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ABSTRACT
Background. Jixi is a typical mining city in China that has undergone dramatic changes
in its land-use pattern of mining areas over the development of its coal resources.
The impacts of coal mining activities have greatly affected the regional land surface
temperature and ecological system.
Methods. The Landsat 8 Operational Land Imager (OLI) data from 2015 and 2019 were
used from the Jiguan, Didao, and Chengzihe District of Jixi in Heilongjiang, China as
the study area. The calculations to determine the land-use classification, vegetation
coverage, and land surface temperature (LST) were performed using ArcGIS10.5 and
ENVI 5.3 software packages. A correlation analysis revealed the impact of land-use type,
vegetation coverage, and coal mining activities on LSTs.
Results. The results show significant spatial differentiation in the LSTs of Jixi City. The
LSTs for various land-use types were ranked from high to low as follows: mining land>
construction land> grassland> cultivated land> forest land>water area. The LSTwas
lower in areas with high vegetation coverage than in other areas. For every 0.1 increase in
vegetation coverage, the LST is expected to drop by approximately 0.75 ◦C. An analysis
of mining land patches indicates that the patch area of mining lands has a significant
positive correlation with both the average and maximum patch temperatures. The
average patch temperature shows a logarithmic increase with the growth of the patch
area, and within 200,000 m2, the average patch temperature increases significantly.
The maximum patch temperature shows a linear increase with the patch area growth,
and for every 100,000 m2 increase in the patch area of mining lands, the maximum
patch temperature increases by approximately 0.81 ◦C. The higher the average patch
temperature of mining land, the higher the temperature in its buffer zone, and the
greater its influence scope. This study provides a useful reference for exploring the
warming effects caused by coal mining activities and the definition of its influence
scope.

Subjects Coupled Natural and Human Systems, Environmental Contamination and
Remediation, Environmental Impacts, Spatial and Geographic Information Science
Keywords Jixi, Mining areas, Land surface temperature, Spatial variation, Coal mining activities,
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INTRODUCTION
The land surface temperature (LST) comprehensively reflects the energy exchange between
land and the atmosphere, which is an important geophysical parameter in the ground-
air system (Li et al., 2016; Zhu et al., 2016). Coupling the inversion results of LST with
other parameters, such as land-use type and vegetation coverage, provides a scientific
basis for ecological environmental protection (Li et al., 2014; Liang & Zhai, 2014; Xu,
He & Huang, 2013; Zhang et al., 2013a; Zhang et al., 2013b). The commonly used LST
inversion algorithms are divided primarily into the single-channel algorithm,multi-channel
algorithm, and split-window algorithm (Zhu et al., 2016). Among them, the single-channel
algorithms include the atmospheric correction method, Mono-window algorithm, and
the Jiménez-Muñoz J.C single-channel algorithm (Qin, Karnieli & Berliner, 2001; Jiménez-
Muñoz et al., 2008). The multi-channel algorithms mainly include the day-night method,
temperature emissivity separation algorithm, and graybody emissivity method (Gan et al.,
2006; Gillespie et al., 2002; Zhang et al., 2000). The split window algorithm is based mostly
on data from the Landsat-TIRS, NOAA-AVHRR, and TERRA-MODIS (Rozenstein et al.,
2014; Qin & Karnieli, 2001;Mao et al., 2005).

Due to aggravation of the heat island effect, current research on LSTs is mostly focused
on urban areas. Analyzing differences in LSTs for different land-use types optimizes the
distribution of green space from the perspective of landscape patterning to reduce the
heat island effect (Liu, 2016). However, mining areas, which are often affected by high
temperatures and cause safety problems, have not attracted sufficient attention and are
rarely studied.

Some research has shown that in the resource development process for resource-based
cities, the land-use patterns in mining areas are constantly changing, which causes a
series of impacts on the regional ecological environment ( Li et al., 2018; Chabukdhara
& Singh, 2016; Xie, Wang & Fu, 2011). Therefore, research focusing on coupling between
land-use patterns in mining areas and the ecological environment indicators, such as the
LST, water environment quality, and biodiversity, has become vital to environmental
sustainability (Zhou &Wang, 2014; Xiao, Hu & Fu, 2014; Hu, Duo & Wang, 2018; Bian et
al., 2018). Current research on land surface temperatures in mining areas mainly includes
the temporal and spatial distribution characteristics of the surface temperature, the impact
of ecological disturbance on the surface temperature, and others, where the scales are
mostly at macro-regions (Li, Yang & Lei, 2017; Qiu & Hou, 2013; Xie, Wang & Fu, 2011).
This study specifically analyzes the overall and local distribution characteristics of LSTs
from smaller scales to explore the radius of influence of high-temperature points. This
provides a reference to establish heat alerts in mining areas.

Jixi is a typical mining city in China that has undergone dramatic changes in its land-use
pattern in the mining area during the development of coal resources. Significant amounts
of cultivated land, forest land, and other land types have been replaced by industrial and
mining sites, which has greatly affected the regional ecological environment. Impacts such
as the atmospheric diffusion of pollutants and the rise of LSTs have affected the regional
landscape and ecological systems (Pan et al., 2013; Liao, 2009). This paper uses data from
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the Landsat 8 OLI remote sensing images from 2015 and 2019 to determine LSTs using the
radiation conduction equation over the study area, which encompasses the Jiguan, Didao,
and Chengzihe District of Jixi. We analyzed the spatial differentiation and correlations of
the LST with the land-use type and vegetation coverage to provide a theoretical framework
to reduce the heat island effects caused by local urban development and coal mining
activities.

