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Background. Jixi is a typical mining city in China that has undergone dramatic changes in its land-use
pattern of mining areas over the development of its coal resources. Impacts of coal mining activities have
greatly affected the regional land surface temperature and ecological system.

Methods. The Landsat 8 Operational Land Imager (OLI) data from 2015 and 2019 were used from the
Jiguan, Didao, and Chengzihe District of Jixi in Heilongjiang, China as the study area. The calculations to
determine the land-use classification, vegetation coverage, and land surface temperature (LST) were
performed using ArcGIS10.5 and ENVI 5.3 software packages. A correlation analysis revealed the impact
of land-use type, vegetation coverage, and coal mining activities on LSTs.

Results. The results show significant spatial differentiation in the LSTs of Jixi City. The LSTs for various
land-use types were ranked from high to low as follows: mining land > construction land > grassland >
cultivated land > forest land > water area. The LST was lower in areas with high vegetation coverage
than in other areas. For every 0.1 increase in vegetation coverage, the LST is expected to drop by
approximately 0.75 ℃. An analysis of mining land patches indicates that the patch area of mining lands
has a significant positive correlation with both the average and maximum patch temperatures. The
average patch temperature shows a logarithmic increase with the growth of the patch area, and within
200,000 m2, the average patch temperature increases significantly. The maximum patch temperature
shows a linear increase with the patch area growth, and for every 100,000 m2 increase in the patch area
of mining lands, the maximum patch temperature increases by approximately 0.81 ℃. The higher the
average patch temperature of mining land, the higher the temperature in its buffer zone, and the greater
its influence scope. This study provides a useful reference for exploring the warming effects caused by
coal mining activities and the definition of its influence scope.
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16 Abstract

17 Background. Jixi is a typical mining city in China that has undergone dramatic changes in its 

18 land-use pattern of mining areas over the development of its coal resources. Impacts of coal 

19 mining activities have greatly affected the regional land surface temperature and ecological 

20 system. 

21 Methods. The Landsat 8 Operational Land Imager (OLI) data from 2015 and 2019 were used 

22 from the Jiguan, Didao, and Chengzihe District of Jixi in Heilongjiang, China as the study area. 

23 The calculations to determine the land-use classification, vegetation coverage, and land surface 

24 temperature (LST) were performed using ArcGIS 10.5 and ENVI 5.3 software packages. A 

25 correlation analysis revealed the impact of land-use type, vegetation coverage, and coal mining 

26 activities on LSTs. 

27 Results. The results show significant spatial differentiation in the LSTs of Jixi City. The LSTs 

28 for various land-use types were ranked from high to low as follows: mining land > construction 

29 land > grassland > cultivated land > forest land > water area. The LST was lower in areas with 

30 high vegetation coverage than in other areas. For every 0.1 increase in vegetation coverage, the 

31 LST is expected to drop by approximately 0.75 ℃. An analysis of mining land patches indicates 

32 that the patch area of mining lands has a significant positive correlation with both the average 

33 and maximum patch temperatures. The average patch temperature shows a logarithmic increase 

34 with the growth of the patch area, and within 200,000 m2, the average patch temperature 

35 increases significantly. The maximum patch temperature shows a linear increase with the patch 

36 area growth, and for every 100,000 m2 increase in the patch area of mining lands, the maximum 

37 patch temperature increases by approximately 0.81 ℃. The higher the average patch temperature 

38 of mining land, the higher the temperature in its buffer zone, and the greater its influence scope. 
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39 This study provides a useful reference for exploring the warming effects caused by coal mining 

40 activities and the definition of its influence scope.

41

42 Introduction

43 The land surface temperature (LST) comprehensively reflects the energy exchange between land 

44 and the atmosphere, which is an important geophysical parameter in the ground-air system (Li et 

45 al., 2016; Zhu et al., 2016). Coupling the inversion results of LST with other parameters, such as 

46 land-use type and vegetation coverage, provides a scientific basis for ecological environmental 

47 protection (Li et al., 2014; Liang, & Zhai, 2014; Xu, He & Huang, 2013; Zhang et al., 2013). The 

48 commonly used LST inversion algorithms are divided primarily into the single-channel 

49 algorithm, multi-channel algorithm, and split-window algorithm (Zhu et al., 2016). Among them, 

50 the single-channel algorithms include the atmospheric correction method, Mono-window 

51 algorithm, and the Jiménez-Muñoz J.C single-channel algorithm (Qin, Karnieli & Berliner, 2001; 

52 Jiménez-Muñoz et al., 2008). The multi-channel algorithms mainly include the day-night method, 

53 temperature emissivity separation algorithm, and graybody emissivity method (Gan et al., 2006; 

54 Gillespie, Rokugawa & Matsunaga, 2002; Zhang et al., 2000). The split window algorithm is 

55 based mostly on data from the Landsat-TIRS, NOAA-AVHRR, and TERRA-MODIS 

56 (Rozenstein et al., 2014; Qin & Karnieli, 2011; Mao et al., 2005).

57 Due to aggravation of the heat island effect, current research on LSTs is mostly focused on 

58 urban areas. Analyzing differences in LSTs for different land-use types optimizes the distribution 

59 of green space from the perspective of landscape patterning to reduce the heat island effect (Liu, 

60 2016). However, mining areas, which are often affected by high temperatures and cause safety 

61 problems, have not attracted sufficient attention and are rarely studied.

62 Some research has shown that in the resource development process for resource-based cities, 

63 the land-use patterns in mining areas are constantly changing, which causes a series of impacts 

64 on the regional ecological environment (Li et al.,2018; Chabukdhara & Singh, 2016; Xie et al., 

65 2011). Therefore, research focusing on coupling between land-use patterns in mining areas and 

66 the ecological environment indicators, such as the LST, water environment quality, and 

67 biodiversity, has become vital to environmental sustainability (Zhou & Wang, 2014; Xiao, Hu & 

68 Fu, 2014;  Hu, Duo & Wang, 2018; Bian et al., 2018). Current research on land surface 

69 temperatures in mining areas mainly includes the temporal and spatial distribution characteristics 

70 of the surface temperature, the impact of ecological disturbance on the surface temperature, and 

71 others, where the scales are mostly at macro-regions (Li, Yang & Lei, 2017; Qiu & Hou, 2013; 

