidate hub genes. Then screening of real hub
genes was carried out by survival analysis within the GSE53786 and GSE10846 datasets.
Expression of hub genes was validated in the Gene expression profiling interactive
analysis, Oncomine databases and human tissue specimens. Functional enrichment
analysis and Gene set enrichment analysis were utilized to investigate the potential
mechanisms. Tumor Immune Estimation Resource and The Cancer Genome Atlas
were used to mine the association of the hub gene with tumor immunity, potential
upstream regulators were predicted using bioinformatics tools.
Results. A total of 274 common differentially expressed genes were identified. Within
the keymodule, we identified CXCL10 as a real hub gene. The validation of upregulated
expression level of CXCL10 was consistent with our study. CXCL10 might have a
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regulatory effect on tumor immunity. The predicted miRNA (hsa-mir-6849-3p) and
transcription factor (IRF9) might regulate gene expression in the hub module.

Subjects Bioinformatics, Genomics, Molecular Biology, Oncology, Medical Genetics
Keywords Host response (HR), Diffuse large B-cell lymphoma (DLBCL), Weighted gene
co-expression network analysis (WGCNA), Integrated bioinformatic analyses

INTRODUCTION
Diffuse large B-cell lymphoma (DLBCL) is the dominant subtype of non-Hodgkin
lymphoma (Malumbres et al., 2008) and is characterized by clinical heterogeneity. This
heterogeneity presents a challenge to the treatment of DLBCL. Although approximately
60% of the DLBCL patients achieved durable remission following the current standard
chemotherapy R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisolone), 40% of patients suffered a relapse or became refractory, with limited
treatment options (Cristino et al., 2019; Jiang et al., 2017).

Basing on gene expression profiling, a previous study classified patients into three
subgroups: germinal center B-cell (GCB) group, activated B-cell group, and unclassified
group (Alizadeh et al., 2000). The unclassified group indicated the molecular heterogeneity,
which poses a barrier for better treatment and understanding of DLBCL. Thus, novel
classification is urgently needed to better distinguish subtypes for DLBCL.

In 2005,Monti et al. (2005) identified three discrete DLBCL subtypes according to con-
sensus clusters—‘‘oxidative phosphorylation’’ (Oxphos) , ‘‘B-cell receptor/proliferation’’
(BCR), and ‘‘host response’’ (HR). HR DLBCL is T-cell/histiocyte-rich B-cell lymphoma,
which suggests that tumor microenvironment may play an essential role in this subgroup
of DLBCL. Tumor microenvironment has a closed relationship with the tumor initiation,
progression, and invasion. Targeting the host immune response to HR DLBCL could be
an effective treatment modality. However, the mechanism of infiltration of HR DLBCL
with preexisting abundant T-cells and dendritic cells is unknown, and their associated
underlying immune responses incompletely defined.

To further explore the mechanism of tumorigenesis and progression of HR DLBCL, we
collected five published datasets of DLBCL from the Gene Expression Omnibus database
(GEO), data from Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine
and The Cancer Genome Atlas (TCGA). Co-expression network analysis was applied to
identify modules of common differentially expressed genes (DEGs) and determine how
they correlated with HR DLBCL. To broadened our knowledge about the hub module and
hub genes, comprehensive bioinformatics analyses were conducted, including functional
enrichment analysis, gene set enrichment analysis, exploration of correlation of hub
genes with tumor-infiltrating cells and immune signatures, upstream regulator prediction.
By associating clinical data with molecular mechanisms, network-centric genes, new
biomarkers for diagnosis, prognosis and treatment might be identified.
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Table 1 Characteristics of the five studies inluded in the bioinformatic analysis.