MATERIALS & METHODS
Overview of the study area
The study area encompasses the Jiguan, Didao, and Chengzihe District of Jixi, which are
the main mining lands with a total area of 827.87 km2. Jixi is located in the southeast
of Heilongjiang Province, between 130◦24′24′′–◦56′30′′E, 44◦51′12′′–46◦36′55′′N. To the
southeast and across the ocean in Russia, while to the west and south are Mudanjiang, and
to the north is Qitaihe (Fig. 1). The province comprisesMishan, Hulin, and Jidong Counties
and six other districts (Jiguan, Hengshan, Didao, Chengzihe, Lishu, and Mashan). The
study area is part of the cold-temperate continental monsoon climate, where the average
annual temperature is 3.7 ◦C, the average precipitation is 537.5 mm, the annual sunshine
is 2709 h and the average frost-free period is 140 d. The terrain is composed primarily of
mountains, hills and plains.

Jixi is relatively rich in mineral resources with mutiple mining areas. However, there
also are several abandoned mines that severely damage the ecological environment. In
addition, urban construction and industrial development have encroached on grasslands,
woodlands, and wetlands, which increases the ecological vulnerability and risks in these
ecosystems (He, 2010).

Data sources and preprocessing treatments
This paper is based on the Landsat 8 OLI remote sensing images from 2015 and 2019, all
of which are from the US Geological Survey (http://glovis.usgs.gov/). All images have a
spatial resolution of 30 m. The image strip numbers/rows used in this study are 115/28
and 115/29, respectively, and the imaging time was from July to September. Cloud cover
in these images was less than 2%, and they were interpreted and classified based on a series
of preprocessing treatments, including radiation calibration, atmospheric correction, band
synthesis and image cropping.

Analytical methods
The spatial differentiation characteristics of the LST in the Jiguan, Didao, and Chengzihe
Districts of Jixi were used to identify heat islands and their influencing factors. We selected
a single-window algorithm for inversion of the LSTs. These results were used to analyze the
effects of the land-use type, vegetation coverage and coal mining activities on the spatial
distribution of LSTs.

Determining land-use classification and vegetation coverage
Land use is the most direct manifestation of the interaction between human activities
and the natural environment as it reflects this close relationship in both time and space
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Figure 1 Locationmap showing the three districts of Jixi comprising the study area.Map representing
the geostrategic importance of the study area: (A) Jixi City, Heilongjiang Province, China; (B) three dis-
tricts of Jixi.

Full-size DOI: 10.7717/peerj.10257/fig-1

(Mooney, Duraiappah & Larigauderie, 2013; Liu et al., 2014). Typically, areas designated
as land resources reflects the status of natural resources within the study area. Changes
in land-use patterns inevitably cause changes in the LSTs and ecosystem functionality.
Therefore, the study of land use is of great importance for regional ecological analyses
(Marceau et al., 2003).

The relationship between vegetation coverage and the LST has become a focus of
research on heat islands (Wang et al., 2011). Green vegetation affects LSTs through
photosynthesis, transpiration and evapotranspiration. Ma et al. (2010) compared and
analyzed five correlation degrees among planting parameters and LSTs, including the
normalized difference vegetation index (NDVI), ratio vegetation index (RVI), greenness
vegetation index (GVI), modified soil to adjust vegetation index (MSAVI) and vegetation
coverage. They concluded that the correlation between vegetation coverage and the LST
was both high and stable because it is not markedly influenced by spatial location or
changes in the fraction or type of surface coverage. Therefore, the relationship between
vegetation coverage and the LST was selected to study heat island effects within different
land surfaces.

Land-use classification
The ENVI 5.3.1 (L3Harris Geospatial Solutions, Inc., Melbourne, FL, USA) and ArcGIS
10.5 (Esri, Corp., Redlands, CA, USA) were used to preprocess the original image data,
which includes geometric correction, mosaic compilation, fusion, clipping, research scope
extraction, image enhancement and supervised classification, before interpreting and
analyzing the remote sensing imagery. The classification of land-use types in the study area
was consistent with the standard land-use classification (GB/T 21010–2017). The study
area was divided into six categories: forest lands, grasslands, construction lands, cultivated
lands, mining lands and water areas. A maximum-likelihood approach was used for the
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classification. In the final stage of the study, the remote sensing image interpretation was
validated by site surveys. The accuracy of the results was verified by establishing a confusion
matrix. Random points were selected in the Erdas Imagine 2015 software for classification,
where a certain number of random points were selected for each category. The classification
of each random point was distinguished visually so that the category to which each random
point belongs is defined in the software. The user accuracy, producer accuracy, and Kappa
coefficient of the overall classification of each category were then calculated.

Vegetation coverage calculation
Plant coverage information is typically extracted from remote sensing images. Given the
high accuracy of NDVI values estimated using remote sensing, it is one of the most widely
used indexes (Mu et al., 2012). A common method to calculate vegetation coverage is
based on the hybrid pixel decomposition method, where it is assumed that each pixel
of the remote sensing image is composed of soil and vegetation components. Thus, the
information includes both a pure soil component and a pure vegetation component. In this
case, we assumed that the NDVI value is a weighted average sum of the index values from
both soil and vegetation information (Li, Fan & Wang, 2010), which is given as follows:

NDVI= fv×NDVIveg+
(
1− fv

)
×NDVIsoil, (1)

Where NDVI is the vegetation index value of mixed pixels; NDVIveg is the vegetation
index of pure vegetation pixels; NDVIsoil is the vegetation index value of pure soil pixels;
and f v is the vegetation coverage. Thus, the formula for vegetation coverage (f v) becomes:

fv = (NDVI−NDVIsoil)/
(
NDVIveg−NDVIsoil

)
. (2)

In practice, the parameters can be selected in the following ways. (1) Take different
NDVIveg and NDVIsoil values for different soil and vegetation types. (2) Use the maximum
and minimum NDVIs of the study area, NDVIveg = NDVImax, NDVIsoil = NDVImin. (3)
Determine the NDVI value of the corresponding pixel based on measured data (Li et al.,
2015). Under the influence of varying meteorological conditions, vegetation type and
distribution, seasons, and other factors, both the NDVIsoil and NDVIveg values for different
images vary to some extent.

