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ABSTRACT
Background. Ovarian cancer is one of the leading causes of cancer-related death in
women. The incidence of ovarian cancer is insidious, and the recurrence rate is high.
The survival rate of ovarian cancer has not significantly improved over the past decade.
Recently, immune checkpoint inhibitors such as those targeting CTLA-4, PD-1, or
PD-L1 have been used to treat ovarian cancer. Therefore, a full analysis of the immune
biomarkers associated with this malignancy is necessary.
Methods. In this study, we used data from The Cancer Genome Atlas (TCGA) database
to analyze the infiltration patterns of specific immune cell types in tumor samples.
Data from the Gene Expression Omnibus (GEO) database was used for external
validation. According to the invasion patterns of immune cells, we divided the ovarian
cancer microenvironment into two clusters: A and B. These tumor microenvironment
(TME) subtypes were associated with genomic and clinicopathological characteristics.
Subsequently, a random forest classification model was established. Differential
genomic features, functional enrichment, andDNAmethylationwere analyzed between
the two clusters. The characteristics of immune cell infiltration and the expression of
immune-related cytokines or markers were analyzed. Somatic mutation analysis was
also performed between clusters A and B. Finally, multivariate Cox analysis was used
to analyze independent prognostic factors.
Results. The ovarian cancer TME cluster A was characterized by less infiltration of
immune cells and sparse distribution and low expression of immunomodulators. In
contrast, cytotoxic T cells and immunosuppressive cells were significantly increased in
the ovarian cancer TME cluster B. Additionally, immune-related cytokines or markers,
including IFN-γ and TNF-β, were also expressed in large quantities. In total, 35
differentially methylated and expressed genes (DMEGs) were identified. Functional
enrichment analyses revealed that the DMEGs in cluster B participated in important
biological processes and immune-related pathways. The mutation load in cluster B
was insignificantly higher than that of cluster A (p= 0.076). Multivariate Cox analysis
showed that TME was an independent prognostic factor for ovarian cancer (hazard
ratio: 1.33, 95% confidence interval: 1.01–1.75, p= 0.041).
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Conclusion. This study described and classified basic information about the immune
invasion pattern of ovarian cancer and integrated biomarkers related to different
immunophenotypes to reveal interactions between ovarian cancer and the immune
system.

Subjects Bioinformatics, Cell Biology, Gynecology and Obstetrics, Oncology, Medical Genetics
Keywords Ovarian cancer, Immune infiltration, Tumor microenvironment, Random forest,
Immunotherapy

INTRODUCTION
Epithelial ovarian cancer is the main pathological type of ovarian cancer, and it has some
histological subtypes, such as such as ovarian clear cell carcinoma, mucinous ovarian
cancer and serous ovarian cancer (Lowe et al., 2013). Global results showed a wide range in
ovarian cancer incidence rates, and ovarian cancer survival has shownmodest improvement
from a statistical perspective in the U.S (Barnholtz-Sloan et al., 2003; Lowe et al., 2013;
Park, Ruterbusch & Cote, 2017). The efficacy of immunotherapy can be further improved
in ovarian cancer by analyzing the immune indexes of these patients to predict their
responses to immune checkpoint blockade. The tumor microenvironment (TME) consists
of a variety of innate and adaptive immune cells and a series of cytokines that regulate
their responses to tumor cells. Solid tumors interact with infiltrating immune cells and
inflammatory molecules in a dynamic equilibrium that affects disease development and
outcome. Therefore, recently, several researches have investigated the functions of immune
cells and cytokines in the TME in tumor development and/or tumor immune escape. These
studies have also reported new methods of evaluating the infiltration of immune cells or
factors in the TME (Lorenzo-Sanz & Munoz, 2019). These studies have proposed several
immune signals that control the immune infiltration pattern of the TME, which can be
used to accurately screen the immune responses to gastric cancer, non-small cell lung
carcinoma (NSCLC) and other malignant tumors, and are potential therapeutic candidates
(Bi et al., 2020).