Clinical features of included patients n= 629

Platform
GPL570[HG-U133_Plus_2] 629

Patient source
USA 548
Spain 26
Denmark 55

Age 61.21764± 15.25502
Sex

Male 292
Female 220
NA 117

Stage
I 82
II 157
III 126
IV 153
NA 111

MATERIALS & METHODS
Data collection and preprocessing
Theworkflow of publicmicroarray repositories search is shown in Fig. S1. After a systematic
search, five datasets (GSE25638, GSE44337, GSE56315, GSE53786 and GSE10846)
depended on the GPL570 platform met the inclusion criteria and were included in
the integrated bioinformatics analyses (Vicente-Duenas et al., 2012; Tompkins et al., 2013;
Dybkaer et al., 2015; Scott et al., 2014; Cardesa-Salzmann et al., 2011). Normalized datasets
were obtained from the GEO database using the GEOquery package (Davis & Meltzer,
2007). The maximum mean expression values of probes were used for genes with multiple
probes in the microarray data and were annotated using the hgu133plus2.db. The clinical
characteristics of included DLBCL patients were summarized in Table 1. The GSE25638,
GSE44337 and GSE56315 datasets were analyzed for DEGs respectively. The intersections
of the DEGs of the three datasets were selected for further analysis. GSE53786 dataset with
typing data, survival, and prognosis information was used as the training set to construct
co-expression networks. Then screening of real hub genes was carried out by survival
analysis within the GSE53786 and GSE10846 datasets. A schematic representation of the
study methods is shown in Fig. 1.

Screening of DEGs
DEGs between DLBCL samples and normal tissues were identified through R package
limma. DEGs with P < 0.05 and fold change (log FC) > Mean (log FC) + 2*SD (log FC)
were regarded as significant DEGs.
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Figure 1 A schematic representation of the study methods.Methods regarding real hub gene selection
and verification were shown in blue boxes, methods regarding molecular pathogenesis investigation were
shown in orange boxes.

Full-size DOI: 10.7717/peerj.10269/fig-1

Co-expression network construction
Weighted gene co-expression network analysis (WGCNA) (Langfelder & Horvath, 2008)
was applied to construct the co-expression network of overlap significant DEGs.
Hierarchical clustering was carried out using the average method with exclusion by
static tree cutting with a cut height set to 100. By calculating the scale-free fit index with a
soft-threshold power (β) capability of 1 to 20, the one with the highest average connectivity
degree was regarded as the most appropriate one to construct a scale-free network. Co-
expressed genes were assigned to modules via dynamic minimum tree cutting, and similar
modules were merged into one (similarity ≥ 0.75). We applied module eigengenes (MEs)
and module gene significance (MS) to estimate correlations between clustered modules
and the DLBCL subtypes.
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Candidate hub genes selection
All genes in the hub module were uploaded to Search Tool for the Retrieval of Interacting
Genes (STRING) to predict protein-protein interactions(PPIs), then the PPIs were
imported into Cytoscape for visualization (Szklarczyk et al., 2017; Zhou et al., 2018). To
predict the important nodes, the plug-in CytoHubba was used to calculate the degree of
genes in the hub module. We defined genes with node connectivity > ratio of total edges
to total nodes as the candidate hub genes.

Real hub gene identification
Expressions of candidate hub genes were divided into high and low levels using median
expression level for further Kaplan–Meier survival analyses in GSE53786 and GSE10846.

Genes significantly correlated with prognosis (P < 0.05) were selected. Then, the
prognosis values of the selected genes were assessed in different subgroups of DLBCL
separately. The gene with significant prognosis value both in overall DLBCL patients and
HR subtype was identified as real hub gene.

Validation of expression level of the hub gene in DLBCL
The expression of the hub gene at the transcriptional level was displayed by Expression
Profiling Interactive Analysis (GEPIA; http://gepia.cancer-pku.cn) (Tang et al., 2017) and
Oncomine gene expression array database (http://www.oncomine.org) (Rhodes et al.,
2004).

The expression of the real hub gene at the protein level was verified by western blot
of human tissue specimens. All the human tissue specimens were obtained from the
Department of Pathology, the First Affiliated Hospital, Zhejiang University School of
Medicine, Hangzhou, China. Our study was approved by the Ethics Committee of Zhejiang
University (Hangzhou, China). Under the guidance of the World Health Organization
Classification of Tumors of Hematopoietic and Lymphoid Tissues, specimens, collected
with informed consent, were diagnosed as DLBCL. The protein samples were eluted by
boiling in 1× SDS loading buffer at 100 ◦C and then fractionated by 12% SDS/PAGE,
followed by standard western blotting. Antibodies were specific for anti-CXCL10 (Abcam,
ab254374), anti-GAPDH (Abcam, ab181602).