The maximum and minimum values of the given confidence interval are selected,
and the confidence value is determined primarily from the image size and clarity. As a
comparison, the maximum NDVI images of 2015 and 2019 were extracted. In the NDVI
frequency accumulation table, the NDVI with a frequency of 5% was selected for NDVIsoil,
and the NDVI with a frequency of 95% was selected for NDVIveg. Finally, the vegetation
coverage was obtained from Eq. (2).

Land surface temperature inversion
The LST inversion algorithms for single-infrared-band Landsat 8 OLI remote sensing data
are based primary on the radioactive transfer equation (RTE), a universal single-channel
algorithm, and a single-window algorithm (Ding & Xu, 2008). Therefore, the RTE was
selected to invert the LSTs in this study.
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Calculation of specific surface emissivity
Remote sensing images were firstly classified into three types: water bodies, towns and
natural surfaces. The specific emissivity of water pixels is 0.995, where other surface
emissivity estimates were based on the following formulas (Chi, Zeng & Wang, 2016):

εsurface= 0.9625+0.0614fv−0.0461f 2v (3)

εbuilding= 0.9589+0.086fv−0.0671f 2v (4)

Where εsurface and εbuilding represent the specific emissivity of natural surface pixels and
urban pixels, respectively.

Radioactive transfer equation
The RTE is also called the atmospheric correction method. It firstly estimates the impact of
the atmosphere on the surface thermal radiation based on the information received by the
satellite thermal infrared sensor. This is then subtracted from the total thermal radiation
obtained by the sensor. The impact of the atmosphere on the surface can be used to obtain
the intensity of surface thermal radiation. Assuming that the surface and the atmosphere
have Lambertian properties for thermal radiation, the corresponding LST can be obtained
as (You & Yan, 2009; Yue et al., 2019):

Lλ=
[
ε ·B(TS)+(1−ε)L↓

]
·τ+L↑, (5)

Where Lλ is the intensity of thermal radiation received by the satellite sensor, ε(K)
is the surface emissivity, T S is the true LST, B(TS) (W m−2 sr−1 µm −1) is the black
body brightness corresponding to temperature TS derived from Planck’s law, τ is the
transmittance of the atmosphere at thermal infrared wavelengths, L↑ (W m−2 sr−1 µm−1)
is the atmospheric upward radiance, and L↓(W m−2 sr−1 µm−1) is the atmospheric
downward radiance. Based on the RTE, the B(T S) can be obtained as (Wu et al., 2016;Hou
& Zhang, 2019):

B(TS)=
[
Lλ−L↑−τ ·(1−ε)L↓

]
/τ ·ε, (6)

Where τ , L↑ (W m−2 sr−1 µm−1) and L↓(W m−2 sr−1 µm−1) were determined from
the official NASA website (http://atmcorr.gsfc.nasa.gov/) by inputting the imaging time,
latitude and longitude, air pressure and other relevant information to the study area. After
estimating the of black body radiance B(TS), which is the same as the real temperature on
the ground, the inverse function of Planck’s law gives the real temperature on the ground
as (Chen, 2014):

TS=K2/ln
(

K1

B(TS)
+1

)
, (7)

Where K1 and K2 are constants obtained by querying the Landsat metadata file. In this
case, K1 = 774.8853 and K2 = 1321.0789 for Landsat 8 TIRS band 10.
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Normalized temperature index and temperature classification
The ecological environment of coalmining areas is damaged to varying degrees, this changes
their LSTs and causes a series of significant ecological effects and environmental problems,
such as vegetation degradation and soil erosion (Dutta & Agrawal, 2003; Zhou & Zhang,
2005). We used the urban heat island effect to explore the impact of coal mining activities
on LSTs (Ye et al., 2011; Li et al., 2019). The formula for the normalized temperature index
is:

Tr =
1T
Trange

=
T−Tmin

Tmax−Tmin
, (8)

Where T r is the normalized temperature index, T is the temperature at any spatial
position in the region, Tmax and Tmin are the highest and lowest temperature in the region,
respectively.

The method of equal intervals is used to divide the temperature based on the site
conditions and existing research (Sheng et al., 2010; Jia & Liu, 2006). Once the maximum
and minimum values of the inversion temperature are taken as endpoints, the temperature
is divided into five equal-spaced intervals. These are a low-temperature zone, a low-middle-
temperature zone, a middle-temperature zone, a middle-high-temperature zone, and a
high-temperature zone. The normalized temperature indices for these levels were 0.0–0.2,
0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1.0, respectively (Table 1). Analyzing changes in the LST
index at different distances from the mine allows evaluating the intensity and range of the
heat island effect as caused by coal-mining activities.

Analytical method of factors affecting land surface temperature
The terrain over the study area is relatively flat, which facilitates farming, town construction,
and coalmining activities.We analyzed the spatial differentiation of LSTs in this area, which
was linked to land use, vegetation coverage and coal mining activities.

The influence of land-use classification on land surface temperature
The area and proportion of different types of land use were counted separately.
Subsequently, the land-use and the LST maps were superimposed to obtain statistical
data on the LSTs of various land-use types.