In this study, we used the gene expression profile data of 782 ovarian cancer patients,
including all histological subtypes, from The Cancer Genome Atlas (TCGA) and Gene
ExpressionOmnibus (GEO) databases. According to the immune cell invasion and cytokine
expression profiles of the TME, patients were divided into two different TME clusters. We
found that the survival rate of patients in the low infiltration group (TME cluster A)
was higher than that of the high infiltration group (TME cluster B). We also integrated
biomarkers related to different immunophenotypes and analyzed genes with differential
methylation levels, which provided evidence to better understand the interaction between
ovarian cancer and the immune system. Our study aimed to develop an immune pattern
and identify the immune signature of ovarian cancer.
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METHODS AND MATERIALS
Ovarian cancer expression data sets
We downloaded the level-4 mRNA sequencing data of ovarian cancer patients (presented
as FPKM) and the related clinical data from TCGA database; these data were used as
the discovery cohort. Patients were removed if their clinical and/or survival information
were vague or unavailable. Additionally, we collected and enrolled the ovarian cancer
patients’ microarray data from several independent datasets in the GEO database, including
GSE3149, GSE26712, and GSE63885. These gene expression data were all generated and
annotated by platform Affymetrix Human Genome U133 Plus 2.0 (GPL570) or Affymetrix
Human Genome U133a (GPL96). The COMBAT experience empirical Bayes approach
in the sva package was used to eliminate the heterogeneous batch effect among different
studies (Johnson, Li & Rabinovic, 2007). The background was adjusted and the data were
normalized using the limma package (Ritchie et al., 2015).

Estimation and classification of TME cell abundances
We comprehensively analyzed and identified the published literature and ultimately utilized
the gene signatures to build a compendium of microenvironment-associated genes (Bindea
et al., 2013). The gene signature included 585 genes and represented 24 microenvironment
cell subtypes from both innate and adaptive immunity, namely T cells, cytotoxic cells, CD8
T cells, as well as Tγ δ, T helper, Tcm, Tem, Th1, Th2, Th17, Tfh, Tgd, and Treg cells, B cells,
eosinophils, macrophages, mast cells, neutrophils, dendritic cells (DCs), immature DCs,
activated DCs (aDCs), natural killer (NK) cells, NK CD56-dim cells, and NK CD56-bright
cells. The relative enrichment level of each immune cell subset was estimated based on the
RNA expression data of each ovarian cancer patients using the Gene Set Variation Analysis
(GSVA) algorithm in the GSVA package (Hänzelmann, Castelo & Guinney, 2013), which is
a non-parametric and unsupervised analysis method that is primarily used to evaluate the
gene set enrichment of nuclear transcriptome microarray data. It has been reported that
GSVA outperforms single cell Gene Set Enrichment Analysis (ssGSEA) when calculating
the signal-to-noise ratio in differential gene expression and differential signaling pathways
because GSVA included normalization of gene expression to reduce the noise of the data
(Tamborero et al., 2018). Finally, we obtained enrichment scores ranging from −1 to 1 for
those 24 immune cell types, which indicated the relative enrichment of the immune cell
infiltration.

An unsupervised clustering approach on the basis of Euclidean distance and Ward’s
linkage was used to cluster the ovarian cancers with distinct immune cell infiltration
patterns. We use the ConsensusClusterPlus package containing 1,000 repeats to determine
the optimal number of clusters for the ‘‘Infiltrated group’’ based on the percentage of data
variance.