Functional enrichment analysis
Metascape (http://metascape.org/) integrates multiple databases, such as Gene Ontology
(GO), Kyoyo Encyclopedia of Genes and Genomes (KEGG), UniProt, and DrugBank
(Zhou et al., 2019). It provides the typical gene enrichment analysis and visualizes the
results from lists of biological functions, pathways, and more (Ye et al., 2019). Functional
enrichment analysis of the screened genes in the hubmodule was carried out byMetascape.
P < 0.01 was set as the cutoff criterion, and significance was ranked by enrichment score
(−log10(P-value)).

Gene set enrichment analysis (GSEA)
Samples of HR DLBCL in GSE10846 were divided into two groups according to the
expression level of the real hub gene. GSEA (version 4.1.0) was utilized to detect significantly
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different signaling in the gene rank between the two groups. False discovery rate (FDR) ≤
0.25 and p-value ≤ 0.05 were recommended.

Tumor immunology analysis
Tumor Immune Estimation Resource (TIMER, https://cistrome.shinyapps.io/timer/),
containing 10,897 samples across 32 cancer types from TCGA (Li et al., 2017), provides a
comprehensive analysis of immune infiltrates with tumors. We analyzed the correlation of
the hub gene with various immune infiltrates in DLBCL, including B cells, CD8+ T cells,
CD4+ T cells, macrophages, neutrophils, dendritic cells, and the tumor purity.

To explore the correlation of the hub gene with different kinds of immune signatures in
DLBCL,we obtain gene signatures of various types of tumor-infiltrating lymphocytes as well
as markers of chemokine, Major histocompatibility complex (MHC), Immunoinhibitor,
Immunostimulatory, Cytokine and cytokine receptor, Immune checkpoint, Immune cell
infiltrate genes, Cancer testis antigen genes, Human leukocyte antigen (HLA) genes,
and Pro-inflammatory genes from the previous study (Liu et al., 2020). Besides, we
downloaded data of patients with DLBCL mined from TCGA and RNA sequencing
(RNA-seq) expression results using the RTCGA Toolbox package in R.

Correlations were calculated by the Pearson correlation and the threshold used for
significant expression correlation was a Pearson correlation coefficient | r | ≥ 0.3 and all
corresponding P values < 0.05.

Construction of potential miRNA- and transcriptional factor (TF)-target
regulatory networks
We used the miRNet to predict potential miRNAs in regulating genes in the hub module.
The predicted miRNA with the highest was selected to construct miRNA-target networks.
Transcription factors of the highly related module were analyzed by the iRegulon plugin
in Cytoscape (Janky et al., 2014). TF-target network consisted of the predicted TF with the
highest normalized enrichment score and targeted genes in the hub module.

RESULTS
DEGs screening
After data preprocessing and quality assessment, normalized expression data of each dataset
was shown by box plots (Figs. 2A–2C). Then DEGs were identified from each of the three
datasets. Volcano plots were used to visualize DEGs between the tumor and non-tumor
groups (Figs. 2D–2F). A total of 834 DEGs were screened from the GSE25638 dataset.
They comprised 778 upregulated genes and 56 downregulated genes. Nine hundred DEGs
were screened from the GSE44337 dataset. They comprised 727 upregulated genes and 173
downregulated genes. Nine hundred thirty-three DEGs were screened from the GSE56351
dataset, comprising 472 upregulated genes and 461 downregulated genes (Fig. 2G). A total
of 274 common DEGs from the three datasets were selected for further analysis. These 274
DEGs comprised 264 upregulated genes (Fig. 2H) and ten downregulated genes (Fig. 2I).
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Figure 2 Statistics of differently expressed genes. (A–C) Box plots for the expression data in GSE25638,
GSE44337 and GSE56315; (D–F) The volcano plots of DEGs in GSE25638, GSE44337, and GSE56315. The
red dots represent upregulated DEGs while the green dots indicate downregulated DEGs; (G) DEGs in the
three gene datasets; (H) Venn diagram analysis: overlapping upregulated differentially expressed genes
from three datasets; (I) Venn diagram analysis: overlapping downregulated differentially expressed genes
from three datasets.