The influence of vegetation coverage on land surface temperature
A profile analysis more intuitively reflected the relationship between changes in LST and
vegetation coverage at a given geographical location. Using the interpolation line function
in ArcGIS 10.5 to view profile values of LST and vegetation coverage from 2015 and 2019
to compare and analyze their associated changes along profiles to evaluate the relationships
between these variables.

The influence of coal mining activities on land surface temperature
The influence of patch area
Firstly, all mining areas within a distance of 1,500 m from the edge of the study area were
screened. These selected mining area patches were then counted and grouped based on
area. We then combined these data with our LST inversion to determine the maximum,
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Table 1 The relationship between the normalized temperature index values and assigned temperature
grades.

Normalized temperature index Temperature grade

0.0–0.2 Low temperature zone
0.2–0.4 Low-middle temperature zone
0.4–0.6 Middle temperature zone
0.6–0.8 Middle-high temperature zone
0.8–1.0 High temperature zone

minimum, and average LSTs for different patches. Finally, the influence of these mining
land patches on the LSTs were evaluated.

The influence of buffer range
Buffers with a range of 100–1,500 m at intervals of 100 m were set for each of the patches.
The average LST in each buffer zone was extracted, and the trends in the LSTs at varying
distances from the mining area were analyzed.

RESULTS
Land surface temperature inversion
The LST results for the Jiguan, Didao and Chengzihe Districts of Jixi in 2015 and 2019
are shown in Fig. 2 and Table 2. The temperatures in 2015 were in general higher than
those in 2019. The average LST over the entire study area was 25.64 ◦C in 2015 and
22.10 ◦C in 2019. There is a similarity in the spatial distribution patterns of their LSTs.
High temperatures are concentrated in the south-central and southeast parts of the study
area, while the temperatures in the west and north are relatively low. In these two years, the
average LST in the Jiguan District was higher than averages in the other two districts, but its
highest temperature was lower than the maximum recorded in the Didao and Chengzihe
Districts. The highest temperatures over the entire study area were 42.29 ◦C, which was
recorded at Shenghe Coal Mine in the Didao District. Likewise, the highest temperature
in the Chengzihe District was recorded at Chengshan Coal Mine. Thus, mining areas had
much higher LSTs than average. While only two years were selected for the analysis, similar
results validate the conclusions.

The LSTs from 2015 and 2019 were normalized and divided into five levels, as shown
in Fig. 3 and Table 3. The LSTs in the study area were assigned primarily to the low-
temperature, low-middle-temperature, and middle-temperature zones, which covered
the LST range of 19.16–33.04 ◦C in 2015 and 16.29–29.37 ◦C in 2019. Among them, the
low-middle-temperature zone had the largest area as it accounted for more than 70%
of the total study area. The high-temperature and middle-high-temperature zones had
smaller areas. The high-temperature zone was distributed primarily within the Didao
and Chengzihe Districts. The Shenghe Coal Mine accounted for 53.08% of the total area
of the high-temperature zone in 2015 and rose to 59.04% in 2019. The proportion of
the Chengshan Coal Mine in the total area of the high-temperature zone increased from
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Figure 2 Land surface temperature (◦C) results for the three districts of Jixi in 2019. Land surface tem-
perature (LST) maps for (A) 2015, (B) 2019 of the three districts in Jixi, Heilongjiang, China.

Full-size DOI: 10.7717/peerj.10257/fig-2

Table 2 Statistics on LST for the study area in 2015 and 2019.

Range Land surface temperature/◦C

2015 2019

MEAN MIN MAX STD MEAN MIN MAX STD

Jiguan District 27.16 21.58 38.97 2.52 23.24 17.42 33.64 2.23
Didao District 25.23 19.16 42.29 1.92 21.75 17.18 38.08 1.63
Chengzihe District 25.53 19.45 39.13 2.48 22.34 16.29 35.26 2.14
Total 25.64 19.16 42.29 2.28 22.10 16.29 38.08 1.95

Figure 3 Spatial distribution of land surface temperature levels of the study area in 2015 and 2019.
Spatial distribution of land surface temperature levels for (A) 2015, (B) 2019 of the three districts in Jixi,
Heilongjiang, China.

Full-size DOI: 10.7717/peerj.10257/fig-3

8.17% to 34.47% over these four years. Meanwhile, the low-temperature and low-middle-
temperature zones were distributed mostly in the Didao and Chengzihe Districts, giving
a large temperature difference between them. Therefore, local heat island effects were
obvious within the study area.

Land-use classification
Land-use types in the Jiguan, Didao, and Chengzihe Districts of Jixi in 2015 and 2019 are
shown in Fig. 4 and Table 4. From 2015 to 2019, the area of forest land increased while
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Table 3 LST normalization results for the study area in 2015 and 2019.

Temperature grade Normalized
temperature index

2015 2019

LST /◦C Percentage LST /◦C Percentage

Low temperature zone 0.0–0.2 19.16–23.78 18.19% 16.29–20.65 19.31%
Low-middle temperature zone 0.2–0.4 23.78–28.41 70.53% 20.65–25.01 72.21%
Middle temperature zone 0.4–0.6 28.41–33.04 10.34% 25.01–29.37 7.79%
Middle-high temperature zone 0.6–0.8 33.04–37.66 0.90% 29.37–33.72 0.66%
High temperature zone 0.8–1.0 37.66–42.29 0.04% 33.72–38.08 0.03%
Total 0.0–1.0 19.16–42.29 100.00% 16.29–38.08 100.00%

Figure 4 Land-use types of the study area in 2015 and 2019. Land-use types for (A) 2015, (B) 2019 of
the three districts in Jixi, Heilongjiang, China.