72 Xie et al., 2011;). This study specifically analyzes the overall and local distribution 

73 characteristics of LSTs from smaller scales to explore the radius of influence of high-temperature 

74 points. This provides a reference to establish heat alerts in mining areas.
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75 Jixi is a typical mining city in China that has undergone dramatic changes in its land-use 

76 pattern in the mining area during the development of coal resources. Significant amounts of 

77 cultivated land, forest land, and other land types have been replaced by industrial and mining 

78 sites, which has greatly affected the regional ecological environment. Impacts such as the 

79 atmospheric diffusion of pollutants and the rise of LSTs have affected the regional landscape and 

80 ecological systems (Pan et al., 2013; Liao, 2009). This paper uses data from the Landsat 8 OLI 

81 remote sensing images from 2015 and 2019 to determine LSTs using the radiation conduction 

82 equation over the study area, which encompasses the Jiguan, Didao, and Chengzihe District of 

83 Jixi. We analyzed the spatial differentiation and correlations of the LST with the land-use type 

84 and vegetation coverage to provide a theoretical framework to reduce the heat island effects 

85 caused by local urban development and coal mining activities.

86

87 Materials & Methods

88 Overview of the study area 

89 The study area encompasses the Jiguan, Didao, and Chengzihe District of Jixi, which are the 

90 main mining lands with a total area of 827.87 km2. Jixi is located in the southeast of 

91 Heilongjiang Province, between 130°24′24″–133°56′30″ E, 44°51′12″–46°36′55″ N. To the 

92 southeast and across the ocean in Russia, while to the west and south are Mudanjiang, and to the 

93 north is Qitaihe (Fig. 1). The province comprises Mishan, Hulin, and Jidong Counties and six 

94 other districts (Jiguan, Hengshan, Didao, Chengzihe, Lishu, and Mashan). The study area is part 

95 of the cold-temperate continental monsoon climate, where the average annual temperature is 3.7 

96 ℃, the average precipitation is 537.5 mm, the annual sunshine is 2709 h and the average frost-

97 free period is 140 d. The terrain is composed primarily of mountains, hills and plains. 

98 Jixi is relatively rich in mineral resources with mutiple mining areas. However, there also are 

99 several abandoned mines that severely damage the ecological environment. In addition, urban 

100 construction and industrial development have encroached on grasslands, woodlands, and 

101 wetlands, which increases the ecological vulnerability and risks in these ecosystems (He, 2010).

102

103 Data sources and preprocessing treatments 

104 This paper is based on the Landsat 8 OLI remote sensing images from 2015 and 2019, all of 

105 which are from the US Geological Survey (http://glovis.usgs.gov/). All images have a spatial 

106 resolution of 30 m. The image strip numbers/rows used in this study are 115/28 and 115/29, 

107 respectively, and the imaging time was from July to September. Cloud cover in these images was 

108 less than 2%, and they were interpreted and classified based on a series of preprocessing 

109 treatments, including radiation calibration, atmospheric correction, band synthesis and image 

110 cropping.
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111

112 Analytical methods 

113 The spatial differentiation characteristics of the LST in the Jiguan, Didao, and Chengzihe 

114 Districts of Jixi were used to identify heat islands and their influencing factors. We selected a 

115 single-window algorithm for inversion of the LSTs. These results were used to analyze the 

116 effects of the land-use type, vegetation coverage and coal mining activities on the spatial 

117 distribution of LSTs.

118 Determining land-use classification and vegetation coverage 

119 Land use is the most direct manifestation of the interaction between human activities and the 

120 natural environment as it reflects this close relationship in both time and space (Mooney, 

121 Duraiappah & Larigauderie, 2013; Liu et al., 2014). Typically, areas designated as land resources 

122 reflects the status of natural resources within the study area. Changes in land-use patterns 

123 inevitably cause changes in the LSTs and ecosystem functionality. Therefore, the study of land 

124 use is of great importance for regional ecological analyses (Marceau et al., 2003). 

125 The relationship between vegetation coverage and the LST has become a focus of research on 

126 heat islands (Wang et al., 2011). Green vegetation affects LSTs through photosynthesis, 

127 transpiration and evapotranspiration. Ma et al. (2010) compared and analyzed five correlation 

128 degrees among planting parameters and LSTs, including the normalized difference vegetation 

129 index (NDVI), ratio vegetation index (RVI), greenness vegetation index (GVI), modified soil to 

130 adjust vegetation index (MSAVI) and vegetation coverage. They concluded that the correlation 

131 between vegetation coverage and the LST was both high and stable because it is not markedly 

132 influenced by spatial location or changes in the fraction or type of surface coverage. Therefore, 

133 the relationship between vegetation coverage and the LST was selected to study heat island 

134 effects within different land surfaces. 

135 Land-use classification 

136 The ENVI 5.3.1 (L3Harris Geospatial Solutions, Inc., Melbourne, FL, USA) and ArcGIS 10.5 

137 (Esri, Corp., Redlands, CA, USA) were used to preprocess the original image data, which 

138 includes geometric correction, mosaic compilation, fusion, clipping, research scope extraction, 

139 image enhancement and supervised classification, before interpreting and analyzing the remote 

140 sensing imagery. The classification of land-use types in the study area was consistent with the 

141 standard land-use classification (GB/T 21010–2017). The study area was divided into six 

142 categories: forest lands, grasslands, construction lands, cultivated lands, mining lands and water 

143 areas. A maximum-likelihood approach was used for the classification. In the final stage of the 

144 study, the remote sensing image interpretation was validated by site surveys. The accuracy of the 

145 results was verified by establishing a confusion matrix. Random points were selected in the 

146 Erdas Imagine 2015 software for classification, where a certain number of random points were 

147 selected for each category. The classification of each random point was distinguished visually so 
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148 that the category to which each random point belongs is defined in the software. The user 

149 accuracy, producer accuracy, and Kappa coefficient of the overall classification of each category 

150 were then calculated.

