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ABSTRACT
The vast tree-like dendritic structure of neurons allows them to receive and integrate
input from many neurons. A wide variety of neuronal morphologies exist, however,
their role in dendritic integration, and how it shapes the response of the neuron,
is not yet fully understood. Here, we study the evolution and interactions of dendritic
spikes in excitable neurons with complex real branch structures. We focus on
dozens of digitally reconstructed illustrative neurons from the online repository
NeuroMorpho.org, which contains over 130,000 neurons. Yet, our methods can be
promptly extended to any other neuron. This approach allows us to estimate and
map specific and heterogeneous patterns of activity observed across extensive
dendritic trees with thousands of compartments. We propose a classification of
neurons based on the location of the soma (centrality) and the number of branches
connected to the soma. These are key topological factors in determining the neuron’s
energy consumption, firing rate, and the dynamic range, which quantifies the
range in synaptic input rate that can be reliably encoded by the neuron’s firing rate.
Moreover, we find that bifurcations, the structural building blocks of complex
dendrites, play a major role in increasing the dynamic range of neurons. Our results
provide a better understanding of the effects of neuronal morphology in the diversity
of neuronal dynamics and function.

Subjects Computational Biology, Mathematical Biology, Neuroscience, Data Science
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INTRODUCTION
Neurons are specialized excitable cells that are characterized by distinctive and often
complex structures. Although the dendritic complexity is evident in various neuron types,
it is often disregarded in computational models, and its role in dendritic integration in
the presence of naturalistic stimuli is largely unknown. Moreover, the topology of dendritic
trees may reflect fundamental elements for dendritic computation.

Each neuron in the brain is unique, and they can be classified into a myriad of neuron
types and subtypes (Masland, 2004). Classification schemes often explore common
properties of neurons, such as the neuron’s morphology or neurotransmitter type (which
can be excitatory or inhibitory), the anatomical region they belong to and their role in the
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circuit, or other dynamical and functional properties of neurons. With the ever-growing
NeuroMorpho.org (Ascoli, 2015; Ascoli, Donohue & Halavi, 2007; Halavi et al., 2012)
public online repository, there are more than 130,000 digital reconstructions of neuronal
morphology available. These data can be used for anatomically realistic models (Hines,
Morse & Carnevale, 2007; Van Ooyen, 2011; Van Pelt, Van Ooyen & Uylings, 2001) and
morphometric analyses (Wearne et al., 2005). They can be invaluable for neuronal
classification, which is typically based on morphology, electrophysiology, molecular,
or functional properties (Sharpee, 2014; Kanari et al., 2019; Wen & Chklovskii, 2008).
By obeying fundamental consistence rules such as enforcing neurons to have a tree
topology (characterized by the absence of loops), digital reconstructions provide an
unprecedented wealth of data with exquisite spatial resolution, which can be used to gain
further insights on this complex problem of classifying and distinguishing different types
of neurons.

In stark contrast to what some simple and influential point-neuron models suggest,
such as the leaky integrate-and-fire model (Brunel & Van Rossum, 2007) and the
Hodgkin–Huxley model (Hodgkin & Huxley, 1952), neurons can have large and intricate
morphological structure that processes and integrates complex spatial patterns of input
coming from thousands of synapses. Dendrites can filter electric input by leaking part of
the current and propagate the rest. In addition to these passive properties, dendrites are
also capable of producing supralinear amplification called dendritic spikes that occur
owing to the voltage-gated dynamics of ion channels (Häusser, Spruston & Stuart, 2000;
Baer & Rinzel, 1991; Häusser & Mel, 2003). These nonlinear and active properties of
dendrites can boost the signal and generate interactions between neighboring
compartments that are crucial to facilitate the transmission of information along extensive
dendritic trees. Hence, spikes caused by neuronal integration of input from various
synaptic sources depend on these non-linear (non-additive) dynamics taking place at
dendrites with complex topology. Much work has been done to investigate how topology
determines the capability of single neurons to detect intensity of stimulus (Gollo,
Kinouchi & Copelli, 2009), to reliably detect dendritic spikes (Schmidt-Hieber, Jonas &
Bischofberger, 2007), to discriminate input patterns (De Sousa et al., 2015), and to perform
other forms of dendritic computation (Koch & Segev, 2000; Sardi et al., 2017; Zang,
Dieudonné & De Schutter, 2018). There has also been some attempts to study this problem
analytically (Naud, Payeur & Longtin, 2017; Gollo, Kinouchi & Copelli, 2012). However,
given the complexity of the task, they are usually limited to regular or oversimplified
dendritic structure (Naud, Payeur & Longtin, 2017).

Simple models play a major role at revealing fundamental dynamic mechanisms in
neuroscience (Avena-Koenigsberger, Misic & Sporns, 2018). Here we describe the spatial
structure of neurons and focus on main dynamics taking place at dendrites (Segev &
London, 2000). Conventional multi-compartment models often have less than 100
compartments (Van Ooyen et al., 2002; Remme, Rinzel & Schreiber, 2018; Shepherd et al.,
1985) and overlook the large number of synapses (about 10,000 in a human neuron)
that lead to complex nonlinear interactions. Some approaches feature a detailed
description of a specific neuron. However, a major limitation of this realistic approach is
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the large number of parameters in the model (Zang, Dieudonné & De Schutter, 2018;
Keren, Peled & Korngreen, 2005; Mainen & Sejnowski, 1996; Eyal et al., 2018; Zandt,
Veruki & Hartveit, 2018; Poirazi, Brannon & Mel, 2003; Hay et al., 2011). Many of these
parameters represent unknown variables, which is typical from such high-dimensional
problems that include the description of dynamics of a variety of (often spatially
dependent) ion channels along the dendritic tree.

Utilizing simplified neuronal dynamics, we mapped the heterogeneous response of
dendritic compartments, independently subjected to stochastic excitatory input, in
digitally reconstructed neurons. The structure of these neurons are trees that can be
considered as complex networks, and consist of up to 10,000 compartments. We focused
on the input-output response curve of these neurons as the intensity of incoming stimuli
varies over several orders of magnitude. These response curves can be used to quantify
essential features of the neuronal dynamics assuming a rate code (Gollo, Kinouchi &
Copelli, 2012; Kinouchi & Copelli, 2006), as fundamental principles of neuronal functions
may be determined by these dynamic features. Knowing the neuronal functions may be
helpful as a way to classify and compare neurons and neuron types (Carnevale et al., 1997)
within and across species (Butler & Hodos, 2005).

By applying this theoretical framework, our main aim is to investigate the implications
of complex and realistic dendritic structure on dendritic integration and neuronal
activity. We characterize the effects of topological properties of the neurons on the
dynamic range of the response functions, which quantifies the ability of neurons to
discriminate the intensity of incoming input, and show the contribution of bifurcations to
spatially dependent activity. We identify distinctive dynamical behaviors of different
types of neurons, induced by the dendritic topology, that reflect dynamical properties of
the rate of activity of the soma with respect to the dendritic tree. Finally, we show how
these findings can be explored to provide a novel functional classification of neurons,
which is complementary to existing ones.

METHODS
To estimate the spatial contribution of dendrites to the neuronal activity of digitally
reconstructed neurons, a number of simplified assumptions was considered. The dynamics
of each node was simulated using a simple model that represents the dynamics of excitable
media. The dynamics of 26 different neurons from 6 different species (see details on
Table 1), was characterized. Because details on the spatial distribution of all those neurons
are not available, homogeneous dynamics was assumed, and a main focus was to better
understand the contribution of the dendritic topology and their bifurcations on the
dynamics of neurons. Given the large number of compartments and bifurcations that
make up the dendritic arbor, any attempts of analytically modeling the propagation
and interaction of potentially hundreds of spikes simultaneously are rendered nearly
impractical and hence we focused on numerical experiments. Further, we expect these
interactions to be highly non-linear owing to the heterogeneity of the neuronal topology.
We overcome this complexity in spike dynamics by adapting a discrete computational
model from previous studies (Gollo, Kinouchi & Copelli, 2009, 2012, 2013). Our model
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Table 1 List of neuron reconstructions used in this study, taken from NeuroMorpho.Org (version 7.6).