Full-size DOI: 10.7717/peerj.10257/fig-4

the area of cultivated land decreased. However, the dominant land-use types in the study
area are still forest land and cultivated land. The forest land is distributed mostly in the
northern part of the study area, while the cultivated land is distributed in the middle and
southern parts. Construction land is concentrated in the Jiguan District, which increased
significantly from 109.94 km2 to 133.69 km2 in the four considered years. The mining land
is defined primarily by the Shenghe Coal Mine in the Didao District and the Chengshan
Coal Mine in the Chengzihe District. The accuracy of the land-use classification was
verified by establishing a confusion matrix. The matrix showed that the Kappa coefficients
of the land-use maps in the interpreted periods are all above 0.8, which meets the accuracy
requirements for this study (Table 5).

Vegetation coverage
The remote sensing images of the study area were processed according to the mixed
pixel decomposition method to obtain the vegetation coverage of the Jiguan, Didao, and
Chengzihe District of Jixi (Fig. 5). The construction land in the eastern Jiguan District,
Shenghe Coal Mine in the Didao District and Chengshan Coal Mine in the Chengzihe
District had the lowest vegetation coverage. However, ongoing urbanization and coal
mining activities have markedly affected vegetation coverage in many other areas as well.
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Table 4 Land-use structure for the study area in 2015 and 2019.

Land-use 2015 2019

Area / km2 Percentage / % Area / km2 Percentage / %

Forest land 294.07 35.52% 304.18 36.74%
Grassland 52.95 6.39% 80.4 9.71%
Construction land 109.94 13.28% 133.69 16.15%
Cultivated land 357.39 43.17% 295.07 35.64%
Mining land 7.10 0.86% 6.76 0.82%
Water area 6.42 0.78% 7.77 0.94%
Total 827.87 100.00% 827.87 100.00%

Table 5 Accuracy evaluation of land use classification for the study area in 2015 and 2019.

Land-use 2015

Forest land Grassland Construction land Cultivated land Mining land Water area Total

Forest land 1,646 2 – – – – 1,648
Grassland – 150 – – – – 150
Construction land 3 – 2406 – – – 2,409
Cultivated land – 4 2 1737 – – 1,743
Mining land – – 17 – 346 – 363
Water area – – – – – 319 319
Total 1649 156 2425 1737 346 319 6,632
Producers Accuracy 99.82 96.15 99.22 1000 100 98.46 –
Users Accuracy 99.88 100 99.67 99.66 95.32 100 –

2019
Forest land 858 35 – – – – 893
Grassland – 37 34 10 1 – 82
Construction land – – 1710 35 18 – 1,763
Cultivated land 2 11 19 821 2 – 855
Mining land – – 2 – 263 – 265
Water area – – – – – 231 231
Total 860 83 1765 866 284 231 4,089
Producers Accuracy 99.77 44.58 96.88 94.8 92.61 92.4 –
Users Accuracy 96.08 45.12 96.07 95.8 99.25 100 –

Notes.
In 2015, Overall Classification Accuracy= 99.50%; Overall Kappa Statistics= 0.9932; In 2019, Overall Classification Accuracy= 95.42%; Overall Kappa Statistics= 0.9361.

Correlation between land surface temperature and land-use types
The main land types in the low-temperature and low-middle-temperature zone are
water areas, forest land, grassland and cultivated land. The main land types in the high-
temperature, middle-high-temperature, and middle-temperature zones are construction
land and mining land. There are large difference in the average LSTs among these land-use
types (Table 6). The average LSTs for mining land, construction land and grassland were
higher than the average LST for the study area. Among them, mining land had the highest
average LSTs (33.33 ◦C in 2015 and 29.63 ◦C in 2019), yielding temperature anomalies of
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Figure 5 Vegetation coverage of the study area in 2015 and 2019.Vegetation coverage for (A) 2015, (B)
2019 of the three districts in Jixi, Heilongjiang, China.

Full-size DOI: 10.7717/peerj.10257/fig-5

Table 6 Statistics on LST of different land-use types in 2015 and 2019.

Land use types Land surface temperature/◦C

2015 2019

MEAN MIN MAX STD MEAN MIN MAX STD

Forest land 23.95 20.79 30.89 1.01 21.07 17.38 26.41 0.97
Grassland 26.55 21.94 36.27 1.45 23.21 18.77 30.56 1.43
Construction land 29.12 20.59 41.74 2.26 24.62 17.24 35.04 1.96
Cultivated land 25.74 21.35 33.71 1.20 21.73 18.26 29.14 1.09
Mining land 33.33 24.27 42.29 2.50 29.63 20.35 38.08 2.31
Water area 21.72 19.16 29.12 2.30 19.31 16.29 27.56 1.74

7.69 ◦C in 2015 and 7.53 ◦C in 2019. The water area had the lowest average LSTs (21.72 ◦C
in 2015 and 19.31 ◦C in 2019). At the same time, the temperature standard deviation
within the mining land was also relatively large, with a difference of 18.02 ◦C between the
minimum and maximum temperatures.

Correlation between land surface temperature and vegetation
coverage
An east–west transect was drawn across the study are, and the data from 2019 were used to
analyze changes in the LSTs with vegetation coverage. Every 25 pixel points on the profile
were assigned to a group, and the average value of the vegetation coverage and LST in each
group was calculated to obtain 56 data sets. Finally, a linear fit was performed between the
vegetation coverage and average LST, and the coefficient of determination was assessed
(Fig. 6). Areas with low vegetation coverage were associated with higher LSTs. In addition,
as vegetation coverage decreased, the LSTs increased. The trends in LST and vegetation
coverage were opposite with reciprocal change patterns.