151 Vegetation coverage calculation 

152 Plant coverage information is typically extracted from remote sensing images. Given the high 

153 accuracy of NDVI values estimated using remote sensing, it is one of the most widely used 

154 indexes (Mu et al., 2012). A common method to calculate vegetation coverage is based on the 

155 hybrid pixel decomposition method, where it is assumed that each pixel of the remote sensing 

156 image is composed of soil and vegetation components. Thus, the information includes both a 

157 pure soil component and a pure vegetation component. In this case, we assumed that the NDVI 

158 value is a weighted average sum of the index values from both soil and vegetation information 

159 (Li, Fan, & Wang, 2010), which is given as follows:

160 ,                                    (1)𝑁𝐷𝑉𝐼= 𝑓𝑣 × 𝑁𝐷𝑉𝐼𝑣𝑒𝑔+ (1 ‒ 𝑓𝑣) × 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙
161 Where NDVI is the vegetation index value of mixed pixels; NDVIveg is the vegetation index of 

162 pure vegetation pixels; NDVIsoil is the vegetation index value of pure soil pixels; and ƒv is the 

163 vegetation coverage. Thus, the formula for vegetation coverage (ƒv) becomes:

164 ,                                (2)𝑓𝑣= (𝑁𝐷𝑉𝐼 ‒ 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙) (𝑁𝐷𝑉𝐼𝑣𝑒𝑔 ‒ 𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙)
165 In practice, the parameters can be selected in the following ways. (1) Take different NDVIveg 

166 and NDVIsoil values for different soil and vegetation types. (2) Use the maximum and minimum 

167 NDVIs of the study area, NDVIveg =NDVImax, NDVIsoil=NDVImin. (3) Determine the NDVI 

168 value of the corresponding pixel based on measured data (Li et al., 2015). Under the influence of 

169 varying meteorological conditions, vegetation type and distribution, seasons, and other factors, 

170 both the NDVIsoil and NDVIveg values for different images vary to some extent.

171 The maximum and minimum values of the given confidence interval are selected, and the 

172 confidence value is determined primarily from the image size and clarity. As a comparison, the 

173 maximum NDVI images of 2015 and 2019 were extracted. In the NDVI frequency accumulation 

174 table, the NDVI with a frequency of 5% was selected for NDVIsoil, and the NDVI with a 

175 frequency of 95% was selected for NDVIveg. Finally, the vegetation coverage was obtained from 

176 Eq. (2). 

177 Land surface temperature inversion 

178 The LST inversion algorithms for single-infrared-band Landsat 8 OLI remote sensing data are 

179 based primary on the radioactive transfer equation (RTE), a universal single-channel algorithm, 

180 and a single-window algorithm (Ding & Xu, 2008). Therefore, the RTE was selected to invert 

181 the LSTs in this study. 

182 Calculation of specific surface emissivity 
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183 Remote sensing images were firstly classified into three types: water bodies, towns and natural 

184 surfaces. The specific emissivity of water pixels is 0.995, where other surface emissivity 

185 estimates were based on the following formulas (Chi, Zeng, & Wang, 2016):

186 ,                                          (3)𝜀surface= 0.9625 + 0.0614𝑓𝑣 ‒ 0.0461𝑓𝑣2
187 ,                                           (4)𝜀building= 0.9589 + 0.086𝑓𝑣 ‒ 0.0671𝑓𝑣2
188 Where εsurface and εbuilding represent the specific emissivity of natural surface pixels and urban 

189 pixels, respectively.

190 Radioactive transfer equation 

191 The RTE is also called the atmospheric correction method. It firstly estimates the impact of the 

192 atmosphere on the surface thermal radiation based on the information received by the satellite 

193 thermal infrared sensor. This is then subtracted from the total thermal radiation obtained by the 

194 sensor. The impact of the atmosphere on the surface can be used to obtain the intensity of surface 

195 thermal radiation. Assuming that the surface and the atmosphere have Lambertian properties for 

196 thermal radiation, the corresponding LST can be obtained as (You, & Yan, 2009; Yue et al., 

197 2019):

198 ,                                               (5)𝐿𝜆= [𝜀 ⋅ 𝐵(𝑇𝑆)+ (1 ‒ 𝜀)𝐿↓] ⋅ 𝜏+ 𝐿↑
199 Where Lλ is the intensity of thermal radiation received by the satellite sensor, ε(K) is the 

200 surface emissivity, TS is the true LST, B(TS) (W m−2 sr−1 μm−1) is the black body brightness 

201 corresponding to temperature TS derived from Planck’s law, τ is the transmittance of the 

202 atmosphere at thermal infrared wavelengths, L↑ (W m−2 sr−1 μm−1) is the atmospheric upward 

203 radiance, and L↓ (W m−2 sr−1 μm−1) is the atmospheric downward radiance. Based on the RTE, 

204 the B(TS) can be obtained as (Wu et al., 2016; Hou, & Zhang, 2019):

205 ,                                           (6)𝐵(𝑇𝑆)= [𝐿𝜆 ‒ 𝐿↑ ‒ 𝜏 ⋅ (1 ‒ 𝜀)𝐿↓]/𝜏 ⋅ 𝜀
206 Where τ, L↑ (W m−2 sr−1 μm−1) and L↓ (W m−2 sr−1 μm−1) were determined from the official 

207 NASA website (http://atmcorr.gsfc.nasa.gov/) by inputting the imaging time, latitude and 

208 longitude, air pressure and other relevant information to the study area. After estimating the of 

209 black body radiance B(TS), which is the same as the real temperature on the ground, the inverse 

210 function of Planck’s law gives the real temperature on the ground as (Chen, 2014) :

211 ,                                                        (7)𝑇𝑆= 𝐾2/𝑙𝑛 ( 𝐾1𝐵(𝑇𝑆)+ 1)
212 Where K1 and K2 are constants obtained by querying the Landsat metadata file. In this case, 

213 K1=774.8853 and K2=1321.0789 for Landsat 8 TIRS band 10.

214 Normalized temperature index and temperature classification 
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215 The ecological environment of coal mining areas is damaged to varying degrees, this changes 

216 their LSTs and causes a series of significant ecological effects and environmental problems, such 

217 as vegetation degradation and soil erosion (Dutta & Agrawal, 2003; Zhou & Zhang, 2005). We 

218 used the urban heat island effect to explore the impact of coal mining activities on LSTs (Ye et 

219 al., 2011; Li et al., 2019). The formula for the normalized temperature index is:

220 ,                                                           (8)𝑇𝑟= 𝛥𝑇𝑇𝑟𝑎𝑛𝑔𝑒= 𝑇 ‒ 𝑇𝑚𝑖𝑛𝑇max ‒ 𝑇min
221 Where Tr is the normalized temperature index, T is the temperature at any spatial position in 

222 the region, Tmax and Tmin are the highest and lowest temperature in the region, respectively.