Label Cell type Region Species Number of
somatic
branches

Number of
compartments

Number of
bifurcations

Relative
centrality
of soma

NeuroMorpho
ID

Reference

A Pyramidal occipital;
posteromedial
visual, layer 5

Mouse 7 1,580 30 0.552 NMO_72082 D’Souza et al.
(2016)

B Pyramidal frontal; primary
motor

Human 10 640 49 0.676 NMO_84457 Jacobs et al.
(2018)

C Pyramidal anterior
cingulate;
layer 5

Human 7 1,441 213 0.756 NMO_01058 Watson, Jones &
Allman (2006)

D Pyramidal temporal;
Brodmann
area 21, layer
2-3

Human 6 9,678 76 0.623 NMO_68177 Eyal et al. (2016)

E Pyramidal anterior
cingulate;
layer 5

Human 7 1,091 222 0.907 NMO_01064 Watson, Jones &
Allman (2006)

F Ganglion retina; inner
plexiform
layer

Mouse 6 3,936 50 0.827 NMO_08168 Mazzoni, Novelli
& Strettoi
(2008)

G Pyramidal parietal;
Brodmann
area 39

Human 6 413 24 0.943 NMO_03500 Jacobs et al.
(2001)

H Ganglion retina; ganglion
layer

Mouse 5 2,876 51 0.956 NMO_05321 Coombs et al.
(2006)

I Pyramidal frontal; primary
motor, deep

Wallaby 3 797 34 0.900 NMO_84354 Jacobs et al.
(2018)

J Sensory
neuron

peripheral
nervous
system; cuticle

Drosophila
melanogaster

4 4,844 350 0.794 NMO_79779 Seco et al. (2017)

K Pyramidal hippocampus Mouse 3 775 38 0.741 NMO_71409 Bastian et al.
(2017)

L Pyramidal medial
prefrontal;
layer 5

Rat 4 804 17 0.385 NMO_66093 Kougias et al.
(2016)

M Pyramidal subiculum;
stratum
pyramidale

Rat 5 856 20 0.325 NMO_34951 Routh et al.
(2009)

N Pyramidal subiculum;
stratum
pyramidale

Rat 6 708 17 0.352 NMO_34958 Routh et al.
(2009)

O Pyramidal hippocampus;
CA1;
pyramidal
layer

Mouse 7 848 38 0.357 NMO_50703 Boillot et al.
(2016)

P Pyramidal occipital;
primary
visual, layer 6

Monkey 9 751 28 0.336 NMO_62656 Briggs et al.
(2016)
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preserves the main features of excitable systems, and by implementing real dendritic
structures, we focus on the resultant spatial properties of neurons with active dendrites.

Digital reconstructions
NeuroMorpho is a free online database of tens of thousands of three-dimensional neuron
reconstructions. Each neuron has up to thousands of individual compartments, and the
dataset is available in a standardized format, allowing the development of frameworks that
can implement any neuron. In contrast to previous studies (Gollo, Kinouchi & Copelli,
2009, 2012, 2013), we take the entire spatial information provided by NeuroMorpho
and treat the compartments as fundamental units of the neuron that are governed by
identical dynamical rules (see “Compartment Dynamics”). We focused on a variety of
neurons with high-quality reconstructions, based on visual inspection and diameter

Table 1 (continued)

Label Cell type Region Species Number of
somatic
branches

Number of
compartments

Number of
bifurcations

Relative
centrality
of soma

NeuroMorpho
ID

Reference

Q Granule hippocampus;
dentate gyrus

Rat 2 431 17 0.940 NMO_00462 Rihn &
Claiborne
(1990)

R Purkinje cerebellar
cortex; vermis,
Purkinje layer

Mouse 2 5,726 358 0.879 NMO_00864 Martone et al.
(2003)

S Pyramidal hippocampus;
CA1;
pyramidal
layer

Rat 2 473 47 0.500 NMO_06145 Chapleau et al.
(2009)

T Unknown frontal Rat 2 511 22 0.327 NMO_101378 Kuddannaya
et al. (2018)

U Induced
Neurons

forebrain Human 2 372 66 0.317 NMO_103256 Bu et al. (2017)

V Purkinje cerebellum;
vermis, lobule
III, apex

Mouse 1 667 142 0.886 NMO_80037 Jayabal,
Ljungberg &
Watt (2017)

W Interneuron optic lobe;
lobula
complex;
lobula plate

drosophila
melanogaster

1 4,659 762 0.826 NMO_51008 Cuntz et al.
(2013)

X Pyramidal medial
prefrontal;
layer 2-3

Rat 1 636 15 0.698 NMO_33937 Radley et al.
(2013)

Y Purkinje cerebellar
cortex;
Purkinje layer

Mouse 1 1,568 129 0.382 NMO_54509 Fukumitsu et al.
(2016)

Z Purkinje cerebellum;
vermis,
anterior,
lobule V

Mouse 1 993 107 0.196 NMO_93863 Nedelescu,
Abdelhack &
Pritchard
(2018)
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regularity. The sampling was such that a large portion of a two-dimensional space
comprising the number of branches connected to the soma and the relative centrality
of the soma was covered, which were main topological features of neurons. More
specifically, the list of neurons used in this paper is given in Table 1 (see below for a
definition of the centrality). The NeuroMorpho version was 7.6.

Compartment dynamics
We adapt a synchronous susceptible—infected (active)—refractory—susceptive model (SIRS)
used in previous studies (Gollo, Kinouchi & Copelli, 2009). The model is a probabilistic
cyclic cellular automata with discrete time and compartments, stochastic input, or
deterministic evolution of the SIRS dynamics. A compartment switches states as a result
of interactions from its neighboring compartments, stochastic input, or deterministic
evolution of the SIRS dynamics. A compartment that is in the susceptible state (state 0)
will remain there until activated either externally via synapses (see below), or by a
propagation of activity from an active neighbor. A signal propagates to a susceptible
neighboring compartment with a constant probability P. The probability of a failure to
propagate (1−P) represents the net effect of two different contributions: the passive dumping
of signal amplitude that propagates along dendrites, and the incoming synaptic inhibition.
Both contributions can be responsible to prevent the threshold required to generate a
dendritic spike to be reached, and thus represent a failure in propagation of activity.
Once active (state 1), a compartment will switch to the refractory period (state 2) for a
specific time, after which it will return to state 0. Here, we fix the refractory period to 7 time
steps. Because of these dynamic rules, activity may spread to all susceptible neighboring
compartment and travel in various directions (see Video S1). Moreover, two opposing
signals will not add but annihilate each other (Royer & Miller, 2007). The model also
recreates backpropagation, in which an action potential will travel back up the
dendritic arbor once the soma has been activated (Waters, Schaefer & Sakmann, 2005).
For simplicity, here we assume that the probability of forward and backward propagation is
the same, as previous work incorporating different probabilities of propagation, depending
on the direction, found that they affect the shape of the response function but have little
influence on other measures such as the dynamic range (Gollo, Kinouchi & Copelli, 2009,
2012, 2013), which will be explored here. The soma itself also follows the same rules,
however, it remains distinctive because it may be connected to many branches (Table 1).
Previous works using regular dendrites have explored the effects of spatial-dependent
dynamics (Gollo, Kinouchi & Copelli, 2013) and synaptic input (Gollo, Kinouchi & Copelli,
2009, 2012). Here, for simplicity, we assumed that the dynamics of all compartments is
identical because detailed information regarding how heterogeneous activity takes place in
various neuron types from different species and brain regions is absent.

In reality, many external factors are responsible for determining whether and when
a compartment should fire. For example, a compartment could have thousands of synaptic
connections, some inhibitory, some excitatory. In the end, however, the result will be either
On (activate the compartment) or Off (remain in the susceptible state). We model this
process using a probabilistic approach, where the probability of an excitatory synaptic signal is
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r = 1 − exp(−h ∙ dt), where h is the excitation rate, and δt is the time step of 1 ms. Here we will
focus on a range of h that spans several orders of magnitude (from 10−4 to 104 Hz), and
P that varies from 0.5 to 1 (as values of P smaller than 0.5 exhibit a very strong attenuation,
which is not plausible and give rise to little spatial contribution). The model is a discrete map,
and the activation probability of a susceptible site ki neighbors, and can be written as:

Piðt þ dtÞ ¼ 1� ð1� rÞ
Yki

j¼1
ð1� PÞdðxj; 1Þ

where dða; bÞ is the Kronecker delta, and xj is the state of the neighbor compartment j.
We simulate each neuron for 106 time steps (1,000 s) for combinations of h and P, running
every simulation five times. Over each simulation, we count the total number of times
the soma fires (FS) and the total number of times a dendritic compartment fires (FD).
The simulations were performed in MATLAB (MathWorks Inc., Natick, MA, USA) using
a custom code (see “Code availability”).