The linear fit of the average LST and vegetation coverage (Fig. 7) shows that if
the vegetation coverage increases by 0.1, the average LST is expected to decrease by
approximately 0.75 ◦C. This constitutes a strong negative relationship between the LST
and vegetation coverage. Using the SPSS 24 (IBM, Corp., Armonk, NY, USA) indicated a
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Figure 6 Variation in land surface temperature (LST) and vegetation coverage in pixel groups (1–56)
along an E-W profile.

Full-size DOI: 10.7717/peerj.10257/fig-6

Figure 7 Correlation between land surface temperature (LST) and vegetation coverage of the study
area.

Full-size DOI: 10.7717/peerj.10257/fig-7

correlation coefficient of R=−0.780. This indicates a significant correlation at the 0.01
confidence level (both sides). Thus, green vegetation has a significant cooling effect on the
land surface.

Correlation between land surface temperature and coal mining
activities
This study mainly considers spatial variations when exploring the correlation between the
LST and mining activities. Therefore, the data of the most recent year (2019) is selected
for the analysis, and the spatial distribution of the LST is analyzed based on the patch area
and buffer sizes.

Correlation between land surface temperature and patch area of
mining lands
The mining areas were grouped based on patch area after screening them within 1500 m of
the edge of the study area. The maximum, minimum and average LSTs of each patch were
calculated from the 52 data sets (Table 7). Correlations among the average patch area and
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Table 7 Statistics on LST and patch area for mining lands.

Average area /m2 LST/◦C Average area /m2 LST/◦C Average area /m2 LST/◦C

MEAN MAX MEAN MAX MEAN MAX

900 26.88 30.98 18000 29.09 30.27 53100 30.22 31.95
1800 27.38 32.30 19800 29.17 35.11 58500 27.85 29.48
2700 27.25 30.87 20700 31.85 33.43 61200 29.79 31.73
3600 26.50 30.49 21600 29.60 30.61 65700 31.90 34.51
4500 27.97 31.39 23400 29.29 30.25 82800 30.79 32.06
5400 28.23 30.16 24300 28.47 31.40 88200 29.63 31.78
6300 27.46 31.61 25200 29.02 30.51 110700 28.62 30.18
7200 27.26 30.87 26100 27.89 29.30 114300 31.36 33.22
8100 26.52 29.54 27000 28.26 29.43 135000 28.94 31.05
9000 27.57 29.63 28800 28.59 31.25 139500 28.70 31.22
9900 28.39 30.63 31500 27.54 30.19 162000 29.85 32.49
10800 28.23 31.98 32400 28.33 31.92 175500 30.14 32.31
12600 28.26 33.02 36000 28.48 30.26 179100 30.13 32.35
13500 29.44 30.58 39600 28.54 30.53 241200 29.04 31.41
14400 26.99 29.11 40500 27.86 30.36 490500 31.15 33.10
15300 25.58 26.63 43200 28.33 30.66 626400 31.58 35.26
16200 27.53 28.46 48600 29.85 31.84 754200 31.58 38.08
17100 26.57 29.39

the average and maximum patch temperatures were analyzed using SPSS 24. Our analysis
indicates that the patch was strongly positively correlated with the average and maximum
patch temperatures.

Correlation between the patch area and average patch temperature (Fig. 8) yielded
R= 0.571. This indicates a significant correlation at the 0.01 confidence level (both sides).
The determination coefficient of the fit logarithmic function was R2

= 0.487, indicating
that larger patch sizes promote a greater average patch temperature. Within 200,000 m2,
the average patch temperature increases rapidly with the size of the patch area. Once above
200,000 m2, the average patch temperature increases more slowly.

The correlation between the patch area andmaximumpatch temperature (Fig. 9) yielded
R= 0.645. This indicates a significant correlation at the 0.01 confidence level (both sides).
The determination coefficient of the linear fit was R2

= 0.415, indicating that larger patch
sizes promote a greater maximum patch temperature. If the patch area of mining land
increases by 100,000 m2, the maximum patch temperature will increase by approximately
0.81 ◦C.

Correlation between land surface temperature and various buffer sizes
The schematic diagramof buffer zone inmining land patch is shown in Fig. 10. A correlation
analysis was performed on average patch area, average patch temperature, maximum patch
temperature of mining land and the average LST in buffer zones at 100–1,500 m reviewed
at 100 m intervals (Table 8). The temperature of the buffer zones within 0–100 m was
strongly correlated with the patch area, average patch temperature, and maximum patch
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Figure 8 Correlation between patch area and average patch temperature of mining lands. LST, land
surface temperature.

Full-size DOI: 10.7717/peerj.10257/fig-8

Figure 9 Correlation between patch area andmaximum patch temperature of mining lands. LST, land
surface temperature.

Full-size DOI: 10.7717/peerj.10257/fig-9

temperature of the mining land. In the 100–200 m buffer zone, the correlation between
the temperature and the average area was not significant. Therefore, a higher correlation
was found for the entire buffer zone with the average and maximum patch temperatures,
while a lower correlation was found with the patch area. Thus, the correlation between the
temperature in the buffer zone and the average patch temperature was most relevant.

To further study the correspondence between the average patch temperature of mining
land and the temperature in the buffer zones, the 52 data sets were sorted based on their
average patch temperatures from smallest to largest. Each of the 13 groups was then
compiled into a new group. The average number and the average temperature of the
corresponding buffer zone in each new group were calculated to obtain four new data sets
(Table 9).

Figure 11 shows that the further the buffer zone was from the mine land patch, the lower
its temperature. In 0–200 m buffer zones, the average temperature changed drastically,
while the average temperature outside the 200m zone varied little. The range of this heating
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Figure 10 Schematic diagram of buffer zone in mining land patch. The key has been noted in the figure.
Full-size DOI: 10.7717/peerj.10257/fig-10

Table 8 Correlation between LST and buffer zone within the mining lands.