Full-size DOI: 10.7717/peerj.10269/fig-2

Construction of Weighted co-expression network and identification
of the hub module
After data preprocessing, the expression matrix of common DEGs was obtained in the
GSE53786 training set. No sample was removed from subsequent analysis in the dataset
after the first quality check (Fig. S2). To ensure a scale-free network, the power of β = 7
(scale-free R2

= 0.91) was selected (Fig. 3). The DEGs with similar expression patterns
were clustered into modules. Three modules resulted in different colors (Fig. 4A). The
grey module showed the genes that cannot be merged. According to the ME and MS, the
turquoise module showed the highest correlation with HR DLBCL among all modules
(Figs. 4B–4C). Moreover, Scatter plot of module eigengenes in the turquoise module was
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Figure 3 Soft-thresholding power selection in the weighted gene co-expression network analysis.
(A) Scale-free fit index of various soft-thresholding powers (β); (B) mean connectivity of various soft-
thresholding powers(β); (C) Histogram of the connectivity distribution when β = 7; (D) scale-free topol-
ogy checking when β = 7.

Full-size DOI: 10.7717/peerj.10269/fig-3

shown in Fig. 4D. Therefore turquoise module was identified as the hub module associated
with HR DLBCL.
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Figure 4 Analysis of modules correlated with the subtypes of DLBCL. (A) Dendrogram of all differen-
tially expressed genes clustered according to a dissimilarity measure; (B) distribution of average gene sig-
nificance and errors in the modules associated with DLBCL subtypes; (C) heatmap of the relevance be-
tween module eigengenes and DLBCL subtypes; (D) scatter plot of module eigengenes in the turquoise
module.

Full-size DOI: 10.7717/peerj.10269/fig-4

Identification of candidate hub genes in the turquoise module
According to the STRING database, the PPI network for all genes in the turquoise module
consisted of 119 nodes and 660 edges. Moreover, under the cutoff of node connectivity > 6,
70 genes were identified as candidate hub genes (Fig. 5). The highly connected genes in the
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Figure 5 PPI network of genes in the turquoise module. The orange dots represent candidate hub genes
within the turquoise module.

Full-size DOI: 10.7717/peerj.10269/fig-5

network are considered functionally important. Therefore the 70 genes were selected for
further hub gene screening.

Hub gene screening
Kaplan–Meier survival analysis was used to determine survival with respect to candidate
hub genes. Increased expression of CCR5 and CXCL10, which were upregulated in the
cancer group, predicted a significantly shorter overall survival (OS) (Figs. 6A–6B, Figs.
6F–6G). Next, the prognosis values of CCR5 and CXCL10 were assessed in different
subtypes of DLBCL separately in GSE10846. Results show that high expression of CCR5
had no prognostic impact on survival in HR subtype and BCR subtype, but predicted a
good prognosis in Oxphos subtype (P = 0.042) (Figs. 6C–6E). Besides, high expression of
CXCL10 had a significant adverse effect on the survival of HR subtype but had no significant
prognostic impact on BCR subtype and Oxhos subtype (Figs. 6H–6J). Importantly, survival
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analysis showed that highCXCL10 expression was associated with poor outcome in DLBCL
in general, and in the HR subtype in particular. Thus, CXCL10 was identified as the real
hub gene of HR DLBCL.