We determined the optimal clustering number of the ‘‘Infiltration group’’ on the basis
of the percentage of variance of the data using the ConsensusClusterPlus package with 1,000
repeats (Monti et al., 2003). The distribution patterns of the 24 immune cell subtypes in
each patient were produced by utilizing the pheatmap package.
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Differential genomic features and functional enrichment analysis
The limma package was adopted to screen differentially expressed genes (DEGs) and
miRNAs in different infiltration groups. The limma software package used Benjamin and
Hochberg (BH) methods to estimate the gene expression profile through the moderation
t -test. The p-value was adjusted to the false discovery rate (Ritchie et al., 2015). |Log (fold
change) (logFC) >0.5 with adjusted p< 0.05 were considered the cut-off criteria for
differential expression. The cluster analysis software package was adopted to analyze the
functional enrichment of DEGs (Yu et al., 2012). Both Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) terms were identified strictly at p< 0.05.
Additionally, the maftools software package based on the Kruskal–Wallis test was used to
measure the mutation distribution of somatic cells and copy number variation detected by
gistic. An adjusted p-value < 0.01 was regarded to be significant.

Analysis of DNA methylation data
We employed the TCGA DNA methylation obtained by the Illumina Human
Methylation450 BeadChip array, which contains 485577 probes (approximately 396066
after filtering invalid probes) and covers 99% of RefSeq genes. The methylation level of
the probe was quantified as β-values, which were defined as the ratio of the strength
of the methylated and unmethylated alleles. The Champ pipeline was used to normalize
5′-c-phosphate-g-3′ (CPG)methylation data of different infiltration groups, and the results
were compared with those of DEG analysis. The threshold value for CpG sites was set as
a corrected p-value of <0.05 and an absolute 1β-value of >0.2. In this study, when the
number of differentially methylated CPGs in the promoter region of a gene was >1, it
was considered a differentially methylated gene. We focused on the methylation of gene
promoter regions, including TSS200, TSS1500, T′-UTR, and 1st-Exon, since differentially
methylated genes (DMGs) are commonly defined according to their promoter methylation
status (Lee et al., 2004; Licchesi et al., 2008; Liu et al., 2008). According to both DMGs and
DEGs, genes were classified into four categories: hypermethylated-upregulated (hyper-up),
hypermethylated-downregulated (hyper-down), hypomethylated-upregulated (hypo-up),
and hypomethylated-downregulated (hypo-down).

Establishing of the random forest classification model
Establishing the random forest classification model depended on the random forest
algorithm and the random forest packets of thousands of classification trees or regression
trees. First, we randomly divided the ovarian cancer patients in TCGA into training and
experimental cohort at a 7:3 ratio. The number of variables (mtry) and the number of
trees to grow (ntrees) were randomly allocated. The optimal value for the training group
to achieve the lowest error rate was determined after 10,000 iterations. According to the
above parameters, a random forest classification model was constructed. Additionally, the
variable importance (VIMP) value was set tomeasure the prediction error rate of themodel.

Statistical analysis
All statistical data and images were analyzed and plotted by R version 3.5.3 (R Foundation
for Statistical Computing, Vienna, Austria) (Colaprico et al., 2016). Continuous variables
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between the high- and low-invasiveness groups were compared by Student’s t -test and the
Wilcoxon test. Categorical variables were analyzed by the chi-square test. Kaplan–Meier
analysis and log-rank tests were performed using the ggplot2 package to analyze overall
survival (OS). To estimate the prognostic value of invasion by different immune cell
subtypes, the survminer software package was used to identify the cutoff value based on
the correlation between OS and GSVA scores. Finally, the forestplot package was used to
present the results. Two-sided p-value of< 0.05 were regarded as statistically significant in
the chi-square test, correlation test, log-rank test, and Cox analysis.

RESULTS
Phenotypic landscape of the ovarian cancer microenvironment
The flow chart of this study is shown in Fig. 1A. There were 343 patients from TCGA
enrolled in the discovery cohort and 439 patients from the GEO database enrolled in the
validation cohort. We used a GSVA enrichment fraction containing multiple immune
cell types to describe the relative abundance and comprehensively describe the immune
invasion phenotype of each ovarian cancer patient. K-means clustering divided the 343
patients into TME cluster A (n= 170) and TME cluster B (n= 173) according to the
dichotomy of the discovery cohort (TCGA data). The different groups reviewed the
different immune infiltration patterns of each ovarian cancer patient’s adaptive and innate
immune system (Fig. 1B). TME cluster A was featured with less abundance of immune
cells and a sparse distribution and low expression of immunomodulators. In contrast,
the activation levels of innate and/or adaptive immune responses in TME cluster B were
relatively high, indicating high infiltration of T cells, B cells, Tregs, TGD cells, cytotoxic
cells, DCs, IDCs, ADCs, and macrophages (Figs. 1B and 1C).