Factor Average
area

Average
temperature

Maximum
temperature

100 m 0.35** 0.79** 0.71**

200 m 0.07 0.41** 0.39**

300 m −0.01 0.31* 0.26
400 m −0.03 0.30* 0.25
500 m 0.01 0.33* 0.30*

600 m 0.02 0.33* 0.28*

700 m 0.03 0.30* 0.27
800 m 0.05 0.28* 0.28*

900 m 0.09 0.28* 0.30*

1,000 m 0.09 0.29* 0.29*

1,100 m 0.09 0.29* 0.28*

1,200 m 0.12 0.33* 0.30*

1,300 m 0.10 0.32* 0.27
1,400 m 0.08 0.29* 0.24

Average temperature in buffer
zone / ◦C

1,500 m 0.10 0.28* 0.26

Notes.
*p< 0.05.
**p< 0.01.

effect is approximately 700 m in Group 1, 1,200 m in Group 2 and 3, and more than 1,400
m in Group 4. Therefore, a larger average patch temperature in the mining land causes a
higher temperature in its buffer zone, and the greater the scope of its influence.
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Table 9 Correspondence between LST and buffer zone within the mining lands.

Average Temperature/◦C 27.00 28.20 29.05 30.78

100 m 25.15 25.84 26.01 27.17
200 m 24.39 24.75 24.43 25.36
300 m 24.34 24.65 24.16 25.11
400 m 24.22 24.64 24.07 25.00
500 m 24.06 24.69 24.04 24.97
600 m 23.87 24.63 24.12 24.78
700 m 23.76 24.53 24.14 24.59
800 m 23.70 24.44 23.95 24.52
900 m 23.64 24.24 23.80 24.47
1,000 m 23.59 24.06 23.77 24.41
1,100 m 23.54 23.87 23.72 24.29
1,200 m 23.48 23.68 23.71 24.21
1,300 m 23.43 23.57 23.68 24.07
1,400 m 23.43 23.55 23.66 23.96

Average temperature in differ-
ent scale buffers /◦ C

1,500 m 23.42 23.52 23.51 23.92

Figure 11 Variation of land surface temperature (LST) with buffer zone of mining lands. The double
line on the coordinate axis represents the omitted part of the value, so the Y -axis can more clearly reflect
the trend of the four sets of data in the figure.

Full-size DOI: 10.7717/peerj.10257/fig-11

DISCUSSION
Impact of coal mining activities on surface temperatures
As the largest coal city in Heilongjiang Province, Jixi has always utilized coal as its leading
industry. The main types of coal mining wasteland in Jixi City include mining subsidence,
land occupation, polluted wasteland, and excavated land, which account for 0.48%, 82.0%,
6.82%, and 10.71% of the total coal mining wasteland, respectively (Di, Guan & Zheng,
2015). Coal mining activities generate a significant amount of heat. Thus, regional heating
within the city has intensified when coupled with their high-energy consumption and high-
heat producing enterprises (Hu, Zhao & Dong, 2010). The ongoing economic development
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of mining areas has increased both the population density and heat production from urban
infrastructure.

The correlation between LST and coal mining activities has resulted in larger mining
lands with higher average and maximum patch temperatures. The available literature has
shown that the size, shape, number, and boundary properties of these patches affect their
energy transmissions. According to landscape ecological theory, the size and shape of these
patches also affect their energy accumulation. Likewise, some researchers have recognized
that larger patches of construction land have higher degrees of aggregation, more regular
shapes, higher LSTs, and more significant heat island effects (Yu, 2006; Fu, 2001; Xie, Wang
& Fu, 2011; Xu et al., 2015). Some studies have analyzed different types of disturbances at
the interior of mining lands, among which dumps, opencast coal pits, and industrial centers
have higher contributions to local warming (Xie, Wang & Fu, 2011; Liu, 2016). Exposed
coal and coal gangue easily absorb heat and cause increased temperatures, while piled coal
gangue hills are prone to heat and spontaneous combustion (Hao, 2011). Therefore, many
factors cause high temperatures in mining land.

Quantitative research on the impact of mining land indicates a strong warming effect
within a buffer zone of 0–200 m around mining land patches. As the distance from the
mining land increases, the warming effects gradually weakens. Mining land patches with
higher average patch temperatures have larger temperature-affected buffer zones. Changes
in the local meteorological conditions, such as temperature rise, affect local species, which
impacts the ecological conditions of the entire region.However, the strength of the warming
effect and the size of its influence range are not only related to the distance from the mining
land patch but may also be related to the average temperature of the entire area during the
analysis (Liao, 2009). This specific correlation requires further study.

To date, regulations on the ecological and environmental protection are aimed only at
the ecological and environmental indicators within the mining area, which cannot achieve
regional ecological protection. Although it seems intuitive that coal production enterprises
or units engaged in corresponding activities have taken the responsibility of protecting
the ecology and environment, this does not cover the entire affected area of coal mining
production activities. To protect the ecological quality of the area while developing coal
resources, the scope of environmental protection in mining areas should be defined more
scientifically and rationally.