223 The method of equal intervals is used to divide the temperature based on the site conditions 

224 and existing research (Sheng et al., 2010; Jia & Liu, 2006). Once the maximum and minimum 

225 values of the inversion temperature are taken as endpoints, the temperature is divided into five 

226 equal-spaced intervals. These are a low-temperature zone, a low-middle-temperature zone, a 

227 middle-temperature zone, a middle-high-temperature zone, and a high-temperature zone. The 

228 normalized temperature indices for these levels were 0.0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–

229 1.0, respectively (Table 1). Analyzing changes in the LST index at different distances from the 

230 mine allows evaluating the intensity and range of the heat island effect as caused by coal-mining 

231 activities.

232 Analytical method of factors affecting land surface temperature 

233 The terrain over the study area is relatively flat, which facilitates farming, town construction, and 

234 coal mining activities. We analyzed the spatial differentiation of LSTs in this area, which was 

235 linked to land use, vegetation coverage and coal mining activities.

236 The influence of land-use classification on land surface temperature 

237 The area and proportion of different types of land use were counted separately. Subsequently, the 

238 land-use and the LST maps were superimposed to obtain statistical data on the LSTs of various 

239 land-use types.

240 The influence of vegetation coverage on land surface temperature 

241 A profile analysis more intuitively reflected the relationship between changes in LST and 

242 vegetation coverage at a given geographical location. Using the interpolation line function in 

243 ArcGIS 10.5 to view profile values of LST and vegetation coverage from 2015 and 2019 to 

244 compare and analyze their associated changes along profiles to evaluate the relationships 

245 between these variables. 

246 The influence of coal mining activities on land surface temperature

247 The influence of patch area 
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248 Firstly, all mining areas within a distance of 1500 m from the edge of the study area were 

249 screened. These selected mining area patches were then counted and grouped based on area. We 

250 then combined these data with our LST inversion to determine the maximum, minimum, and 

251 average LSTs for different patches. Finally, the influence of these mining land patches on the 

252 LSTs were evaluated. 

253 The influence of buffer range

254 Buffers with a range of 100–1500 m at intervals of 100 m were set for each of the patches. The 

255 average LST in each buffer zone was extracted, and the trends in the LSTs at varying distances 

256 from the mining area were analyzed.

257

258 Results

259 Land surface temperature inversion 

260 The LST results for the Jiguan, Didao and Chengzihe Districts of Jixi in 2015 and 2019 are 

261 shown in Fig. 2 and Table 2. The temperatures in 2015 were in general higher than those in 2019. 

262 The average LST over the entire study area was 25.64 ℃ in 2015 and 22.10 ℃ in 2019. There is 

263 a similarity in the spatial distribution patterns of their LSTs. High temperatures are concentrated 

264 in the south-central and southeast parts of the study area, while the temperatures in the west and 

265 north are relatively low. In these two years, the average LST in the Jiguan District was higher 

266 than averages in the other two districts, but its highest temperature was lower than the maximum 

267 recorded in the Didao and Chengzihe Districts. The highest temperatures over the entire study 

268 area were 42.29 ℃, which was recorded at Shenghe Coal Mine in the Didao District. Likewise, 

269 the highest temperature in the Chengzihe District was recorded at Chengshan Coal Mine. Thus, 

270 mining areas had much higher LSTs than average. While only two years were selected for the 

271 analysis, similar results validate the conclusions.

272 The LSTs from 2015 and 2019 were normalized and divided into five levels, as shown in Fig. 

273 3 and Table 3. The LSTs in the study area were assigned primarily to the low-temperature, low-

274 middle-temperature, and middle-temperature zones, which covered the LST range of 19.16–

275 33.04 ℃ in 2015 and 16.29–29.37 ℃ in 2019. Among them, the low-middle-temperature zone 

276 had the largest area as it accounted for more than 70% of the total study area. The high-

277 temperature and middle-high-temperature zones had smaller areas. The high-temperature zone 

278 was distributed primarily within the Didao and Chengzihe Districts. The Shenghe Coal Mine 

279 accounted for 53.08% of the total area of the high-temperature zone in 2015 and rose to 59.04% 

280 in 2019. The proportion of the Chengshan Coal Mine in the total area of the high-temperature 

281 zone increased from 8.17% to 34.47% over these four years. Meanwhile, the low-temperature 

282 and low-middle-temperature zones were distributed mostly in the Didao and Chengzihe Districts, 

283 giving a large temperature difference between them. Therefore, local heat island effects were 

284 obvious within the study area.
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285

286 Land-use classification 

287 Land-use types in the Jiguan, Didao, and Chengzihe Districts of Jixi in 2015 and 2019 are shown 

288 in Fig. 4 and Table 4. From 2015 to 2019, the area of forest land increased while the area of 

289 cultivated land decreased. However, the dominant land-use types in the study area are still forest 

290 land and cultivated land. The forest land is distributed mostly in the northern part of the study 

291 area, while the cultivated land is distributed in the middle and southern parts. Construction land 

292 is concentrated in the Jiguan District, which increased significantly from 109.94 km2 to 133.69 

293 km2 in the four considered years. The mining land is defined primarily by the Shenghe Coal 

294 Mine in the Didao District and the Chengshan Coal Mine in the Chengzihe District. The 

295 accuracy of the land-use classification was verified by establishing a confusion matrix. The 

296 matrix showed that the Kappa coefficients of the land-use maps in the interpreted periods are all 

297 above 0.8, which meets the accuracy requirements for this study (Table 5).

298

299 Vegetation coverage 

300 The remote sensing images of the study area were processed according to the mixed pixel 

301 decomposition method to obtain the vegetation coverage of the Jiguan, Didao, and Chengzihe 

302 District of Jixi (Fig. 5). The construction land in the eastern Jiguan District, Shenghe Coal Mine 

303 in the Didao District and Chengshan Coal Mine in the Chengzihe District had the lowest 

304 vegetation coverage. However, ongoing urbanization and coal mining activities have markedly 

305 affected vegetation coverage in many other areas as well.