We estimated the OS of two the TME clusters, and the survival rate of patients in the
low infiltration group (TME cluster A) was higher than of those in the infiltration group
(TME cluster B) (p= 0.02; Fig. 1D). Due to the prognostic impact of TME cluster, we next
investigated the relationship between each immune cell type and prognosis. According to
the forest map, most tumor infiltrating immune cells were associated with improved OS,
including NK Cd56-dim cells (p= 0.018), ADCs (p= 0.015), TFHs (p= 0.01), Th1 cells
(p= 0.006), Th2 cells (p= 0.046), T cells (p= 0.007), NK CD56-bright cells (p= 0.042),
B cells (p= 0.001), Tregs (p= 0.001), and PDCs (p= 0.002) (Fig. 1E); the exceptions
were neutrophils (p< 0.001), mast cells (p= 0.003), NK cells (p= 0.001), macrophages
(p= 0.028), eosinophils (p= 0.014), IDCs (p= 0.015), and TGDs (p= 0.037). These
results showed that the TME group B had more immune cell infiltration than TME group
A patients, which was consistent with improved OS.

Next, we explored the distribution of age and tumor stage between TME clusters A and
B (Fig. 1F and Table 1). The results showed that the level of immune infiltration in elderly
patients was lower than that of young patients (p= 0.046). No significant difference was
observed regarding the distribution different tumor stages among the two TME clusters
(p= 0.994).
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Figure 1 The TME clusters of ovarian cancer from TCGA cohort. (A) Flowchart of the selection process.
(B) Unsupervised clustering of tumor microenvironment immune cells for 343 patients from TCGA. The
statistical difference of two TME clusters was compared using the Wilcoxon test. (C) The fraction of im-
mune cells in TME cluster A and B in patients from TCGA. (D) Kaplan–Meier curves revealed that the pa-
tients with high infiltration had better OS than those with low infiltration (p= 0.02). (E) Forest plot show-
ing the prognostic value of each type of immune cell. (F) The distribution of baseline information in TME
cluster A and B.

Full-size DOI: 10.7717/peerj.10255/fig-1

Table 1 Baseline characteristics of the OV patients in the two infiltration-groups from TCGA
database.

Characteristics High-Infiltration
(n= 170)

Low-Infiltration
(n= 173)

P-value

Age
≤65 125 (%) 109 (27.2%) 0.048
>65 45 (%) 64 (34.9%)

Stage
Stage I 2 (53.7%) 2 (55.9%) 0.994
Stage II 10 (24.0%) 9 (25.0%)
Stage III 132 (15.6%) 136 (15.8%)
Stage VI 26 (6.7%) 26 (3.3%)

Establishing and verification of the random forest classification model
To establish a practical clinical method, we divided ovarian cancer patients into TME
cluster A and TME cluster B, and then established a forest classification model according
to the Breiman random forest algorithm. As described below, 343 patients from the TCGA
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Figure 2 The TME cluster of ovarian cancer in GEO cohort. (A) The relative abundance of 24 types of
immune cells in 493 ovarian cancer patients. (B) The fraction of immune cells in TME cluster A and B pa-
tients from GEO.