Firing rate and dynamic range
The characteristic sigmoidal response function of a neuron is recovered by plotting the
firing rate at some compartment against the excitation rate h for some value of P. It shows
how the neuron responds to various levels of input activity. An important feature of
the response curve is the dynamic range, which represents the range of input rates that the
neuron can effectively discern. By convention (Kinouchi & Copelli, 2006; Gollo, 2017), it is
defined as:

D ¼ 10� log10
h90
h10

� �

where h10 and h90 correspond to the excitation rates that produce a firing rate that is 10%
and 90% of the maximum firing rate.

Relative energy consumption
Another metric of determining performance is the relative energy consumption, which we
define here as

E ¼ FD=FS
N � 1

where N is the total number of compartments, and FD and FS are the number of dendritic
and somatic spikes, respectively. The energy indicates how active the whole dendritic tree
is compared to the soma, that is, how many times, on average, dendritic compartments
activate for each somatic spike.

Dynamics of benchmark neurites
To better understand the relationship between neuronal morphology and dynamics,
we constructed and simulated a set of artificial neurites, which consist only of two
branches. The primary branch is taken to be of fixed length N, whereas the secondary
branch changes both in length L and the positionQ at which it bifurcates from the primary
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branch, where Q is the index of the parent compartment of the primary branch. These toy
neurons can be used to isolate the behavior we see in the full neurons.

Centrality
A way of quantifying the soma’s position in the neuron is by estimating how far away
it is from the furthest endpoint. Let T be the number of dendritic endpoints (branch
terminals) of the neuron, and Dij be the distance (number of compartments) along the
neuron from the i-th compartment to the j-th terminal compartment. Since no loops exist,
this distance is always unique. Then we define the centrality of the i-th compartment as

Ci ¼ max
j¼1; ...; T

Dij
� �

Once the set of all compartmental centralities C = {C1, …, CN} has been calculated
(excluding axonal compartments), the relative centrality of the soma is given by

Crel ¼ 1� Csoma �min Cf g
max Cf g �min Cf g

where Crel = 0 implies that the soma is the least central compartment of the neuron, while
Crel = 1 implies that the soma is the most central compartment.

RESULTS
We investigate how morphology affects the dynamics of neurons. To focus on the
topological properties of neurons with many compartments (100–10,000), we utilized a
simple dynamic model: a canonical cyclic cellular automata model (Gollo, Kinouchi &
Copelli, 2009; Kinouchi & Copelli, 2006; Gollo, Copelli & Roberts, 2016). We first introduce,
illustrate, and characterize the relationship between neuronal structure and dynamics in
a pyramidal mouse neuron (D’Souza et al., 2016). Then, we compare the resulting
dynamical properties of multiple neurons from different species with a variety of neuronal
cell types and structures (see “Methods”). Each compartment is considered to have
synapses that can receive external input, and become active at a rate h, which is varied over
several orders of magnitude. The activity propagates to quiescent (susceptible) neighbors
with a probability P. By keeping track of the somatic and compartmental firing events,
we quantify some fundamental dynamical properties of the neuron, such as the firing rate,
relative energy consumption, and dynamic range. The emerging dynamics of the model is
depicted in Fig. 1 (see also Video S1).

Spatial maps of the activation rate
One strength of our computational model is the ability to simulate the complex dynamics
of very large neurons with many compartments and including their specific digitally
reconstructed morphology. To highlight the heterogeneity across dendritic branches, these
results can be visualized spatially in the form of heat maps. The average rate of activation
across time (T = 106 ms) of each compartment (N = 1,580) is illustrated in Fig. 2 for
different values of P, the probability of propagation of activity (see Fig. S1 for other
neurons). It is clear that the topology of the neuron affects the firing rate. Crucially, the
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soma (indicated by the arrow, left panel) becomes active at a higher rate than other
compartments. Please note the different colormaps for the different panels. Because the
model assumes homogeneity across compartments (P and h), this amplification of
firing rate at the soma occurs solely due to the topology. The soma has seven branches
connected to it. These branches increase the likelihood of activations to reach the soma in
comparison to other compartments because they can come from any active neighbor.
Moreover, the lower h and P are, the greater is the relative amplification of the firing rate at
the soma (see Fig. S2 for other neurons and values of h). These results also lead to the
prediction that the activation rate can vary substantially across dendritic sites. For neuron

Figure 1 Series of snapshots showing how signals propagate along the neuron. Visualization of digital
reconstruction of neuron A (see “Methods”), where compartments are colored according to the following
scheme: green for basal dendrites, purple for apical dendrites, blue for the soma (too small to be seen
here), red for active (spiking) compartments, orange for refractory compartments. In each time step,
spikes may propagate from active compartments to susceptible neighboring compartments with trans-
mission probability P (here, P = 0.96). A susceptible compartment may also spike due to the synaptic
input, which we model stochastically with a Poisson rate of h (here, h = 0.1 Hz). Once active, a com-
partment transitions to the refractory period and is unable to spike for 7 time steps. Panels (A–F) are
different time points. The inset plot provides a closer look at the soma and surrounding compartments.
(B) At t = 73, the neuron fires as a result of the dendritic integration of synaptic input (somatic spike, see
black arrow). (C and D) Between t = 74 and t = 75, a signal fails to transmit (see blue arrow). (D and E)
Between t = 75 and t = 76, two spikes can be seen annihilating each other (see red arrow). The snapshots
were taken from Video S1. Full-size DOI: 10.7717/peerj.10250/fig-1

Figure 2 Spatial map of the compartmental firing rate. The soma (marked by the arrow) lies among the most active region of the neuron,
regardless of the signal transmission probability P. The amplification of the activity at the soma is stronger for lower values of P. Refer to Figs. S1 and
S2 for heat maps of other neurons. Note different color scales. Full-size DOI: 10.7717/peerj.10250/fig-2
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A (Fig. 2), the firing rate increases near the soma, but the firing rate is usually larger in sites
close to a large number of bifurcations (see Figs. S1 and S2).

Energy consumption for neuronal spikes
Active dendrites are capable of generating dendritic spikes, which allows for enhancement
of activity and non-linear interactions. However, these dynamical benefits require
additional energy. Here we estimated the relative energy consumption of the soma with
respect to the number of activations the whole neuron experiences (see “Methods” for
details). In our model, two processes are responsible for increasing the relative energy
consumption of the neuron: (i) the external driving h, and (ii) the propagation and
bifurcation of a dendritic spike as it passes a dendritic junction, initiating an additional
spike that consumes energy. On the other hand, there are three mechanisms that reduce
the relative energy consumption of the neuron: (i) energy dissipates stochastically due to
the attenuation rate (1−P), (ii) signals can propagate in nonlinear waves that can be
annihilated, and (iii) a signal traveling away from the soma will necessarily die when
reaching an endpoint of a branch.

It is important for a neuron to balance its energy usage while performing its functions.
In Fig. 3, we plot the relative energy consumption over the parameter space. The blue
regions highlight areas of most efficient operation, as somatic spikes require fewer
dendritic spikes to take place. In this case, it corresponds to a weak external driving rate
(h < 0.01 Hz) and a rate of transmission that allows for failure of dendritic spike
propagation (P < 0.95).

Figure 3 Variations in relative energy consumption of the neuron over the parameter space. The
relative energy consumption of a neuron (demonstrated here using neuron A, see “Methods”) is a
measure of how often, on average, dendritic compartments spike per somatic spike. Here the energy
consumption grows for high external driving and towards deterministic propagation (P = 1).

Full-size DOI: 10.7717/peerj.10250/fig-3
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The behavior of our measure of energy consumption in the limits of the parameter
space, as seen in Fig. 3, can be explained. Firstly, as P approaches 1, every signal will be
able to visit all compartments of the neuron once, or interact with another signal which will
be able to visit the remaining compartments. In that case, the average firing rate of the
compartments is identical and does not depend on topology. Hence, every dendritic
compartment has to fire once for the soma to fire once (deterministic behavior). Secondly,
in line with other studies (Hasenstaub et al., 2010), the energy consumption of spikes
increases with h. Moreover, as h approaches ∞, every compartment will fire independently
at the highest possible rate (measured in hertz):

Fmax ¼ 1
ðduration of active stateþ duration of refractory stateþ dtÞ

Again, the average firing rate of the compartments is identical, hence we expect a relative
energy consumption of 1. Only at these simple limiting cases is the dynamical behavior
independent of morphology.

Spatially resolved response function and dynamic range
One informative and influential way to quantify how dendritic trees process incoming
signals is given by input-output response functions. It is defined by the mean output
activation rate (across a long time interval, here T = 106 ms) as a function of the rate of
activations induced by external driving h (neuronal input). This means that the firing rate
can be computed for each compartment. Response functions have their minimal in the
absence of external input and their maximal for very strong external driving. As illustrated
for different recording sites, response functions exhibit a sigmoidal shape (Fig. 4).
These results show for this neuron a larger firing rate at the soma compared to other
regions, especially at low external driving, which is consistent with the amplification of
the firing rate observed at the soma (Fig. 2). At high values of h, the saturation of the
response curves occurs in a similar manner regardless of the recording site. Moreover, for
P ≈ 1, this spatial heterogeneity vanishes.