306

307 Correlation between land surface temperature and land-use types 

308 The main land types in the low-temperature and low-middle-temperature zone are water areas, 

309 forest land, grassland and cultivated land. The main land types in the high-temperature, middle-

310 high-temperature, and middle-temperature zones are construction land and mining land. There 

311 are large difference in the average LSTs among these land-use types (Table 6). The average 

312 LSTs for mining land, construction land and grassland were higher than the average LST for the 

313 study area. Among them, mining land had the highest average LSTs (33.33 ℃ in 2015 and 29.63 

314 ℃ in 2019), yielding temperature anomalies of 7.69 ℃in 2015 and 7.53 ℃ in 2019. The water 

315 area had the lowest average LSTs (21.72 ℃ in 2015 and 19.31 ℃ in 2019). At the same time, the 

316 temperature standard deviation within the mining land was also relatively large, with a difference 

317 of 18.02 ℃ between the minimum and maximum temperatures.

318

319 Correlation between land surface temperature and vegetation coverage 
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320 An east–west transect was drawn across the study are, and the data from 2019 were used to 

321 analyze changes in the LSTs with vegetation coverage. Every 25 pixel points on the profile were 

322 assigned to a group, and the average value of the vegetation coverage and LST in each group was 

323 calculated to obtain 56 data sets. Finally, a linear fit was performed between the vegetation 

324 coverage and average LST, and the coefficient of determination was assessed (Fig. 6). Areas 

325 with low vegetation coverage were associated with higher LSTs. In addition, as vegetation 

326 coverage decreased, the LSTs increased. The trends in LST and vegetation coverage were 

327 opposite with reciprocal change patterns.

328 The linear fit of the average LST and vegetation coverage (Fig. 7) shows that if the vegetation 

329 coverage increases by 0.1, the average LST is expected to decrease by approximately 0.75 ℃. 

330 This constitutes a strong negative relationship between the LST and vegetation coverage. Using 

331 the SPSS 24 (IBM, Corp., Armonk, NY, USA) indicated a correlation coefficient of R = −0.780. 
332 This indicates a significant correlation at the 0.01 confidence level (both sides). Thus, green 

333 vegetation has a significant cooling effect on the land surface.

334

335 Correlation between land surface temperature and coal mining activities 

336 This study mainly considers spatial variations when exploring the correlation between the LST 

337 and mining activities. Therefore, the data of the most recent year (2019) is selected for the 

338 analysis, and the spatial distribution of the LST is analyzed based on the patch area and buffer 

339 sizes.

340 Correlation between land surface temperature and patch area of mining lands 

341 The mining areas were grouped based on patch area after screening them within 1500 m of the 

342 edge of the study area. The maximum, minimum and average LSTs of each patch were 

343 calculated from the 52 data sets (Table 7). Correlations among the average patch area and the 

344 average and maximum patch temperatures were analyzed using SPSS 24. Our analysis indicates 

345 that the patch was strongly positively correlated with the average and maximum patch 

346 temperatures.

347 Correlation between the patch area and average patch temperature (Fig. 8) yielded R = 0.571. 

348 This indicates a significant correlation at the 0.01 confidence level (both sides). The 

349 determination coefficient of the fit logarithmic function was R2 = 0.487, indicating that larger 

350 patch sizes promote a greater average patch temperature. Within 200,000 m2, the average patch 

351 temperature increases rapidly with the size of the patch area. Once above 200,000 m2, the 

352 average patch temperature increases more slowly.

353 The correlation between the patch area and maximum patch temperature (Fig. 9) yielded R = 

354 0.645. This indicates a significant correlation at the 0.01 confidence level (both sides). The 

355 determination coefficient of the linear fit was R2 = 0.415, indicating that larger patch sizes 
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356 promote a greater maximum patch temperature. If the patch area of mining land increases by 

357 100,000 m2, the maximum patch temperature will increase by approximately 0.81℃.

358 Correlation between land surface temperature and various buffer sizes 

359 The schematic diagram of buffer zone in mining land patch is shown in Fig 10. A correlation 

360 analysis was performed on average patch area, average patch temperature, maximum patch 

361 temperature of mining land and the average LST in buffer zones at 100–1500 m reviewed at 

362 100m intervals (Table 8). The temperature of the buffer zones within 0–100 m was strongly 

363 correlated with the patch area, average patch temperature, and maximum patch temperature of 

364 the mining land. In the 100–200 m buffer zone, the correlation between the temperature and the 

365 average area was not significant. Therefore, a higher correlation was found for the entire buffer 

366 zone with the average and maximum patch temperatures, while a lower correlation was found 

367 with the patch area. Thus, the correlation between the temperature in the buffer zone and the 

368 average patch temperature was most relevant.

369 To further study the correspondence between the average patch temperature of mining land 

370 and the temperature in the buffer zones, the 52 data sets were sorted based on their average patch 

371 temperatures from smallest to largest. Each of the 13 groups was then compiled into a new 

372 group. The average number and the average temperature of the corresponding buffer zone in 

373 each new group were calculated to obtain four new data sets (Table 9).

374 Figure 11 shows that the further the buffer zone was from the mine land patch, the lower its 

375 temperature. In 0–200 m buffer zones, the average temperature changed drastically, while the 

376 average temperature outside the 200 m zone varied little. The range of this heating effect is 

377 approximately 700 m in Group 1, 1200 m in Group 2 and 3, and more than 1400 m in Group 4. 

378 Therefore, a larger average patch temperature in the mining land causes a higher temperature in 

379 its buffer zone, and the greater the scope of its influence.

380

381 Discussion

382 Impact of coal mining activities on surface temperatures

383 As the largest coal city in Heilongjiang Province, Jixi has always utilized coal as its leading 

384 industry. The main types of coal mining wasteland in Jixi City include mining subsidence, land 

385 occupation, polluted wasteland, and excavated land, which account for 0.48%, 82.0%, 6.82%, 

386 and 10.71% of the total coal mining wasteland, respectively (Di, Guan & Zheng, 2015). Coal 

387 mining activities generate a significant amount of heat. Thus, regional heating within the city has 

388 intensified when coupled with their high-energy consumption and high-heat producing 

389 enterprises (Hu, Zhao & Dong, 2010). The ongoing economic development of mining areas has 

390 increased both the population density and heat production from urban infrastructure.
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391 The correlation between LST and coal mining activities has resulted in larger mining lands 

392 with higher average and maximum patch temperatures. The available literature has shown that 

393 the size, shape, number, and boundary properties of these patches affect their energy 

394 transmissions. According to landscape ecological theory, the size and shape of these patches also 

395 affect their energy accumulation. Likewise, some researchers have recognized that larger patches 

396 of construction land have higher degrees of aggregation, more regular shapes, higher LSTs, and 

397 more significant heat island effects (Yu, 2006; Fu, 2001; Xie, Wang & Fu, 2011; Xu et al., 2015). 