Full-size DOI: 10.7717/peerj.10255/fig-2

database were randomly allocated into a training group (n= 240) and an experimental
group (n= 103). The relative abundance (GSVA score) of the 24 immune cell types was
used as the input variable, and TME cluster determined by unsupervised clustering was
used as response factor. In the training queue, after 10,000 iterations, the optimal mtry
and ntrees were 4 and 4000, respectively. To test the discriminatory ability of the model,
we applied it to the training queue and internal test queue to verify the effectiveness of
the model. The prediction accuracy was 100% and 99%, respectively, which proved the
reliability and stability of the model.

We then used these models in the external validation cohort from the GEO database,
which included 493 ovarian cancer patients (GSE3149, GSE26712, and GSE63885). After
GSVA scores of 2, the four immune cell types were calculated and fitted with the model,
the patients were divided into TME cluster A and B for external validation. The heatmap
(Fig. 2A) and box plot (Fig. 2B) revealed that TME cluster B from the GEO database was
also enriched for cells of the innate and adaptive immune systems, which was consistent
with analysis of TCGA data. These results further confirmed the clinical and immunological
significance of the random typing model.

Identification and functional annotation of DEGs
To determine the biological differences between TME clusters A and B from TCGA
database, we identified DEGs. Compared with TME cluster A, 494 upregulated genes and
73 downregulated genes were found in TME cluster B (Fig. 3A). The enrichment of 567
DEGs by GO and KEGG were analyzed with R cluster profiler package. DEGs from TME
cluster B were observed to be enriched in immune-related pathways, mainly including the
antigen presentation pathway, IFN- γ signaling, leukocyte activation, cytokine receptor
interaction, allogeneic rejection, and Th17 cell differentiation regulation, supporting the
abundant immune infiltration pattern in TME cluster B (Figs. 3B and 3C).
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Figure 3 DEGs and DMGs. (A) The volcano plot shows the DEGs between TME clusters A and B. (B, C)
GO and KEGG analyses of the DEGs. (D) The volcano plot shows the DMGs between TME clusters A and
B. (E, F) GO and KEGG analyses of the DMGs.

Full-size DOI: 10.7717/peerj.10255/fig-3

Identification and functional annotation of DMGs
We performed comparative analyses to identify DMGs in ovarian cancer between
TME cluster A and B using TCGA dataset. Overall, we identified 242 DMGs with 194
hypermethylated (methylogFC >0.1; adjusted p< 0.05) and 48 hypomethylated DMGs
(methylogFC <−0.1; adjusted p< 0.05). We integrated the DMGs and DEGs to identify
35 differentially methylated and expressed genes (DMEGs). Furthermore, we divided
the DMEGs into four different groups, namely hypo-up (n= 17), hyper-up (n= 12),
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hyper-down (n= 5), and hypo-down (n= 1) (Fig. 3D). We focused on the DMEGs in
the hyper-down and hypo-up groups in the subsequent analyses. LAPTM5 was the most
upregulated gene (logFC= 1.78, adjusted p< 0.001) andDLK1was themost downregulated
gene (logFC = −0.09, adjusted p< 0.001). Functional enrichment analyses showed that
the DMGs in TME cluster B participated in important biological processes and immune
related pathways, including regulation of antigen presentation, regulation of B cell receptor
signaling, cytokine-cytokine receptor interaction, and Th17 cell differentiation, indicating
more immune cell infiltration in TME cluster B (Figs. 3E and 3F).