Validation of the expression level of the hub gene in DLBCL
Based on the GEPIA andOncomine databases, we found that the expression ofCXCL10 was
significantly elevated in DLBCL compared with normal tissues (Figs. 7A–7B). In addition,
we examined the CXCL10 expression profiles across all tumor samples and paired normal
tissues. The log2-fold change in expression of CXCL10 in DLBCL relative to that in paired
normal tissues was significantly greater than that in any other type of tumor vs. normal
(Fig. 7C).

The result of western blotting also revealed significantly higher expression of CXCL10 in
DLBCLs compared to lymphoid tissue (Figs. 7D–7E). Results suggested that the CXCL10
was significantly upregulated in DLBCL and showed tumor specificity to some extent.

Functional enrichment analysis
To investigate the pathogenesis ofHRDLBCL,we conducted functional enrichment analysis
of genes of the turquoise module according to the Metascape database. Bar graphs of the
top 20 enriched terms across input gene lists, colored according to P-values, were shown
in Fig. 8. Based on the P-values of these biological processes, these genes in the turquoise
module were particularly enriched in regulation of cell activation, cytokine-mediated
signaling pathway, monocyte chemotaxis, and other activities. The results indicate that the
immune response might play a pivotal role in HR DLBCL.

GSEA
To identify the potential function of the real hub gene in DLBCL, GSEA was conducted
to search for KEGG pathways of the hub gene. Several immune-related pathways were
enriched in the CXCL10 highly expressed group, including ‘‘Graft versus host disease’’,
‘‘Toll-like receptor signaling pathway’’, ‘‘T-cell receptor signaling pathway’’, ‘‘NOD-like
receptor signaling pathway’’ was enriched in the CXCL10 highly expressed group (Figs.
9A–9D). Therefore, CXCL10 might be the key effector gene and have an effect on tumor
immunity in HR DLBCL.

Correlations of hub genes expression with immune infiltration level
and immune makers in DLBCL
To investigate how the expression of CXCL10 correlated with immune infiltration levels
in DLBCL, we searched TIMER database. CXCL10 expression is negatively associated with
tumor purity (r =−0.493, p= 9.16E−04) and positively associated with the infiltration
levels of neutrophil, and dendritic cell (Figs. 10A–10G). We analyzed the association
between CXCL10 expression and various immune markers further to understand the
crosstalk of the hub gene with immune genes. The top 10 strongest positive correlative
signatures of CXCL10 are shown in Fig. 10H. All the relative immune signatures are listed
in Table S1 (|cor|>0.3 and p< 0.05 is recommended).
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Figure 6 Survival analysis of hub genes. (A–B) Kaplan–Meier overall survival analysis of CCR5 in
GSE53786 and GSE10846; (C–E) Kaplan–Meier overall survival analysis of CCR5 in the HR subtype, BCR
subtype and Oxhos subtype; (F–G) Kaplan–Meier overall survival analysis of CXCL10 in GSE53786 and
GSE10846; (H–J) Kaplan–Meier overall survival analysis of CXCL10 in HR subtype, BCR subtype and
Oxhos subtype.

Full-size DOI: 10.7717/peerj.10269/fig-6
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Figure 7 The expression of the hub gene in DLBCL. (A) The mRNA expression of CXCL10 in DLBCL
was obtained from GEPIA; (B) The mRNA expression of CXCL10 in DLBCL was obtained from On-
comine; (C) Log2-fold of gene expression of CXCL10 across all tumor samples vs. paired normal tissues.
(D) Western blot result of CXCL10 expression levels of lymph node samples (n= 4), patients with DLBCL
(n = 4); (E) Bar chart of CXCL10 relative protein expression (gray value of the target protein bands/gray
value of the GAPDH protein bands). Mean expression± SD is shown. (**** P < 0.0001, Student’s t -test).

Full-size DOI: 10.7717/peerj.10269/fig-7

Construction of predicted miRNA- and TF- target regulatory networks
To further explore the regulation mechanisms of the hub module and hub genes, upstream
regulators were predicted. A total of 630 miRNAs were predicted in the turquoise module.
The network of hsa-mir-7110-3pwith the highest degree and targeted genes in the turquoise
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Figure 8 Functional and pathway enrichment analysis of DEGs of turquoise module.GO terms and
KEGG pathway are presented, and each band represents one enriched term or pathway colored according
to the−log 10 P value.