Impact of different land-use types on surface temperature
Our results show that land-use types have a dominating impact on the LST. The LSTs of
the Jiguan, Didao, and Chengzihe District of Jixi were primarily within the range of 16.29–
42.29 ◦C in the two considered years. The low-middle-temperature zone had the largest
area, which accounted for 70.53% and 72.21% of the total area. The low-temperature
zone was distributed primarily over water areas, forest lands and cultivated lands. The
high-temperature zone was distributed mostly over the construction land andmining land,
especially the Shenghe Coal Mine in the Didao District and the Chengshan Coal Mine in
the Chengzihe District.
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The temperatures in 2019 were generally lower than those in 2015. From a normalized
comparison, it is seen that the high-temperature and low-temperature zones increased
in 2019. Along with the clustered development of mining land patches, the land surface
temperature shows a polarizing trend. The expansion of some high-temperature zones
may be due to the continued development of coal mines. The increased low-temperature
areas may be due to the reclamation and restoration of vegetation in mining areas. Based
on governmental planning (‘‘Mineral Resources Planning of Jixi City (2016-2020)’’ and
‘‘Special Planning for Reclamation and Utilization of Desert Land of Industrial Mining
Area and Mining Subsidence Area in Jixi City (2014–2020)’’) from 2015 to 2019, the coal
industry wastelands in Chengzihe and Didao Districts were treated to a certain extent, and
the reclaimed land was converted into cultivated land, forest land, and construction land.
These lands will be used for agricultural production, creating recreational landscapes, and
improving the ecological environment.

In recent years, the development of coal resources in Jixi has been rapid. Additionally,
the spatial distribution of mines has also changed (Yang, 2013). Construction and mining
activities have reduced the ‘‘cooling’’ land-use types, such as forest and cultivated lands
(Wang et al., 2020), and replaced themwith ‘‘warming’’ types, like construction andmining
lands. The available literature has shown that urban expansion is the main driving process
of land cover changes and consequently rise of LST (Pal & Ziaul, 2017), which is consistent
with our findings. With changes in land-use types, natural vegetation has been replaced by
impervious concrete and construction land, which has caused significant changes like heat
radiation from the underlying city surface (Wang et al., 2013). These man-made surfaces
have a strong light absorptive effect and can quickly raise the local LST (Hien et al., 2011).
In addition, building facades can reflect light multiple times, heating the near-surface
atmosphere and cause LSTs to rise significantly (Miao et al., 2009). Some studies have also
shown that the heating effect of construction lands, especially compact low-rise buildings,
is very obvious (Das, Das & Mandal, 2020). Among the six considered land-use types, the
LSTs of water area, forest land, and cultivated land were lower than the average LST for the
study area. Water-permeable areas of the study region, such as water areas and forest land,
ensure efficient heat exchange between the soil and the atmosphere. Water can evaporate,
which absorbs heat in the environment and has an overall cooling effect (Zhang et al.,
2013a; Zhang et al., 2013b). Therefore, not only by balancing the land-use types, but also
by optimizing appropriate urban planning, the increase in LST can be adjusted to reduce
the impact of urbanization on the ecological environment (Das & Das, 2020).

Impact of vegetation coverage on land surface temperatures
Our coupling analysis showed that changes in vegetation coverage are very important
factors that affecting ecological status change. There is a significant negative correlation
between LST and vegetation coverage, which has also been confirmed by other works
(Estoque, Murayama & Myint, 2017; Jiang, Zeng & Zeng, 2015; Duan & Zhang, 2012; Wu,
Xu & Tan, 2007; Yue, Xu & Xu, 2006). As vegetation blocks sunlight, it reduces the amount
of solar radiation that reaches the surface, while plant transpiration also reduces the LST
(Cui, Li & Ji, 2018). In areas with high vegetation coverage, the LST was lower than in
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other areas, illustrating the degree to which vegetation could effectively alleviate heat island
effect.

Therefore, municipal bodies should carefully consider the balance between ecological
protection and economic development. The focus should be on vegetation restoration
and environmental governance in areas where heat emissions are concentrated, such
as abandoned mine sites and barren areas. Meanwhile, increasing the proportion of
green space, improving the diversity and complexity of the landscape, and dividing the
impervious surface with vegetation when developing urban construction land and coal
mines can significantly reduce the LST and alleviate heat island effects.

CONCLUSIONS
Our findings show that coal mining activities and urban expansion are the primary factors
affecting LSTs. These two factors change land-use types and vegetation coverage, which
results in an abnormal heat flux. There were large differences in the LSTs among the
various land-use types in Jixi City. The LSTs for the considered land-use types were ranked
from high to low, as follows: mining land > construction land > grassland > cultivated
land > forest land > water area. The average LST difference between the mining land and
water area was more than 10 ◦C each year.

Correlations between LST and vegetation coverage indicate that they have a significant
negative relationship. The LST was lower in areas with higher vegetation coverage than
in other areas. For every 0.1 increase in vegetation coverage, the surface temperature is
expected to drop by approximately 0.75 ◦C, indicating the extent to which vegetation can
effectively alleviate warming effects.

The correlation between the LST and coal mining activities indicates the patch area of
the mining land has a significant positive correlation with both the average and maximum
patch temperatures. The average patch temperature shows a logarithmic increase with the
growth of the patch area; thus, the average patch temperature increases significantly within
200,000 m2. The maximum patch temperature shows a linear increase with the growth of
the patch area; thus, the maximum patch temperature increases by approximately 0.81 ◦C
for every 100,000 m2 increase in the patch area of mining land. A higher correlation was
found between the average patch temperature and the temperature in the buffer zone. This
study found that the higher the average patch temperature of mining land, the higher the
temperature in its buffer zone, and the greater the scope of its influence. As the distance
from the mining land increased, its heating effect weakened.

Full consideration should be given to vegetation restoration in mining areas to reduce
the warming effect from coal mining activities, especially in abandoned mining land, by
increasing the total vegetation coverage in the study area. The existing large coal mine
land patches need to be divided by plants or water areas. Thus, the scope of environmental
protection in mining areas needs to be correctly defined. Meanwhile, in future urban
layouts, downtown areas should maintain a proper distance from coal mining land. This
study provides a useful reference to explore the warming effects caused by coal mining
activities and the definition of its influence scope.
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