Characteristics of the immune microenvironments of the TME
clusters
To further investigate the different genetic and molecular characteristics of TME clusters A
and B, we analyzed the expression profiles of several immune-related genes and cytokines
in the 343 ovarian cancer samples. First, we used a seven-gene panel derived from the
Bopler trial as an alternative indicator to quantify the levels of CD8A, CXCL10, IFN-
γ , GZMA, GZMB, EOMES, PRF1, and TBX21 (Fehrenbacher et al., 2016). These genes
have previously been connected with activated T cells, immune cytolytic activity, and
interferon- γ expression (Fehrenbacher et al., 2016; Rooney et al., 2015; Wang, Windgassen
& Papoutsakis, 2008). Second, Rooney et al. (2015) defined cytolytic activity scores, namely
the geometric mean of PRF1 and GZMA, to indicate the intensity of antitumor response.
The parameters, including CD8A, CXCL10, EOMES, GZMA, GZMB, IFN- γ , TBX21,
and PRF1, showed significantly higher levels in TME cluster B than TME cluster A (all
p< 0.001), indicating that patients with higher infiltration had enhanced cytotoxic function
compared with patients who showed low infiltration (Fig. 4A). The comparison of the two
phenotypes (such as MyD88, TICAM1, and TLR3) with molecules potentially involved in
innate immune priming showed a similar trend (except TLR9, all p< 0.05; Fig. 4B, left).
Additionally, compared with TME cluster A, TME cluster B showed abundant expression
of MHC-I/II-related antigen presenting molecules ( p< 0.001; Fig. 4B, right).

The TME cluster B group showed infiltration of abundant active innate and adaptive
immune cells, as well as immunosuppressive cells, such as Tregs and iDCs. Therefore, we
investigated the effect of immune activation and immune inhibition according to the CD8+

T cell/Treg ratio (Fig. 4C). This showed that TME cluster B had a significantly lower ratio
than TME cluster A, which may be caused by a feedback mechanism initiated by recruiting
effector T cells into the TME. In order to confirm this speculation, we investigated the
expression patterns of 15 immune checkpoint molecules (Fig. 4B, left three) and 20
costimulatory molecules (Fig. 4B, right). The thermogram revealed some relatively high
expressed costimulatory molecules (most p< 0.001, such as CTLA4, PDCD1, LAG3, and
CD274, Figs. 4D and 4E) in TME cluster B group, suggesting that these patients may benefit
from immune checkpoint inhibitors.

Somatic mutations in ovarian cancer
We also investigated whether somatic mutations were associated with invasiveness
independent of tumor origin. In our analyses, the mutation load in TME cluster B
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Figure 4 TME immune traits. (A) Violin plots showing the relative expression of the eight immune-
related genes and cytolytic activity (CYT) scores. (B) Relative expression level of molecules potentially
involved in initiating innate immunity (left) and those in the MHC-I/II antigen-presenting process
(right). (C) Violin plots showing that the CD8+ T cells/Treg ratio was lower in TME cluster B than in
TME cluster A. (D) The relative expression level of four important immune checkpoint molecules in
the two TME clusters. (E) Correlation between tumor immunogenicity, immune infiltration, immune
checkpoint molecules, and mutational load.

Full-size DOI: 10.7717/peerj.10255/fig-4
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Figure 5 Somatic mutations in ovarian cancer. (A) Violin plots showing that the mutational load in
TME cluster B was insignificantly higher compared with that in TME cluster A (p= 0.076). (B) Waterfall
plots showing the somatic mutations in the two TME clusters.

Full-size DOI: 10.7717/peerj.10255/fig-5

Table 2 Univariate andmultivariate analysis of overall survival in OV patients from TCGA database.

Variable (TCGA) Univariable Multivariable

HR (95%CI) P-value HR (95%CI) P-value

Age (≤65 vs. >65) 0.73 (0.56–0.98) 0.034 0.74 (0.57–0.99) 0.046
Stage

Stage I – – – –
Stage II 0.47 (0.19–1.15) 0.097 0.13 (0.02–0.66) 0.014
Stage III 0.96 (0.69–1.34) 0.824 0.25 (0.06–1.03) 0.054
Stage VI 1.19 (0.84–1.70) 0.324 0.30 (0.07–1.27) 0.103

Infiltration (Low vs. High) 1.38 (1.05–1.81) 0.021 1.33 (1.01–1.75) 0.041

was insignificantly higher than that in TME cluster A (p= 0.076; Fig. 5A). Generally,
more mutations are associated with increased heterogeneity, indicating stronger immune
rejection and more prominent immune cell infiltration. We also found that patients in
TME cluster B were more susceptible to PIK3CA mutation than those in TME cluster A
(61% vs. 46%; p= 0.031; Fig. 5B). These results suggested that PIK3CA mutation may be
a major driver of dysregulated expression of invasiveness-related genes in human cancer.