398 Some studies have analyzed different types of disturbances at the interior of mining lands, 

399 among which dumps, opencast coal pits, and industrial centers have higher contributions to local 

400 warming (Xie et al., 2011; Liu J, 2016). Exposed coal and coal gangue easily absorb heat and 

401 cause increased temperatures, while piled coal gangue hills are prone to heat and spontaneous 

402 combustion (Hao, 2011). Therefore, many factors cause high temperatures in mining land.

403 Quantitative research on the impact of mining land indicates a strong warming effect within a 

404 buffer zone of 0–200 m around mining land patches. As the distance from the mining land 

405 increases, the warming effects gradually weakens. Mining land patches with higher average 

406 patch temperatures have larger temperature-affected buffer zones. Changes in the local 

407 meteorological conditions, such as temperature rise, affect local species, which impacts the 

408 ecological conditions of the entire region. However, the strength of the warming effect and the 

409 size of its influence range are not only related to the distance from the mining land patch but may 

410 also be related to the average temperature of the entire area during the analysis (Liao, 2009). This 

411 specific correlation requires further study.

412 To date, regulations on the ecological and environmental protection are aimed only at the 

413 ecological and environmental indicators within the mining area, which cannot achieve regional 

414 ecological protection. Although it seems intuitive that coal production enterprises or units 

415 engaged in corresponding activities have taken the responsibility of protecting the ecology and 

416 environment, this does not cover the entire affected area of coal mining production activities. To 

417 protect the ecological quality of the area while developing coal resources, the scope of 

418 environmental protection in mining areas should be defined more scientifically and rationally.

419

420 Impact of different land-use types on surface temperature

421 Our results show that land-use types have a dominating impact on the LST. The LSTs of the 

422 Jiguan, Didao, and Chengzihe District of Jixi were primarily within the range of 16.29–42.29 ℃ 

423 in the two considered years. The low-middle-temperature zone had the largest area, which 

424 accounted for 70.53% and 72.21% of the total area. The low-temperature zone was distributed 

425 primarily over water areas, forest lands and cultivated lands. The high-temperature zone was 

426 distributed mostly over the construction land and mining land, especially the Shenghe Coal Mine 

427 in the Didao District and the Chengshan Coal Mine in the Chengzihe District. 
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428 The temperatures in 2019 were generally lower than those in 2015. From a normalized 

429 comparison, it is seen that the high-temperature and low-temperature zones increased in 2019. 

430 Along with the clustered development of mining land patches, the land surface temperature 

431 shows a polarizing trend. The expansion of some high-temperature zones may be due to the 

432 continued development of coal mines. The increased low-temperature areas may be due to the 

433 reclamation and restoration of vegetation in mining areas. Based on governmental planning 

434 (“Mineral Resources Planning of Jixi City (2016-2020)” and “Special Planning for Reclamation 

435 and Utilization of Desert Land of Industrial Mining Area and Mining Subsidence Area in Jixi 

436 City (2014–2020)”) from 2015 to 2019, the coal industry wastelands in Chengzihe and Didao 

437 Districts were treated to a certain extent, and the reclaimed land was converted into cultivated 

438 land, forest land, and construction land. These lands will be used for agricultural production, 

439 creating recreational landscapes, and improving the ecological environment.

440 In recent years, the development of coal resources in Jixi has been rapid. Additionally, the 

441 spatial distribution of mines has also changed (Yang, 2013). Construction and mining activities 

442 have reduced the “cooling” land-use types, such as forest and cultivated lands (Wang et al., 

443 2020), and replaced them with “warming” types, like construction and mining lands. The 

444 available literature has shown that urban expansion is the main driving process of land cover 

445 changes and consequently rise of LST (Pal & Ziaul, 2017), which is consistent with our findings. 

446 With changes in land-use types, natural vegetation has been replaced by impervious concrete and 

447 construction land, which has caused significant changes like heat radiation from the underlying 

448 city surface (Wang et al., 2013). These man-made surfaces have a strong light absorptive effect 

449 and can quickly raise the local LST (Hien et al., 2011). In addition, building facades can reflect 

450 light multiple times, heating the near-surface atmosphere and cause LSTs to rise significantly 

451 (Miao et al., 2009). Some studies have also shown that the heating effect of construction lands, 

452 especially compact low-rise buildings, is very obvious (Das, Das & Mandal, 2020). Among the 

453 six considered land-use types, the LSTs of water area, forest land, and cultivated land were lower 

454 than the average LST for the study area. Water-permeable areas of the study region, such as 

455 water areas and forest land, ensure efficient heat exchange between the soil and the atmosphere. 

456 Water can evaporate, which absorbs heat in the environment and has an overall cooling effect 

457 (Zhang et al., 2013). Therefore, not only by balancing the land-use types, but also by optimizing 

458 appropriate urban planning, the increase in LST can be adjusted to reduce the impact of 

459 urbanization on the ecological environment (Das & Das, 2020).

460

461 Impact of vegetation coverage on land surface temperatures

462 Our coupling analysis showed that changes in vegetation coverage are very important factors that 

463 affecting ecological status change. There is a significant negative correlation between LST and 

464 vegetation coverage, which has also been confirmed by other works (Estoque, Murayama & 

465 Myint, 2017; Jiang, Zeng & Zeng, 2015; Duan & Zhang, 2012; Wu, Xu & Tan, 2007; Yue, Xu & 
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466 Xu, 2006). As vegetation blocks sunlight, it reduces the amount of solar radiation that reaches 

467 the surface, while plant transpiration also reduces the LST (Cui, Li & Ji, 2018). In areas with 

468 high vegetation coverage, the LST was lower than in other areas, illustrating the degree to which 

469 vegetation could effectively alleviate heat island effect.

470 Therefore, municipal bodies should carefully consider the balance between ecological 

471 protection and economic development. The focus should be on vegetation restoration and 

472 environmental governance in areas where heat emissions are concentrated, such as abandoned 

473 mine sites and barren areas. Meanwhile, increasing the proportion of green space, improving the 

474 diversity and complexity of the landscape, and dividing the impervious surface with vegetation 

475 when developing urban construction land and coal mines can significantly reduce the LST and 

476 alleviate heat island effects.