An important feature of response functions that can be quantified corresponds to
the dynamic range Δ (Gollo, Kinouchi & Copelli, 2009; Kinouchi & Copelli, 2006).
It depends on the values of external driving at which the neuron responds at 10% of
its maximal firing rate (h10), and at 90% (h90). The dynamic range quantifies the range
between h10 and h90 (see “Methods” for details). It assumes that, based on the firing
rate, the neuron is unable to reliably distinguish activation rates too close to saturation,
h < h10 and h > h90. Figure 4 also illustrates the definition of the dynamic range for the
response function measured at the soma and at a basal dendrite.

The dynamic range is a measure of the sensitivity to changes in the input rate. A large
dynamic range indicates that a neuron can discern signals produced by a large range of
input rates. For example, ganglion cells from the retina require a large dynamic range
to be able to reliably respond to changes in lighting conditions that vary over several orders
of magnitude (Publio, Ceballos & Roque, 2012).
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Our model allows us to identify the spatial gradients observed in the dynamic range
(Fig. 5). Despite changes in the transmission probability P, the soma tends to exhibit
high values of dynamic range. However, if P is close enough to 1, the amplification of
signals become detrimental, and the dynamic range at the soma can be lower than other
regions. In this latter case, it is also relevant to notice that the differences in dynamic range
across the neuron are overall very small (<1 dB). This happens because h10 remains
essentially unchanged whilst the saturation of the response function (h90) occurs slightly
earlier at the soma (see panel D of Fig. 4).

Teasing apart the effects of a single branch on the dynamic range
To characterize the effects of neuronal topology, we explored the dynamic range of
each compartment in the neuron as a function of its distance from the soma (Fig. 6).
This new perspective reveals a general relationship that is mostly governed by P.

Figure 4 Response functions at representative compartments. (A) Marked compartments at different sites of the neuron. (B–D) Firing rate at
different sites (marked in panel A) against the synaptic input rate h for different values of P. (B) The dynamic range Δ is a function of h10 and h90
(see “Methods”). Lower values of P yield stronger spatial dependance in the response functions of compartments.

Full-size DOI: 10.7717/peerj.10250/fig-4

Figure 5 Heat maps of the spatial distribution of the dynamic range. (A–D) Dynamic range for different values of P. The soma (marked by the
arrow) usually exhibits the opposite performance of the extremities. The dynamic range is larger at the soma for low transmission probability P, but
lower for extremely high P. Please note the different color bars. See Fig. S3 for other neurons. Full-size DOI: 10.7717/peerj.10250/fig-5

Kirch and Gollo (2020), PeerJ, DOI 10.7717/peerj.10250 12/29

http://dx.doi.org/10.7717/peerj.10250/fig-4
http://dx.doi.org/10.7717/peerj.10250/supp-2
http://dx.doi.org/10.7717/peerj.10250/fig-5
http://dx.doi.org/10.7717/peerj.10250
https://peerj.com/


For P < 0.99, the dynamic range mostly decreases with the distance from the soma, and
bifurcations generate a local boost in dynamic range, while a drop occurs at branch
endpoints. For larger values of P, the dynamic range peaks at the main branch to the distal
dendrites (yellow).

To better understand the relationship between dendritic topology and neuronal
dynamics, we systematically studied how a single branch modifies the dynamic range.
To pinpoint the effects of a single bifurcation on the dynamic range, we created a set of
very simple neurons containing a single bifurcation with a small branch (Fig. 6E–6H).
Starting with a primary branch (red) of constant length, we append a secondary branch
(green) of length L to the primary branch at position Q, then run the simulations.
Despite its simplified spatial structure, the minimal toy neuron faithfully reproduces many
features in its dynamic range profile that we see from the full neuron reconstruction.
For example, the effect of a single bifurcation or branch endpoint on the local dynamic
range is consistent. A more complete set of toy neurites and their dynamic range is
provided in Fig. S5.

How does the dynamic range change across neurons?
Given the wide variety of neuronal morphologies, one might expect very different neurons
to exhibit very different dynamics. In general, the dynamic range at the soma, the
maximum dynamic range and the minimum dynamic range of the neuron increase
with P (Fig. 7). At its highest, the dynamic range at the soma attains values of more than 35
dB for all neurons, and up to 43 dB. In addition, as shown before (Figs. 4 and 5), the
measures of the dynamic range at the different sites become more homogeneous for
very large values of P. The measure of the relative Δ at the soma shows that the soma
is most often close to the sites of maximum dynamic range. However, some neurons

Figure 6 Dynamic range as a function of the distance to the soma. (A–D) The functional profile depends largely on the signal transmission
probability P. Distinct structural regions of the neuron are color coded. For other neurons (see below), refer to Fig. S4. (E–H) Minimalistic structural
model of a neuron with a main branch (red) of length N = 240, and a single bifurcation branch (green) of length L = 50. The secondary branch is
connected to the primary branch at compartment index Q = 120. Many features in the variation of dynamic range can be exhibited by the simple toy
neuron. The shaded regions are ±1 standard deviation of the mean, over 10 trials. The simple neurons were simulated for 105 time steps.
For additional results where we vary N, L and Q, refer to Fig. S5. Full-size DOI: 10.7717/peerj.10250/fig-6
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Figure 7 Comparison of dynamic ranges across neurons. Each row of graphs corresponds to the row of
neurons above (see “Methods” for a description of each neuron). Colors are used only to differentiate the
neurons of each row. The soma is marked by the green arrow, while the red and blue arrows indicate the
location of the compartment at which the dynamic range is highest and lowest when P ¼ 0.92. The
relative dynamic range was calculated using (Dsoma - Dmin)/(Dmax - Dmin). See Table 1 for original
references and description of neurons. Full-size DOI: 10.7717/peerj.10250/fig-7

Kirch and Gollo (2020), PeerJ, DOI 10.7717/peerj.10250 14/29

http://dx.doi.org/10.7717/peerj.10250/fig-7
http://dx.doi.org/10.7717/peerj.10250
https://peerj.com/


(R, T, Y and Z) exhibit the dynamic range at the soma somewhat smaller than the
maximum dynamic range of the neuron. Moreover, the maximum heterogeneity of
dynamic range across neurons varied substantially (from 7 to 13 dB). This spatial
heterogeneity, even when the dynamics of the compartments is assumed to be identical,
demonstrates that the topology of neurons plays a major role in shaping neuronal
dynamics.

Trends in energy consumption
The dynamic range tells us about the capability of neurons to encode stimuli that vary
over orders of magnitude. However, this process has a cost, and the dynamic range does
not reveal the neuronal efficiency in terms of energy consumption. Previously, we have
introduced our measure of relative energy consumption, defined as the average number
of times a dendritic compartment spikes for an action potential (somatic spike) to be
generated (Fig. 3). If we compare the energy consumption across all neurons, three distinct
types of behaviors emerge (Figs. 8–10), along with a transitioning behavior (Fig. 11).
For the full set of energy consumption plots, refer to Fig. S6.

Type 1 (Fig. 8) occurs for the majority of neurons, despite the stark differences in
morphologies. For these neurons, the energy is minimized for approximately h < 10 Hz
and P < 0.95. Although the maximum dynamic range at the soma of every neuron
occurs near P = 1, it corresponds to a very high relative energy consumption. However,
a slight decrease in P can almost minimize the energy consumption in these neurons,
while keeping the dynamic range near its maximum. An optimally performing neuron
would therefore slightly subject signal propagation to failure, saving energy without
considerable loss in dynamic range.

Figure 8 Relative energy consumption for Type 1 neurons. The location of the soma is indicated by the arrow, and its dynamic range is plotted in
the bottom graph. Full-size DOI: 10.7717/peerj.10250/fig-8
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Type 2 (Fig. 9) corresponds to a narrower region of minimal energy consumption
(h < 1 Hz and 0.85 < P < 0.95). Unlike Type 1, decreasing the transmission probability
below 0.8 is detrimental to the efficient operation of these neurons.

Type 3 (Fig. 10) display high relative energy consumption, with a maximum in the
region h < 1 Hz and 0.8 < P < 0.9. Moreover, the maximum and minimum energy
consumption is much higher than for neurons of other types, and it never reaches a value
below 1. As such, Type 3 seems to be intrinsically energy inefficient.