Prognostic value of the TME clusters
Univariate and multivariate analyses were also performed to evaluate the relationship
between several clinical factors and prognosis in the two TME clusters (Table 2). Age
[hazard ratio: 0.74, 95% confidence interval (CI): 0.57–0.99; p= 0.046] and immune
infiltration (hazard ratio: 1.33, 95%CI [1.01–1.75]; p= 0.041) were independent predictors
of OS in ovarian cancer. Overall, TME cluster B predicted better OS than TME cluster A.
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DISCUSSION
Recently, immunotherapy has aroused great interest following improvements in our
understanding of the molecular basis of immune recognition and regulation of tumor cells.
The infiltration and activation of immune cells are believed to be closely related to intrinsic
tumor processes and prognosis. In ovarian cancer, it has been found that the presence
of lymphocyte infiltration is associated with improved prognosis (Sato et al., 2005). In
contrast, the survival rate of ovarian cancer patients who lack lymphocyte infiltration
is reduced (Hwang et al., 2012). To better understand the distribution of immune cells
and factors in the ovarian cancer microenvironment and find new potential targets for
immunotherapy, we divided cases into a low infiltration group (TME cluster A) and an
infiltration group (TME cluster B) according to the individual immune infiltration patterns.
The distribution of immune cells and immune related factors were statistically analyzed.
This analysis revealed that TME infiltration pattern was an independent prognostic factor
for ovarian cancer patients.

DNA methylation is a major epigenetic mechanism, which plays important roles in
various biological processes (Bock, 2012), including regulating gene expression (Kulis &
Esteller, 2010), cell differentiation (Smith & Meissner, 2013), and inflammation (Horsburgh
et al., 2015). Aberrant methylation was considered to be involved in various diseases,
including ovarian cancer (Seeber & Van Diest, 2012). In this study, we identified 35
DMEGs and found that LAPTM5 was the most upregulated gene, while Dlk1 was the
most downregulated gene. LAPTM5 has been reported to show a negative correlation
between 5′-UTR methylation and homologous gene expression, indicating that it is
at least partially regulated by DNA methylation (Cortese et al., 2008). DLK1 encodes a
transmembrane proteinwithmultiple EGF repeats that plays a role in regulating cell growth.
Dlk1 overexpression participated in ovarian carcinogenesis through Notch activation and
EMT induction (Huang et al., 2019), which may depend on its hypermethylated level.
However, no study has focused on the relationship between Dlk1 methylation and ovarian
cancer. Inhibition of RUNX1 promotes cisplatin-induced apoptosis in ovarian cancer cells
(Xiao et al., 2020). MMP11 was found to be related with bowel metastases in ovarian cancer
(Mariani et al., 2019). However, the methylation level of the above genes associated with
their functions in ovarian cancer are still unclear.

This study had several limitations. First, we included only a small number of ovarian
cancer cases. Second, we failed to use non-database cases for external verification. More
clinical data are needed to verify the reliability of this classification standard. Further
exploration in this area is necessary. Third, we enrolled the ovarian cancer patients with
all histological subtypes because the sample size of any specific histological subtype was
insufficient. In the further study, wemay enroll sufficient sample size of specific histological
subtypes, such as ovarian clear cell carcinoma, mucinous ovarian cancer or serous ovarian
cancer, to make in-depth exploration and study.
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CONCLUSION
This study described the basic characteristics of the immune invasion pattern of ovarian
cancer through amulti-component analysis of large-scale cohort studies, and integrated the
biomarkers related to different immune phenotypes previously proposed, thus revealing
the interaction between the tumor and the immune microenvironment and providing the
clinical basis for providing more accurate and personalized immunotherapy strategies for
ovarian cancer patients.
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