477

478 Conclusions

479 Our findings show that coal mining activities and urban expansion are the primary factors 

480 affecting LSTs. These two factors change land-use types and vegetation coverage, which results 

481 in an abnormal heat flux. There were large differences in the LSTs among the various land-use 

482 types in Jixi City. The LSTs for the considered land-use types were ranked from high to low, as 

483 follows: mining land > construction land > grassland > cultivated land > forest land > water area. 

484 The average LST difference between the mining land and water area was more than 10 ℃ each 

485 year.

486 Correlations between LST and vegetation coverage indicate that they have a significant 

487 negative relationship. The LST was lower in areas with higher vegetation coverage than in other 

488 areas. For every 0.1 increase in vegetation coverage, the surface temperature is expected to drop 

489 by approximately 0.75 ℃, indicating the extent to which vegetation can effectively alleviate 

490 warming effects. 

491 The correlation between the LST and coal mining activities indicates the patch area of the 

492 mining land has a significant positive correlation with both the average and maximum patch 

493 temperatures. The average patch temperature shows a logarithmic increase with the growth of the 

494 patch area; thus, the average patch temperature increases significantly within 200,000 m2. The 

495 maximum patch temperature shows a linear increase with the growth of the patch area; thus, the 

496 maximum patch temperature increases by approximately 0.81 ℃ for every 100,000 m2 increase 

497 in the patch area of mining land. A higher correlation was found between the average patch 

498 temperature and the temperature in the buffer zone. This study found that the higher the average 

499 patch temperature of mining land, the higher the temperature in its buffer zone, and the greater 

500 the scope of its influence. As the distance from the mining land increased, its heating effect 

501 weakened.
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502 Full consideration should be given to vegetation restoration in mining areas to reduce the 

503 warming effect from coal mining activities, especially in abandoned mining land, by increasing 

504 the total vegetation coverage in the study area. The existing large coal mine land patches need to 

505 be divided by plants or water areas. Thus, the scope of environmental protection in mining areas 

506 needs to be correctly defined. Meanwhile, in future urban layouts, downtown areas should 

507 maintain a proper distance from coal mining land. This study provides a useful reference to 

508 explore the warming effects caused by coal mining activities and the definition of its influence 

509 scope.
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1 Table 1 The relationship between the normalized temperature index values and assigned 

2 temperature grades

Normalized temperature index Temperature grade

0.0-0.2 Low temperature zone

0.2-0.4 Low-middle temperature zone

0.4-0.6 Middle temperature zone

0.6-0.8 Middle-high temperature zone

0.8-1.0 High temperature zone

3

4
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1 Table 2 Statistics on LST for the study area in 2015 and 2019

Land surface temperature/℃
2015 2019Range

MEAN MIN MAX STD MEAN MIN MAX STD

Jiguan District 27.16 21.58 38.97 2.52 23.24 17.42 33.64 2.23

Didao District 25.23 19.16 42.29 1.92 21.75 17.18 38.08 1.63

Chengzihe District 25.53 19.45 39.13 2.48 22.34 16.29 35.26 2.14

Total 25.64 19.16 42.29 2.28 22.10 16.29 38.08 1.95

2
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Table 3 LST normalization results for the study area in 2015 and 2019
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1 Table 3 LST normalization results for the study area in 2015 and 2019

2015 2019

Temperature grade

Normalized 

temperature 

index LST / ℃ Percentage LST / ℃ Percentage

Low 

temperature zone

0.0-0.2 19.16-23.78 18.19% 16.29-20.65 19.31%

Low-middle 

temperature zone
0.2-0.4 23.78-28.41 70.53% 20.65-25.01 72.21%

Middle

 temperature zone

0.4-0.6 28.41-33.04 10.34% 25.01-29.37 7.79%

Middle-high 

temperature zone

0.6-0.8 33.04-37.66 0.90% 29.37-33.72 0.66%

High 

temperature zone

0.8-1.0 37.66-42.29 0.04% 33.72-38.08 0.03%

Total 0.0-1.0 19.16-42.29 100.00% 16.29-38.08 100.00%

2

3
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Table 4 Land-use structure for the study area in 2015 and 2019
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1 Table 4 Land-use structure for the study area in 2015 and 2019

2015 2019

Land-use

Area / km2 Percentage / % Area / km2 Percentage / %

Forest land 294.07 35.52% 304.18 36.74%

Grassland 52.95 6.39% 80.4 9.71%

Construction land 109.94 13.28% 133.69 16.15%

Cultivated land 357.39 43.17% 295.07 35.64%

Mining land 7.10 0.86% 6.76 0.82%

Water area 6.42 0.78% 7.77 0.94%

Total 827.87 100.00% 827.87 100.00%

2

3
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Table 5 Accuracy evaluation of land use classification for the study area in 2015 and
2019
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1 Table 5 Accuracy evaluation of land use classification for the study area in 2015 and 2019

2015

Land-use Forest 

land

Grassland

Construction 

land

Cultivated 

land

Mining 

land

Water 

area

Total

Forest land 1646 2 – – – – 1648

Grassland – 150 – – – – 150

Construction land 3 – 2406 – – – 2409

Cultivated land – 4 2 1737 – – 1743

Mining land – – 17 – 346 – 363

Water area – – – – – 319 319

Total 1649 156 2425 1737 346 319 6632

Producers Accuracy 99.82 96.15 99.22 1000 100 98.46 –

Users Accuracy 99.88 100 99.67 99.66 95.32 100 –

2019

Land-use Forest 

land

Grassland

Construction 

land

Cultivated 

land

Mining 

land

Water 

area

Total

Forest land 858 35 – – – – 893

Grassland – 37 34 10 1 – 82

Construction land – – 1710 35 18 – 1763

Cultivated land 2 11 19 821 2 – 855

Mining land – – 2 – 263 – 265

Water area – – – – – 231 231
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Total 860 83 1765 866 284 231 4089

Producers Accuracy 99.77 44.58 96.88 94.8 92.61 92.4 –

Users Accuracy 96.08 45.12 96.07 95.8 99.25 100 –

2 Note: In 2015, Overall Classification Accuracy=99.50%; Overall Kappa Statistics=0.9932;

3      In 2019, Overall Classification Accuracy=95.42%; Overall Kappa Statistics=0.9361.
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1 Table 6 Statistics on LST of different land-use types in 2015 and 2019