Figure 10 Relative energy consumption for Type 3 neurons. The location of the soma is indicated by
the arrow, and its dynamic range is plotted in the bottom graph.

Full-size DOI: 10.7717/peerj.10250/fig-10

Figure 9 Relative energy consumption for Type 2 neurons. The location of the soma is indicated by the arrow, and its dynamic range is plotted in
the bottom graph. Full-size DOI: 10.7717/peerj.10250/fig-9
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The transition Type T (Fig. 11) exhibits a behavior that is between Types 1 and 2.
Given the different behaviors, it is clear that the dendritic morphology affects the energy
consumption of neurons. A crucial element in the computation of the energy consumption
corresponds to the location of the soma, and the number of branches it has. Neurons
of Type 1 have the soma located in a centralized position.

Centrality
To quantitatively describe the soma’s relative position within the overall extent of the
dendritic arbor, we devise a general measure of centrality (see “Methods”). When C = 1, the
soma is considered the most central compartment in the neuron. When C = 0, it is
considered the least central. If a compartment is not central, it does not necessarily imply
that it lies near the border of the neuron; for example, as for neuron A, compartments
in the two separated regions of high bifurcation densities would experience a low centrality
despite being surrounded by many compartments. Only the branch connecting these two
areas would be central. Heat maps of the compartmental centrality for all neurons are
provided in Fig. S7. The spatial mapping reveals that centrality is related to how
symmetrically the rest of the neuron is distributed around a compartment.

Categorization
Based on our estimation of energy consumption, the behavior of Type 2 can be
distinguished from the behavior of Type 3 by the centrality (Fig. 12). Moreover, the
behavior of Type 1 and the transition Type T can be explained by the number of branches
connecting to the soma. This is an important property of neurons, as more branches
naturally allow the soma to capture more information from the dendritic arbor. Then,
if the soma is also located centrally, information can reach the soma more easily from any
part of the neuron, and vice versa.

Figure 11 Relative energy consumption for Type T neurons (transition type). The location of the soma is indicated by the arrow, and its dynamic
range is plotted in the bottom graph. Full-size DOI: 10.7717/peerj.10250/fig-11
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Taking into account how these main structural features affect neuronal dynamics, we
propose a categorization of neurons based on the relative centrality of the soma, and
number of somatic branches (Fig. 12). Neurons in the same category exhibit qualitatively
similar energy consumption profiles, and thus determine how efficiently the neuron
operates over the parameter space: Type 1 neurons are intrinsically energy efficient,
while Type 3 is intrinsically inefficient. The transition between classes is smooth.
For example, neurons with 3 or 4 somatic branches have a higher minimum energy
consumption than those with more somatic branches (see Fig. S6), however, they follow
the same general behavior.

The general neuronal firing behavior of neurons can also be ascribed to their
classification. For P = 1, the average response functions of neurons within types are very
similar, as they do not depend much on the centrality and number of somatic branches.
However, as P decreases, each class tends to behave independently (Figs. 13A–13C).
For a given input rate, neurons in category 1 fire more often, followed by the neurons in the
transition regime, neurons of category 2 and neurons of category 3. Furthermore, we find

Figure 12 Categorization of neurons according to their relative energy consumption profile. Type 1
(blue) corresponds to Fig. 8, Type 2 (yellow) to Fig. 9, Type 3 (red) to Fig. 10, and Type T (transition,
purple) to Fig. 11. The white dotted lines represent the approximate boundaries between different neuron
types, and the colors indicate the different types. Full-size DOI: 10.7717/peerj.10250/fig-12
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that a low probability of signal propagation has a detrimental effect on the somatic
dynamic range of neurons with a low number of somatic branches (Fig. 13D).
Additionally, neurons with a large number of compartments or bifurcations can achieve
a higher maximum dynamic range independently of other morphological features

Figure 13 Comparison of firing behavior. (A–C) Average somatic response functions of the neurons in
each category (see Fig. 12) for different values of P. The shading represents the standard deviation of
firing rate within each group for a given stimulus intensity. For large P, all groups converge to the same
behavior. For lower P, there is a distinct behavior between the average response functions of each group.
(D) Dynamic range at the soma of each neuron against the number of somatic branches for P = 0.5.
The colors represent the groups. The black trend line and Pearson correlation (r = 0.91) confirm that the
dynamic range is strongly correlated to the number of somatic branches for lower values of P.
(E and F) At high values of P, the number of bifurcations and number of compartments are good
indicators of the maximum dynamic range that a neuron can achieve (here P = 0.98). Please note the
logarithmic scale. The black trend lines and Pearson correlation show that the maximum Δ achieved is
approximately linearly correlated with the neuron’s size and complexity.

Full-size DOI: 10.7717/peerj.10250/fig-13
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(Figs. 13E and 13F). How close this site with maximum dynamic range is to the soma,
however, does depend on the neuronal morphology.

DISCUSSION
Dendritic computation occurs as a result of multiple non-linear interactions taking place at
dendrites (Häusser, Spruston & Stuart, 2000; London & Häusser, 2005). To provide
insights into this phenomenon, we proposed a modeling approach that considers real
neurons under naturalistic conditions, receiving independent synaptic-like input at
thousands of compartments. These detailed neurons are spatially-extended excitable
trees from NeuroMorpho, a database containing over 130,000 digitally reconstructed
neurons (Ascoli, 2015; Ascoli, Donohue & Halavi, 2007; Halavi et al., 2012, 2008; Donohue
& Ascoli, 2011; Smith, Seligman & Swarup, 2008; Parekh & Ascoli, 2013; Ascoli et al., 2017).
Here we focus our results on a set of 26 selected neurons, however, it is possible to
extend these analyses to any neuron of the database using the code provided.

We demonstrated the presence of substantial spatial dependence in neuronal dynamics
that can be attributed to morphological features. Specifically, we mapped the excitability
(firing rate) and dynamic range of dendritic branches and the soma. We identified
bifurcations as a major structural source that can be very effective in raising the dynamic
range. Furthermore, we showed how the number of branches connected to the soma
and its centrality influence the energy consumption of neurons, and can be explored to
classify neuron types. Hence, we classified neurons into three different families, based on
centrality and number of branches connecting the soma, and a family that is within a
transition zone. We found that a soma with only one branch is special, and a general
behavior is expected when the soma has many branches. It is also possible to observe a
transition that happens when the soma has two or three branches.

Neuronal diversity
Diversity is a hallmark of neurons, and this is clearly demonstrated by the large variety of
digitally reconstructed neurons found in the NeuroMorpho database, which currently
has >130,000 neurons, from >640 cell types, and 60 species. Each of these neurons is
unique. They have a tree topology, and their morphological features are crucial for
classification. However, additional attempts have also been made to classify neurons based
not only on their morphology but taking into account features of their electrophysiology,
and their dynamics (Masland, 2004; Sharpee, 2014; Markram et al., 2004; Mott &
Dingledine, 2003). These proposals attempt to improve neuronal classification with
information about dynamics and function of neurons. Along this line, here we propose
to incorporate a few key structural features that inform about neuronal dynamics and
function. Our classification based on neuronal topology, together with other forms of
neuronal classification that take into account species, anatomical region, morphological,
and electrophysiological properties of neurons, may lead to more accurate functional
classification schemes.

Utilizing a minimal dynamic model, we were able to simulate the dynamics of many
neurons with thousands of compartments. This simple method is suitable to identify and
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highlight the most important structural features of neurons. Here we focused on a variety
of neurons, representing several neuron types, from different species, and acquired at
multiple laboratories. Given this diversity, we did not focus on harmonizing the length
of compartments. However, NeuroMorpho is a very rich dataset that allows a parcellation
that forces compartments to have the same length in order to improve comparisons among
neurons. The study was also primarily focused on neurons with high-quality and
fine-resolution reconstructions (with large number of compartments), but it was
comprised of a large proportion of pyramidal neurons. By incorporating more neuron
types, the diversity of the sampling can be increased, and this approach may be effective to
further explore the relationship between dendritic topology and neuronal function.