Full-size DOI: 10.7717/peerj.10269/fig-8

module was displayed (Fig. 11A). The predicted TFwith the highest normalized enrichment
score was displayed (Fig. 11B). IRF9 (NES = 8.140) was predicted to regulate 9 targets in
the turquoise module.

DISCUSSION
Patients with HR DLBCL display unique clinical features, with splenomegaly and bone
marrow involvement beingmore common. In addition, HRDLBCL cases have less frequent
genetic abnormalities and occur in younger patients (Monti et al., 2005). Despite its clinical
significance, the pathogenetic mechanism of HR DLBCL is poorly understood. In this
study, comprehensive bioinformatic analyses of multiple datasets were used to explore the
hub genes and essential pathways associated with HR DLBCL.

Disease-specific differential expression genes reveal potential biological mechanism
linked to disease development. Due to the high heterogeneity of DLBCL, we performed
differential genes analysis in the 3 different datasets and get overlap DEGs, to identify highly
and stably expressed genes as well as lowly and stably expressed genes for further exploration
of biological mechanism. Two hundred and seventy-four DEGs were identified in the three
datasets. Weighted correlation network analysis was used to establish a co-expression
network of common DEGs. The analysis revealed the turquoise module comprising genes
significantly associated with HR DLBCL in GSE53786.

Among the genes in the turquoise module, nodes with high degree were considered
functionally important. Thus 70 candidates with the highest degree of PPI network were
selected. After a series of survival analyses, CXCL10, having significant prognosis value
both in overall DLBCL patients and HR subtype, was identified as the real hub gene. These
findings might contribute to the guide differential diagnosis and prognosis prediction for
patients with DLBCL.

All results from the GEPIA, Oncomine databases and human tissue specimens are
consistent with the findings in our study. The expression level of CXCL10 was higher in
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Figure 9 Gene set enrichment analysis in HRDLBCL.GSEA results indicating a significant correlation
between the CXCL10 expression level and the immune response, including (A) graft versus host disease,
(B) Toll like receptor signaling pathway, (C) T cell receptor signaling pathway, (D) Nod like receptor sig-
naling pathway.

Full-size DOI: 10.7717/peerj.10269/fig-9

DLBCL samples than the levels in normal tissue. According to expression profiles across
all tumor samples and paired normal tissues in GEPIA, the log2-fold change in expression
of CXCL10 in DLBCL relative to that of paired normal tissues was significantly higher than
that of any other type of tumor versus normal. The differential expression of CXCL10 in
DLBCL exhibited specificity to some extent. We identified that CXCL10 is a tumor-specific
gene for DLBCL. Importantly, CXCL10 was associated with poor outcome in DLBCL,
especially belonging to HR subtype. Therefore, we believe that targeting CXCL10 may be a
promising therapy with fewer side effects for DLBCL patients, especially for HR subtype.

C-X-C motif ligand 10 (CXCL10) is one of the chemokines commonly released by
inflammatory cells (Gupta et al., 2012). Several studies (Ansell et al., 2012; Hong et al.,
2017) identified the serum level of CXCL10 as an inflammatory prognostic biomarker
in patients with DLBCL. Presently, the elevated expression of CXCL10 in DLBCL tumor
tissue samples predicted disease prognosis in DLBCL. However, the exact mechanisms of
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Figure 10 Correlations of the hub gene expression with immunemicroenvironment. (A–G) CXCL10
expression level has significant correlations with tumor purity, macrophage, neutrophil, dendritic cell; (H)
The correlation plot of top ten CXCL10 correlated immune markers.

Full-size DOI: 10.7717/peerj.10269/fig-10

Figure 11 Prediction of potential regulators in the module of interest. (A) The turquoise nodes in the
circle represent DEGs within the modules that regulated by hsa-mir-6849-3p; (B) the turquoise nodes in
the circle represent DEGs within the modules that regulated by IRF9.