Land surface temperature/℃
2015 2019Land use types

MEAN MIN MAX STD MEAN MIN MAX STD

Forest land 23.95 20.79 30.89 1.01 21.07 17.38 26.41 0.97

Grassland 26.55 21.94 36.27 1.45 23.21 18.77 30.56 1.43

Construction land 29.12 20.59 41.74 2.26 24.62 17.24 35.04 1.96

Cultivated land 25.74 21.35 33.71 1.20 21.73 18.26 29.14 1.09

Mining land 33.33 24.27 42.29 2.50 29.63 20.35 38.08 2.31

Water area 21.72 19.16 29.12 2.30 19.31 16.29 27.56 1.74

2

3
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1 Table 7 Statistics on LST and patch area for mining lands

LST/℃ LST/℃ LST/℃Average area

/m² MEAN MAX

Average area

/m² MEAN MAX

Average area

/m² MEAN MAX

900 26.88 30.98 18000 29.09 30.27 53100 30.22 31.95 

1800 27.38 32.30 19800 29.17 35.11 58500 27.85 29.48 

2700 27.25 30.87 20700 31.85 33.43 61200 29.79 31.73 

3600 26.50 30.49 21600 29.60 30.61 65700 31.90 34.51 

4500 27.97 31.39 23400 29.29 30.25 82800 30.79 32.06 

5400 28.23 30.16 24300 28.47 31.40 88200 29.63 31.78 

6300 27.46 31.61 25200 29.02 30.51 110700 28.62 30.18 

7200 27.26 30.87 26100 27.89 29.30 114300 31.36 33.22 

8100 26.52 29.54 27000 28.26 29.43 135000 28.94 31.05 

9000 27.57 29.63 28800 28.59 31.25 139500 28.70 31.22 

9900 28.39 30.63 31500 27.54 30.19 162000 29.85 32.49 

10800 28.23 31.98 32400 28.33 31.92 175500 30.14 32.31 

12600 28.26 33.02 36000 28.48 30.26 179100 30.13 32.35 

13500 29.44 30.58 39600 28.54 30.53 241200 29.04 31.41 

14400 26.99 29.11 40500 27.86 30.36 490500 31.15 33.10 

15300 25.58 26.63 43200 28.33 30.66 626400 31.58 35.26 

16200 27.53 28.46 48600 29.85 31.84 754200 31.58 38.08 

17100 26.57 29.39 

2
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1 Table 8 Correlation between LST and buffer zone within the mining lands

Factor

Average 

Area

Average 

Temperature

Maximum 

Temperature

100m 0.35** 0.79** 0.71**

200m 0.07 0.41** 0.39**

300m -0.01 0.31* 0.26

400m -0.03 0.30* 0.25

500m 0.01 0.33* 0.30*

600m 0.02 0.33* 0.28*

700m 0.03 0.30* 0.27

800m 0.05 0.28* 0.28*

900m 0.09 0.28* 0.30*

1000m 0.09 0.29* 0.29*

1100m 0.09 0.29* 0.28*

1200m 0.12 0.33* 0.30*

1300m 0.10 0.32* 0.27

1400m 0.08 0.29* 0.24

Average 

temperature in 

buffer zone 

/ ℃

1500m 0.10 0.28* 0.26

2 Note: * means p <0.05, ** means p <0.01
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1 Table 9 Correspondence between LST and buffer zone within the mining lands 

Average Temperature/℃ 27.00 28.20 29.05 30.78

100m 25.15 25.84 26.01 27.17

200m 24.39 24.75 24.43 25.36

300m 24.34 24.65 24.16 25.11

400m 24.22 24.64 24.07 25.00

500m 24.06 24.69 24.04 24.97

600m 23.87 24.63 24.12 24.78

700m 23.76 24.53 24.14 24.59

800m 23.70 24.44 23.95 24.52

900m 23.64 24.24 23.80 24.47

1000m 23.59 24.06 23.77 24.41

1100m 23.54 23.87 23.72 24.29

1200m 23.48 23.68 23.71 24.21

1300m 23.43 23.57 23.68 24.07

1400m 23.43 23.55 23.66 23.96

Average 

temperature in 

different scale 

buffers 

/℃

1500m 23.42 23.52 23.51 23.92

2
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Figure 1
Figure 1 Location map showing the three districts of Jixi comprising the study area

Map representing the geostrategic importance of the study area: (A) Jixi City, Heilongjiang
Province, China, (B) Three districts of Jixi.
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Figure 2
Land surface temperature (°C) results for the three districts of Jixi in 2019

Land surface temperature (LST) maps for (A) 2015, (B) 2019 of the three districts in Jixi,
Heilongjiang, China.
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Figure 3
Figure 3 Spatial distribution of land surface temperature levels of the study area in 2015
and 2019

Spatial distribution of land surface temperature levels for (A) 2015, (B) 2019 of the three
districts in Jixi, Heilongjiang, China.
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Figure 4
Figure 4 Land-use types of the study area in 2015 and 2019

Land-use types for (A) 2015, (B) 2019 of the three districts in Jixi, Heilongjiang, China.
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Figure 5
Figure 5 Vegetation coverage of the study area in 2015 and 2019

Vegetation coverage for (A) 2015, (B) 2019 of the three districts in Jixi, Heilongjiang, China.
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Figure 6
Figure 6 Variation in land surface temperature (LST) and vegetation coverage in pixel
groups (1–56) along an E-W profile
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Figure 7
Figure 7 Correlation between land surface temperature (LST) and vegetation coverage
of the study area
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Figure 8
Figure 8 Correlation between patch area and average patch temperature of mining
lands

LST, land surface temperature
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Figure 9
Figure 9 Correlation between patch area and maximum patch temperature of mining
lands

LST, land surface temperature
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Figure 10
Figure 10 Schematic diagram of buffer zone in mining land patch

The legend has been noted in the figure.
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Figure 11
Figure 11 Variation of land surface temperature (LST) with bu��� ���� �� �����	 
���


The double line on the coordinate axis represents the omitted part of the value, so the Y-axis
can more clearly reflect the trend of the four sets of data in the figure.
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