Action potentials and dendritic spikes consume energy because of the active flux of ions
that is required to charge the membrane capacitance. To allow active signaling, these ions
have to be pumped and this process uses energy provided by ATP. The energy cost of
action potentials can vary considerably across neurons (Sengupta et al., 2010). Here we
propose a different approach that focusses not on the cost of an action potential, but on the
cost of a neuronal spike relative to the cost of the routing of electric activity through
dendrites. We found that our estimation of relative energy consumption of neurons
appears in stereotypical forms that can be linked to specific topological features. Hence,
we propose that these features are relevant to characterize neuronal dynamics. According
to our approach, it is clear that specific morphological fingerprints such as bitufted cells
can be classified as belonging to a specific category (T). Furthermore, neurons with
multiple branches are more effective at generating somatic spikes. These branches increase
the convergence of input to the soma and reduce the overall density of dendritic spikes
typically required to trigger a somatic spike. In contrast, neurons with a non-central soma
connected to a single branch show the largest relative energy consumption, and they
require more than one dendritic spike per compartment for each somatic spike. These
distinct behaviors suggest specific computational function for neurons belonging to
different families. Moreover, this simple approach reveals a clear role of dendritic topology,
which might not be so evident in more complex neuron models that require a large
number of parameters.

Neuronal topology and dynamics
Other aspects of neuronal dynamics affected by dendritic topology include response
function and dynamic range. It has been previously shown that the size of dendritic
trees play a crucial role in determining the maximum dynamic range an active dendritic
tree can attain (Gollo, Kinouchi & Copelli, 2013). However, this proposal was based only
on a single topology (a regular and binary Cayley tree) with variable sizes (number of
layers). This regular and artificial topology is relevant but the approach does not
distinguish clearly the number of compartments from the number of bifurcations. Here, by
utilizing real neurons from NeuroMorpho, we can assess the role of these two factors.
We found that both the number of bifurcations (Pearson correlation, r = 0.72, p < 10−4) as
well as the number of compartments (Pearson correlation, r = 0.65, p < 10−4) can be good

Kirch and Gollo (2020), PeerJ, DOI 10.7717/peerj.10250 21/29

http://dx.doi.org/10.7717/peerj.10250
https://peerj.com/


predictors for the maximum dynamic range of neurons. However, it must be taken into
account that the number of compartments is also correlated with the number of
bifurcations. In this dataset, it is important to consider that the number of compartments
is mostly determined by the resolution of the digital reconstruction. In contrast, the
number of bifurcations reflects more fundamental properties of dendritic topology.

Typically, the larger is the number of bifurcations, the larger is the dynamic range.
This trend is also consistent with our minimal modeling approach containing a single
bifurcation. We found that a single bifurcation tends to increase the dynamic range by a
few decibels. A real dendritic topology can have many bifurcations that contribute to
increase the dynamic range of the neuron. Although their contribution is not additive,
it is reasonable to find that the number of bifurcations is perhaps the most important
element to increase the dynamic range. As large dendrites have many bifurcations, the
resolution used to digitalize such a complex structure needs to be fine. As a result, the
number of compartments often correlates with the number of bifurcations. Together, our
results suggest that the number of bifurcations is likely among the most essential features
of dendrites to shape the dynamic range.

Centrality is also fundamental for the dynamics because central branches exhibit larger
firing rates. This feature tends to increase the dynamic range as it is very effective at
amplifying weak inputs. However, this amplification can also be beneficial to the dynamic
range when P approaches 1. In this case, when P is nearly deterministic, we found that
the dynamic range of central compartments is usually higher than at non-central ones
(see Fig. S8). Going beyond single neurons, which have a tree topology with no loops,
future work should test whether topological features (such as centrality and degree) of
more general networks can also inform spatiotemporal patterns of activity in networks
of larger scales of circuits, columns, and brain regions. Furthermore, the dynamics of
networks depend on the diversity of neurons and properties of neuronal integration
(Gollo, 2017; Gollo, Copelli & Roberts, 2016; Gollo, Mirasso & Eguíluz, 2012). Hence, it
remains to be determined how the different types of neurons proposed here influence the
activity of networks.

Neuronal models
Our model is suitable to explore the topological effects of tens of thousands of digitally
reconstructed neurons with thousands of compartments in neuronal dynamics under
complex input conditions. In order to focus on these crucial spatial aspects of neurons,
here we considered explicitly simplified neuronal dynamics. We disregarded heterogeneity
of ion channels along neurons and assumed homogeneity for simplicity. This allows us
to highlight topological features of neurons and ascribe the heterogeneous types of
dynamics exclusively to dendritic structure. We argue that our simple modeling approach
retains the essential features to simulate the dynamics of excitable systems without the
burden of an excessive number of details and parameters. However, this is clearly a
simplification, and future work should address the role of more sophisticated biophysical
models with additional free parameters that describe the membrane potential of dendritic
branches as continuous variables (differential equations, instead of a map with discrete
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states (Girardi-Schappo, Tragtenberg & Kinouchi, 2013)), and explicitly consider the
contributions of excitatory and inhibitory synapses. Here, as a first step, inhibition is only
implicitly considered in the net synaptic contribution since in a previous study using a
similar dynamic model inhibition did not show much impact in the dynamic range of
the network whilst requiring additional free parameters (Gollo, Copelli & Roberts, 2016).
More detailed models might also incorporate heterogeneity of dynamics, taking into
account impedance gradients, the dendritic diameter, type of dendrite, distance from
soma, and so on (Donohue & Ascoli, 2008). Future studies including electrotonic analysis
will require more parameters but will represent an important validation step of our
findings and may lead to a better understanding of the relationship between dendritic
topology and function. Moreover, our simplifying assumptions of homogeneous and
constant input can also be extended in future works. As a first step, a more detailed
description of the dynamics of the soma can be considered in which the model has two
types of dynamics, one for the dendrites and one for the soma, and the role of two
types of integration can be independently assessed. This distinction might be relevant
because it is known that signal integration at the soma can be crucial for coincidence
detection and the resulting network response (Gollo, Mirasso & Eguíluz, 2012).

Changes in neuronal structure are reported in many neuropsychiatric disorders
(Uylings & De Brabander, 2002; Coleman & Flood, 1987; Kulkarni & Firestein, 2012;
Raymond, Bauman & Kemper, 1995; Forrest, Parnell & Penzes, 2018). The minimal
modeling approach proposed here can be used to characterize the changes in neuronal
dynamics caused by these structural alterations (Kirch & Gollo, 2020). Our simplified
approach might also be relevant for simulating motifs and circuits of neurons with detailed
dendritic structure under complex and realistic input conditions. Future work can focus
on more complex and specific extensions of the model. For example, spatial- and
time-dependent input may reveal other main features of neuronal dynamics with dendritic
computation taking place in parallel at functional subunits in cortical circuits.

CONCLUSIONS
Our model provides insights into the role the dendritic structure plays in the behavior of
a neuron, both local and on the larger scale. We used digital reconstructions of real
neurons to address the effects of intricate and nonhomogeneous spatial features of neurons
on their dynamics. Our results indicate that two main morphological features—the
centrality of the soma, and the number of branches connected to the soma—can determine
the type of behavior a neuron exhibits. Neurons whose soma lies on the border and in a
non-central location are intrinsically energy inefficient, whereas neurons with many
branches connected to the soma are intrinsically energy efficient. Furthermore, we have
shown that bifurcations in the dendritic tree can enhance the dynamic range, and that
the maximum dynamic range of neurons increase with the number of bifurcations and
compartments. Our approach can be extended to more than 130,000 neurons available at
the NeuroMorpho database.
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Code availability
Matlab code to reproduce the results, named “Neurodynamics”, is available at Systems
Neuroscience Group: http://www.sng.org.au/Downloads.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Australian Research Council and the Australian National
Health and Medical Research Council (APP1110975). The work was also supported by the
Dentons Australia Honors Scholarship. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Australian Research Council.
Australian National Health and Medical Research Council: APP1110975.
Dentons Australia Honors Scholarship.

Competing Interests
Leonardo L. Gollo is an Academic Editor for PeerJ.

Author Contributions
� Christoph Kirch conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Leonardo L. Gollo conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Matlab code to reproduce the results, named “Neurodynamics”, is available at Systems
Neuroscience Group: http://www.sng.org.au/Downloads.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.10250#supplemental-information.

REFERENCES
Ascoli GA. 2015. Sharing neuron data: carrots, sticks, and digital records. PLOS Biology

13(10):e1002275.

Ascoli GA, Donohue DE, Halavi M. 2007. NeuroMorpho. Org: a central resource for neuronal
morphologies. Journal of Neuroscience 27(35):9247–9251.

Ascoli GA, Maraver P, Nanda S, Polavaram S, Armañanzas R. 2017. Win-win data sharing in
neuroscience. Nature Methods 14(2):112.

Kirch and Gollo (2020), PeerJ, DOI 10.7717/peerj.10250 24/29

http://www.sng.org.au/Downloads
http://www.sng.org.au/Downloads
http://dx.doi.org/10.7717/peerj.10250#supplemental-information
http://dx.doi.org/10.7717/peerj.10250#supplemental-information
http://dx.doi.org/10.7717/peerj.10250
https://peerj.com/


Avena-Koenigsberger A, Misic B, Sporns O. 2018. Communication dynamics in complex brain
networks. Nature Reviews Neuroscience 19(1):17.