Full-size DOI: 10.7717/peerj.10269/fig-11

CXCL10 are yet to be reported in DLBCL. Lee et al. (2012) reported an in vivo study that
monocytes promote migration and invasion of tumor cells via CXCL10 expression in B-cell
lymphoma cell lines. Natural killer (NK) cells are innate lymphocytes that are crucial in
the immune response against tumor. Bernardini et al. (2017) demonstrated that NK cell
compartment inMM could be modulated by the expression levels of IP10/CXCL10.Wendel
et al. (2008) identified CXCL10-CXCR3 signaling in NK cells as prerequisites for NK cell
infiltration into tumors. The authors suggested that high levels of CXCL10 in the tumor
microenvironment represent a valuable target for therapeutic intervention by affecting
myeloma NK cell surveillance.

We preliminarily explore the biological characteristics and function of the hub module
and the hub gene by functional enrichment analysis and GSEA analysis. The functional
enrichment analysis revealed that the DEGs in the turquoise module were markedly
enriched in the regulation of cell activation, cytokine-mediated signaling pathway,
monocyte chemotaxis, and other activities. GSEA analysis suggested that CXCL10 get
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involved several immune-associated pathways. Of these, Toll-like receptors (TLRs)
participate the regulation of immune responses to infection as innate immune receptors,
and also get involved in noninfectious inflammatory diseases, like tumor invasion, survival,
and tumorigenicity (Hua et al., 2009). Nucleotide-binding oligomerization domain
(NOD)-like receptor signaling pathway is involved in the formation of inflammasomes,
and numerous types of cancer are associated with inflamed tissue (Castano-Rodriguez et
al., 2015). Both Toll-like receptors and Nod-like receptors utilize the NF-κB pathway (Van
Driel et al., 2015). It has been reported that ConstitutiveNF-κB activation existed inDLBCL
and provide advantages for proliferation and survival of these tumor cells (Compagno et
al., 2009). The results have shown that the pathogenesis of HR DLBCL is closely associated
with tumor immunity, and these potential mechanisms require further exploration.

Herein, the relationship between the hub gene and tumor immunity was assessed by
TIMER database, which applies a deconvolution method to estimate tumor purity and
the abundance of tumor-infiltrating immune cells from gene expression profiles. It was
inferred that CXCL10 is negatively associated with tumor purity and positively related
to dendritic cells and neutrophil. With the increased intratumoral T cells and dendritic
cells, there was a relative decrease of neoplastic B cells in HR DLBCL. Furthermore, we
investigated the association of CXCL10 with immune markers in DLBCL patients. Among
the top ten immune makers correlated with CXCL10, chemokines CCL3 and CCL4 are
identified as biomarkers for B cell receptor pathway activation and prognostic serum
markers in DLBCL (Takahashi et al., 2015). Based on these results of the analyses, it is
inferred that CXCL10 might have a regulatory effect on tumor immunity.

Our upstream regulator analysis showed that predicted miRNA (hsa-mir-6849-3p)
might regulate genes expression in the hub module. Interferon regulatory factor 9 (IRF9)
, the upstream transcriptional factor of hub module, belongs to IRF family and has an
established role in type I interferon responses (Sobhkhez et al., 2014).

CONCLUSIONS
All in all, by using comprehensive bioinformatics analyses, we identifiedCXCL10 as the real
hub gene associated with HR DLBCL, which specific highly expressed in DLBCL and may
also serve as a prognostic biomarker. And our further analysis showed that CXCL10 might
have a regulatory effect on tumor immunity, which is in accordance with characteristics of
immune infiltration in DLBCL. Although our results are preliminary, they provide novel
insights into the molecular mechanisms of HR DLBCL. These findings will inform the
development of clinically useful treatments. The tumor microenvironment is composed of
non-cancerous cells and cytokines present in and around a tumor, having a major impact
on the genomic analysis of tumor samples (Aran, Sirota & Butte, 2015). Tumor treatment
strategies targeting both tumor cells and tumor microenvironment may contribute to HR
DLBCL treatment.
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