Baer S, Rinzel J. 1991. Propagation of dendritic spikes mediated by excitable spines: a continuum
theory. Journal of Neurophysiology 65(4):874–890.

Bastian TW, Duck KA, Michalopoulos GC, Chen MJ, Liu ZJ, Connor JR, Lanier LM,
Sola-Visner MC, Georgieff MK. 2017. Eltrombopag, a thrombopoietin mimetic, crosses the
blood-brain barrier and impairs iron-dependent hippocampal neuron dendrite development.
Journal of Thrombosis and Haemostasis 15(3):565–574.

Boillot M, Lee C-Y, Allene C, Leguern E, Baulac S, Rouach N. 2016. LGI1 acts presynaptically to
regulate excitatory synaptic transmission during early postnatal development. Scientific Reports
6:21769.

Briggs F, Kiley CW, Callaway EM, Usrey WM. 2016. Morphological substrates for parallel
streams of corticogeniculate feedback originating in both V1 and V2 of the macaque monkey.
Neuron 90(2):388–399.

Brunel N, Van Rossum MC. 2007. Lapicque’s 1907 paper: from frogs to integrate-and-fire.
Biological Cybernetics 97(5–6):337–339.

Bu Q, Wang A, Hamzah H, Waldman A, Jiang K, Dong Q, Li R, Kim J, Turner D, Chang Q.
2017. CREB signaling is involved in Rett syndrome pathogenesis. Journal of Neuroscience
37(13):3671–3685.

Butler AB, Hodos W. 2005. Comparative vertebrate neuroanatomy: evolution and adaptation.
Hoboken: John Wiley & Sons.

Carnevale NT, Tsai KY, Claiborne BJ, Brown TH. 1997. Comparative electrotonic analysis of
three classes of rat hippocampal neurons. Journal of Neurophysiology 78(2):703–720.

Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S, Armstrong DL,
Percy AK, Pozzo-Miller L. 2009. Dendritic spine pathologies in hippocampal pyramidal
neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations.
Neurobiology of Disease 35(2):219–233.

Coleman PD, Flood DG. 1987. Neuron numbers and dendritic extent in normal aging and
Alzheimer’s disease. Neurobiology of Aging 8(6):521–545.

Coombs J, Van Der List D, Wang G-Y, Chalupa L. 2006. Morphological properties of mouse
retinal ganglion cells. Neuroscience 140(1):123–136.

Cuntz H, Forstner F, Schnell B, Ammer G, Raghu SV, Borst A. 2013. Preserving neural function
under extreme scaling. PLOS ONE 8(8):e71540.

De Sousa G, Maex R, Adams R, Davey N, Steuber V. 2015. Dendritic morphology predicts
pattern recognition performance in multi-compartmental model neurons with and without
active conductances. Journal of Computational Neuroscience 38(2):221–234.

Donohue DE, Ascoli GA. 2008. A comparative computer simulation of dendritic morphology.
PLOS Computational Biology 4(6):e1000089.

Donohue DE, Ascoli GA. 2011. Automated reconstruction of neuronal morphology: an overview.
Brain Research Reviews 67(1–2):94–102.

D’Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A. 2016. Recruitment of inhibition and
excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. Elife
5:e19332.

Eyal G, Verhoog MB, Testa-Silva G, Deitcher Y, Benavides-Piccione R, DeFelipe J, De Kock CP,
Mansvelder HD, Segev I. 2018. Human cortical pyramidal neurons: from spines to spikes via
models. Frontiers in Cellular Neuroscience 12:181.

Kirch and Gollo (2020), PeerJ, DOI 10.7717/peerj.10250 25/29

http://dx.doi.org/10.7717/peerj.10250
https://peerj.com/


Eyal G, Verhoog MB, Testa-Silva G, Deitcher Y, Lodder JC, Benavides-Piccione R, Morales J,
DeFelipe J, De Kock CP, Mansvelder HD, Segev I. 2016. Unique membrane properties and
enhanced signal processing in human neocortical neurons. Elife 5:e16553.

Forrest MP, Parnell E, Penzes P. 2018. Dendritic structural plasticity and neuropsychiatric
disease. Nature Reviews Neuroscience 19(4):215.

Fukumitsu K, Hatsukano T, Yoshimura A, Heuser J, Fujishima K, Kengaku M. 2016.
Mitochondrial fission protein Drp1 regulates mitochondrial transport and dendritic
arborization in cerebellar Purkinje cells. Molecular and Cellular Neuroscience 71:56–65.

Girardi-Schappo M, Tragtenberg M, Kinouchi O. 2013. A brief history of excitable map-based
neurons and neural networks. Journal of Neuroscience Methods 220(2):116–130.

Gollo LL. 2017. Coexistence of critical sensitivity and subcritical specificity can yield optimal
population coding. Journal of the Royal Society Interface 14(134):20170207.

Gollo LL, Copelli M, Roberts JA. 2016. Diversity improves performance in excitable networks.
PeerJ 4:e1912.

Gollo LL, Kinouchi O, Copelli M. 2009. Active dendrites enhance neuronal dynamic range.
PLOS Computational Biology 5(6):e1000402.

Gollo LL, Kinouchi O, Copelli M. 2012. Statistical physics approach to dendritic computation: the
excitable-wave mean-field approximation. Physical Review E 85(1):011911.

Gollo LL, Kinouchi O, Copelli M. 2013. Single-neuron criticality optimizes analog dendritic
computation. Scientific Reports 3:3222.

Gollo LL, Mirasso C, Eguíluz VM. 2012. Signal integration enhances the dynamic range in
neuronal systems. Physical Review E 85(4):040902.

Halavi M, Hamilton KA, Parekh R, Ascoli G. 2012. Digital reconstructions of neuronal
morphology: three decades of research trends. Frontiers in Neuroscience 6:49.

Halavi M, Polavaram S, Donohue DE, Hamilton G, Hoyt J, Smith KP, Ascoli GA. 2008.
NeuroMorpho. Org implementation of digital neuroscience: dense coverage and integration
with the NIF. Neuroinformatics 6(3):241.

Hasenstaub A, Otte S, Callaway E, Sejnowski TJ. 2010. Metabolic cost as a unifying principle
governing neuronal biophysics. Proceedings of the National Academy of Sciences
107(27):12329–12334.

Hay E, Hill S, Schürmann F, Markram H, Segev I. 2011.Models of neocortical layer 5b pyramidal
cells capturing a wide range of dendritic and perisomatic active properties. PLOS Computational
Biology 7(7):e1002107.

Hines ML, Morse TM, Carnevale NT. 2007. Model structure analysis in NEURON: toward
interoperability among neural simulators. Methods in Molecular Biology 401:91–102.

Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its
application to conduction and excitation in nerve. Journal of Physiology 117(4):500.

Häusser M, Mel B. 2003. Dendrites: bug or feature? Current Opinion in Neurobiology
13(3):372–383.

Häusser M, Spruston N, Stuart GJ. 2000. Diversity and dynamics of dendritic signaling. Science
290(5492):739–744.

Jacobs B, Garcia ME, Shea-Shumsky NB, Tennison ME, Schall M, Saviano MS, Tummino TA,
Bull AJ, Driscoll LL, Raghanti MA, Lewandowski AH. 2018. Comparative morphology of
gigantopyramidal neurons in primary motor cortex across mammals. Journal of Comparative
Neurology 526(3):496–536.

Kirch and Gollo (2020), PeerJ, DOI 10.7717/peerj.10250 26/29

http://dx.doi.org/10.7717/peerj.10250
https://peerj.com/


Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, Jacobs J, Ford K, Wainwright M,
Treml M. 2001. Regional dendritic and spine variation in human cerebral cortex: a quantitative
golgi study. Cerebral Cortex 11(6):558–571.

Jayabal S, Ljungberg L, Watt AJ. 2017. Transient cerebellar alterations during development prior
to obvious motor phenotype in a mouse model of spinocerebellar ataxia type 6.
Journal of Physiology 595(3):949–966.

Kanari L, Ramaswamy S, Shi Y, Morand S, Meystre J, Perin R, Abdellah M, Wang Y, Hess K,
Markram H. 2019. Objective morphological classification of neocortical pyramidal cells.
Cerebral Cortex 29(4):1719–1735.

Keren N, Peled N, Korngreen A. 2005. Constraining compartmental models using multiple
voltage-recordings and genetic algorithms. Journal of Neurophysiology 94(6):3730–3742
DOI 10.1152/jn.00408.2005.

Kinouchi O, Copelli M. 2006. Optimal dynamical range of excitable networks at criticality.
Nature Physics 2(5):348.

Kirch C, Gollo LL. 2020. Dynamical effects of dendritic pruning implicated in aging and
neurodegeneration: towards a measure of neuronal reserve. BioRxiv
DOI 10.1101/2020.04.09.035048.

Koch C, Segev I. 2000. The role of single neurons in information processing. Nature Neuroscience
3(11s):1171.

Kougias DG, Nolan SO, Koss WA, Kim T, Hankosky ER, Gulley JM, Juraska JM. 2016.
Beta-hydroxy-beta-methylbutyrate ameliorates aging effects in the dendritic tree of pyramidal
neurons in the medial prefrontal cortex of both male and female rats. Neurobiology of Aging
40:78–85.

Kuddannaya S, Tong CS, Fan Y, Zhang Y. 2018. Geometrically mediated topographic steering of
neurite behaviors and network formation. Advanced Materials Interfaces 5(7):1700819.

Kulkarni VA, Firestein BL. 2012. The dendritic tree and brain disorders. Molecular and Cellular
Neuroscience 50(1):10–20.

London M, Häusser M. 2005. Dendritic computation. Annual Review of Neuroscience 28:503–532.

Mainen ZF, Sejnowski TJ. 1996. Influence of dendritic structure on firing pattern in model
neocortical neurons. Nature 382(6589):363.

Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. 2004. Interneurons
of the neocortical inhibitory system. Nature Reviews Neuroscience 5(10):793.

Martone ME, Zhang S, Gupta A, Qian X, He H, Price DL, Wong M, Santini S, Ellisman MH.
2003. The cell-centered database. Neuroinformatics 1(4):379–395.

Masland RH. 2004. Neuronal cell types. Current Biology 14(13):R497–R500.

Mazzoni F, Novelli E, Strettoi E. 2008. Retinal ganglion cells survive and maintain normal
dendritic morphology in a mouse model of inherited photoreceptor degeneration.
Journal of Neuroscience 28(52):14282–14292.

Mott DD, Dingledine R. 2003. Interneuron diversity series: interneuron research-challenges and
strategies. Trends in Neurosciences 26(9):484–488.

Naud R, Payeur A, Longtin A. 2017. Noise gated by dendrosomatic interactions increases
information transmission. Physical Review X 7(3):031045.

Nedelescu H, Abdelhack M, Pritchard AT. 2018. Regional differences in Purkinje cell morphology
in the cerebellar vermis of male mice. Journal of Neuroscience Research 96(9):1476–1489.

Parekh R, Ascoli GA. 2013. Neuronal morphology goes digital: a research hub for cellular and
system neuroscience. Neuron 77(6):1017–1038.

Kirch and Gollo (2020), PeerJ, DOI 10.7717/peerj.10250 27/29

http://dx.doi.org/10.1152/jn.00408.2005
http://dx.doi.org/10.1101/2020.04.09.035048
http://dx.doi.org/10.7717/peerj.10250
https://peerj.com/


Poirazi P, Brannon T, Mel BW. 2003. Pyramidal neuron as two-layer neural network. Neuron
37(6):989–999.

Publio R, Ceballos CC, Roque AC. 2012. Dynamic range of vertebrate retina ganglion cells:
importance of active dendrites and coupling by electrical synapses. PLOS ONE 7(10):e48517.

Radley JJ, Anderson RM, Hamilton BA, Alcock JA, Romig-Martin SA. 2013. Chronic
stress-induced alterations of dendritic spine subtypes predict functional decrements in an
hypothalamo-pituitary–adrenal-inhibitory prefrontal circuit. Journal of Neuroscience
33(36):14379–14391.

Raymond GV, Bauman ML, Kemper TL. 1995. Hippocampus in autism: a Golgi analysis.
Acta Neuropathologica 91(1):117–119.

Remme MW, Rinzel J, Schreiber S. 2018. Function and energy consumption constrain neuronal
biophysics in a canonical computation: coincidence detection. PLOS Computational Biology
14(12):e1006612.

Rihn LL, Claiborne BJ. 1990. Dendritic growth and regression in rat dentate granule cells during
late postnatal development. Developmental Brain Research 54(1):115–124.

Routh BN, Johnston D, Harris K, Chitwood RA. 2009. Anatomical and electrophysiological
comparison of CA1 pyramidal neurons of the rat and mouse. Journal of Neurophysiology
102(4):2288–2302.

Royer AS, Miller RF. 2007. Dendritic impulse collisions and shifting sites of action potential
initiation contract and extend the receptive field of an amacrine cell. Visual Neuroscience
24(4):619–634.

Sardi S, Vardi R, Sheinin A, Goldental A, Kanter I. 2017. New types of experiments reveal that a
neuron functions as multiple independent threshold units. Scientific Reports 7(1):18036.

Schmidt-Hieber C, Jonas P, Bischofberger J. 2007. Subthreshold dendritic signal processing and
coincidence detection in dentate gyrus granule cells. Journal of Neuroscience 27(31):8430–8441.

Seco CZ, Castells-Nobau A, Joo SH, Schraders M, Foo JN, Van der Voet M, Velan SS, Nijhof B,
Oostrik J, De Vrieze E, Katana R. 2017. A homozygous FITM2 mutation causes a
deafness-dystonia syndrome with motor regression and signs of ichthyosis and sensory
neuropathy. Disease Models & Mechanisms 10(2):105–118.

Segev I, London M. 2000. Untangling dendrites with quantitative models. Science
290(5492):744–750.

Sengupta B, Stemmler M, Laughlin SB, Niven JE. 2010. Action potential energy efficiency varies
among neuron types in vertebrates and invertebrates. PLOS Computational Biology
6(7):e1000840.

Sharpee TO. 2014. Toward functional classification of neuronal types. Neuron 83(6):1329–1334.

Shepherd G, Brayton R, Miller J, Segev I, Rinzel J, Rall W. 1985. Signal enhancement in distal
cortical dendrites by means of interactions between active dendritic spines. Proceedings of the
National Academy of Sciences 82(7):2192–2195.

Smith K, Seligman L, Swarup V. 2008. Everybody share: the challenge of data-sharing systems.
Computer 41(9):54–61.

Uylings HB, De Brabander J. 2002. Neuronal changes in normal human aging and Alzheimer’s
disease. Brain and Cognition 49(3):268–276.

Van Ooyen A. 2011. Using theoretical models to analyse neural development. Nature Reviews
Neuroscience 12(6):311.

Van Ooyen A, Duijnhouwer J, Remme MW, Van Pelt J. 2002. The effect of dendritic topology on
firing patterns in model neurons. Network: Computation in Neural Systems 13(3):311–325.

Kirch and Gollo (2020), PeerJ, DOI 10.7717/peerj.10250 28/29

http://dx.doi.org/10.7717/peerj.10250
https://peerj.com/


Van Pelt J, Van Ooyen A, Uylings HB. 2001. The need for integrating neuronal morphology
databases and computational environments in exploring neuronal structure and function.
Anatomy and Embryology 204(4):255–265.

Waters J, Schaefer A, Sakmann B. 2005. Backpropagating action potentials in neurones:
measurement, mechanisms and potential functions. Progress in Biophysics and Molecular
Biology 87(1):145–170.

Watson KK, Jones TK, Allman JM. 2006. Dendritic architecture of the von economo neurons.
Neuroscience 141(3):1107–1112.

Wearne S, Rodriguez A, Ehlenberger D, Rocher A, Henderson S, Hof P. 2005. New techniques
for imaging, digitization and analysis of three-dimensional neural morphology on multiple
scales. Neuroscience 136(3):661–680.

Wen Q, Chklovskii DB. 2008. A cost-benefit analysis of neuronal morphology. Journal of
Neurophysiology 99(5):2320–2328.

Zandt B-J, Veruki ML, Hartveit E. 2018. Electrotonic signal processing in AII amacrine cells:
compartmental models and passive membrane properties for a gap junction-coupled retinal
neuron. Brain Structure and Function 223(7):3383–3410.

Zang Y, Dieudonné S, De Schutter E. 2018. Voltage-and branch-specific climbing fiber responses
in purkinje cells. Cell Reports 24(6):1536–1549.

Kirch and Gollo (2020), PeerJ, DOI 10.7717/peerj.10250 29/29

https://peerj.com/
http://dx.doi.org/10.7717/peerj.10250

	Spatially resolved dendritic integration: towards a functional classification of neurons
	Introduction
	Methods
	Results
	Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


